示例#1
0
/*
 * do a bulk transfer
 */
int submit_bulk_msg(struct usb_device *dev, unsigned long pipe,
					void *buffer, int len)
{
	int dir_out = usb_pipeout(pipe);
	int ep = usb_pipeendpoint(pipe);
#ifndef MUSB_NO_MULTIPOINT
	int devnum = usb_pipedevice(pipe);
#endif
	u8  type;
	u16 csr;
	u32 txlen = 0;
	u32 nextlen = 0;
	u8  devspeed;

	/* select bulk endpoint */
	writeb(MUSB_BULK_EP, &musbr->index);

#ifndef MUSB_NO_MULTIPOINT
	/* write the address of the device */
	if (dir_out)
		writeb(devnum, &musbr->tar[MUSB_BULK_EP].txfuncaddr);
	else
		writeb(devnum, &musbr->tar[MUSB_BULK_EP].rxfuncaddr);
#endif

	/* configure the hub address and the port number as required */
	devspeed = get_dev_speed(dev);
	if ((musb_ishighspeed()) && (dev->parent != NULL) &&
		(devspeed != MUSB_TYPE_SPEED_HIGH)) {
		/*
		 * MUSB is in high speed and the destination device is full
		 * speed device. So configure the hub address and port
		 * address registers.
		 */
		config_hub_port(dev, MUSB_BULK_EP);
	} else {
#ifndef MUSB_NO_MULTIPOINT
		if (dir_out) {
			writeb(0, &musbr->tar[MUSB_BULK_EP].txhubaddr);
			writeb(0, &musbr->tar[MUSB_BULK_EP].txhubport);
		} else {
			writeb(0, &musbr->tar[MUSB_BULK_EP].rxhubaddr);
			writeb(0, &musbr->tar[MUSB_BULK_EP].rxhubport);
		}
#endif
		devspeed = musb_cfg.musb_speed;
	}

	/* Write the saved toggle bit value */
	write_toggle(dev, ep, dir_out);

	if (dir_out) { /* bulk-out transfer */
		/* Program the TxType register */
		type = (devspeed << MUSB_TYPE_SPEED_SHIFT) |
			   (MUSB_TYPE_PROTO_BULK << MUSB_TYPE_PROTO_SHIFT) |
			   (ep & MUSB_TYPE_REMOTE_END);
		writeb(type, &musbr->txtype);

		/* Write maximum packet size to the TxMaxp register */
		writew(dev->epmaxpacketout[ep], &musbr->txmaxp);
		while (txlen < len) {
			nextlen = ((len-txlen) < dev->epmaxpacketout[ep]) ?
					(len-txlen) : dev->epmaxpacketout[ep];

#ifdef CONFIG_USB_BLACKFIN
			/* Set the transfer data size */
			writew(nextlen, &musbr->txcount);
#endif

			/* Write the data to the FIFO */
			write_fifo(MUSB_BULK_EP, nextlen,
					(void *)(((u8 *)buffer) + txlen));

			/* Set the TxPktRdy bit */
			csr = readw(&musbr->txcsr);
			writew(csr | MUSB_TXCSR_TXPKTRDY, &musbr->txcsr);

			/* Wait until the TxPktRdy bit is cleared */
			if (!wait_until_txep_ready(dev, MUSB_BULK_EP)) {
				readw(&musbr->txcsr);
				usb_settoggle(dev, ep, dir_out,
				(csr >> MUSB_TXCSR_H_DATATOGGLE_SHIFT) & 1);
				dev->act_len = txlen;
				return 0;
			}
			txlen += nextlen;
		}

		/* Keep a copy of the data toggle bit */
		csr = readw(&musbr->txcsr);
		usb_settoggle(dev, ep, dir_out,
				(csr >> MUSB_TXCSR_H_DATATOGGLE_SHIFT) & 1);
	} else { /* bulk-in transfer */
static int
ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer,
		   int length, struct devrequest *req)
{
	ALLOC_ALIGN_BUFFER(struct QH, qh, 1, USB_DMA_MINALIGN);
	struct qTD *qtd;
	int qtd_count = 0;
	int qtd_counter = 0;
	volatile struct qTD *vtd;
	unsigned long ts;
	uint32_t *tdp;
	uint32_t endpt, maxpacket, token, usbsts;
	uint32_t c, toggle;
	uint32_t cmd;
	int timeout;
	int ret = 0;
	struct ehci_ctrl *ctrl = ehci_get_ctrl(dev);

	debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe,
	      buffer, length, req);
	if (req != NULL)
		debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n",
		      req->request, req->request,
		      req->requesttype, req->requesttype,
		      le16_to_cpu(req->value), le16_to_cpu(req->value),
		      le16_to_cpu(req->index));

#define PKT_ALIGN	512
	/*
	 * The USB transfer is split into qTD transfers. Eeach qTD transfer is
	 * described by a transfer descriptor (the qTD). The qTDs form a linked
	 * list with a queue head (QH).
	 *
	 * Each qTD transfer starts with a new USB packet, i.e. a packet cannot
	 * have its beginning in a qTD transfer and its end in the following
	 * one, so the qTD transfer lengths have to be chosen accordingly.
	 *
	 * Each qTD transfer uses up to QT_BUFFER_CNT data buffers, mapped to
	 * single pages. The first data buffer can start at any offset within a
	 * page (not considering the cache-line alignment issues), while the
	 * following buffers must be page-aligned. There is no alignment
	 * constraint on the size of a qTD transfer.
	 */
	if (req != NULL)
		/* 1 qTD will be needed for SETUP, and 1 for ACK. */
		qtd_count += 1 + 1;
	if (length > 0 || req == NULL) {
		/*
		 * Determine the qTD transfer size that will be used for the
		 * data payload (not considering the first qTD transfer, which
		 * may be longer or shorter, and the final one, which may be
		 * shorter).
		 *
		 * In order to keep each packet within a qTD transfer, the qTD
		 * transfer size is aligned to PKT_ALIGN, which is a multiple of
		 * wMaxPacketSize (except in some cases for interrupt transfers,
		 * see comment in submit_int_msg()).
		 *
		 * By default, i.e. if the input buffer is aligned to PKT_ALIGN,
		 * QT_BUFFER_CNT full pages will be used.
		 */
		int xfr_sz = QT_BUFFER_CNT;
		/*
		 * However, if the input buffer is not aligned to PKT_ALIGN, the
		 * qTD transfer size will be one page shorter, and the first qTD
		 * data buffer of each transfer will be page-unaligned.
		 */
		if ((unsigned long)buffer & (PKT_ALIGN - 1))
			xfr_sz--;
		/* Convert the qTD transfer size to bytes. */
		xfr_sz *= EHCI_PAGE_SIZE;
		/*
		 * Approximate by excess the number of qTDs that will be
		 * required for the data payload. The exact formula is way more
		 * complicated and saves at most 2 qTDs, i.e. a total of 128
		 * bytes.
		 */
		qtd_count += 2 + length / xfr_sz;
	}
/*
 * Threshold value based on the worst-case total size of the allocated qTDs for
 * a mass-storage transfer of 65535 blocks of 512 bytes.
 */
#if CONFIG_SYS_MALLOC_LEN <= 64 + 128 * 1024
#warning CONFIG_SYS_MALLOC_LEN may be too small for EHCI
#endif
	qtd = memalign(USB_DMA_MINALIGN, qtd_count * sizeof(struct qTD));
	if (qtd == NULL) {
		printf("unable to allocate TDs\n");
		return -1;
	}

	memset(qh, 0, sizeof(struct QH));
	memset(qtd, 0, qtd_count * sizeof(*qtd));

	toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));

	/*
	 * Setup QH (3.6 in ehci-r10.pdf)
	 *
	 *   qh_link ................. 03-00 H
	 *   qh_endpt1 ............... 07-04 H
	 *   qh_endpt2 ............... 0B-08 H
	 * - qh_curtd
	 *   qh_overlay.qt_next ...... 13-10 H
	 * - qh_overlay.qt_altnext
	 */
	qh->qh_link = cpu_to_hc32(virt_to_phys(&ctrl->qh_list) | QH_LINK_TYPE_QH);
	c = (dev->speed != USB_SPEED_HIGH) && !usb_pipeendpoint(pipe);
	maxpacket = usb_maxpacket(dev, pipe);
	endpt = QH_ENDPT1_RL(8) | QH_ENDPT1_C(c) |
		QH_ENDPT1_MAXPKTLEN(maxpacket) | QH_ENDPT1_H(0) |
		QH_ENDPT1_DTC(QH_ENDPT1_DTC_DT_FROM_QTD) |
		QH_ENDPT1_EPS(ehci_encode_speed(dev->speed)) |
		QH_ENDPT1_ENDPT(usb_pipeendpoint(pipe)) | QH_ENDPT1_I(0) |
		QH_ENDPT1_DEVADDR(usb_pipedevice(pipe));
	qh->qh_endpt1 = cpu_to_hc32(endpt);
	endpt = QH_ENDPT2_MULT(1) | QH_ENDPT2_UFCMASK(0) | QH_ENDPT2_UFSMASK(0);
	qh->qh_endpt2 = cpu_to_hc32(endpt);
	ehci_update_endpt2_dev_n_port(dev, qh);
	qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
	qh->qh_overlay.qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);

	tdp = &qh->qh_overlay.qt_next;
	if (req != NULL) {
		/*
		 * Setup request qTD (3.5 in ehci-r10.pdf)
		 *
		 *   qt_next ................ 03-00 H
		 *   qt_altnext ............. 07-04 H
		 *   qt_token ............... 0B-08 H
		 *
		 *   [ buffer, buffer_hi ] loaded with "req".
		 */
		qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = QT_TOKEN_DT(0) | QT_TOKEN_TOTALBYTES(sizeof(*req)) |
			QT_TOKEN_IOC(0) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
			QT_TOKEN_PID(QT_TOKEN_PID_SETUP) |
			QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
		qtd[qtd_counter].qt_token = cpu_to_hc32(token);
		if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req))) {
			printf("unable to construct SETUP TD\n");
			goto fail;
		}
		/* Update previous qTD! */
		*tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter]));
		tdp = &qtd[qtd_counter++].qt_next;
		toggle = 1;
	}

	if (length > 0 || req == NULL) {
		uint8_t *buf_ptr = buffer;
		int left_length = length;

		do {
			/*
			 * Determine the size of this qTD transfer. By default,
			 * QT_BUFFER_CNT full pages can be used.
			 */
			int xfr_bytes = QT_BUFFER_CNT * EHCI_PAGE_SIZE;
			/*
			 * However, if the input buffer is not page-aligned, the
			 * portion of the first page before the buffer start
			 * offset within that page is unusable.
			 */
			xfr_bytes -= (unsigned long)buf_ptr & (EHCI_PAGE_SIZE - 1);
			/*
			 * In order to keep each packet within a qTD transfer,
			 * align the qTD transfer size to PKT_ALIGN.
			 */
			xfr_bytes &= ~(PKT_ALIGN - 1);
			/*
			 * This transfer may be shorter than the available qTD
			 * transfer size that has just been computed.
			 */
			xfr_bytes = min(xfr_bytes, left_length);

			/*
			 * Setup request qTD (3.5 in ehci-r10.pdf)
			 *
			 *   qt_next ................ 03-00 H
			 *   qt_altnext ............. 07-04 H
			 *   qt_token ............... 0B-08 H
			 *
			 *   [ buffer, buffer_hi ] loaded with "buffer".
			 */
			qtd[qtd_counter].qt_next =
					cpu_to_hc32(QT_NEXT_TERMINATE);
			qtd[qtd_counter].qt_altnext =
					cpu_to_hc32(QT_NEXT_TERMINATE);
			token = QT_TOKEN_DT(toggle) |
				QT_TOKEN_TOTALBYTES(xfr_bytes) |
				QT_TOKEN_IOC(req == NULL) | QT_TOKEN_CPAGE(0) |
				QT_TOKEN_CERR(3) |
				QT_TOKEN_PID(usb_pipein(pipe) ?
					QT_TOKEN_PID_IN : QT_TOKEN_PID_OUT) |
				QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
			qtd[qtd_counter].qt_token = cpu_to_hc32(token);
			if (ehci_td_buffer(&qtd[qtd_counter], buf_ptr,
						xfr_bytes)) {
				printf("unable to construct DATA TD\n");
				goto fail;
			}
			/* Update previous qTD! */
			*tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter]));
			tdp = &qtd[qtd_counter++].qt_next;
			/*
			 * Data toggle has to be adjusted since the qTD transfer
			 * size is not always an even multiple of
			 * wMaxPacketSize.
			 */
			if ((xfr_bytes / maxpacket) & 1)
				toggle ^= 1;
			buf_ptr += xfr_bytes;
			left_length -= xfr_bytes;
		} while (left_length > 0);
	}

	if (req != NULL) {
		/*
		 * Setup request qTD (3.5 in ehci-r10.pdf)
		 *
		 *   qt_next ................ 03-00 H
		 *   qt_altnext ............. 07-04 H
		 *   qt_token ............... 0B-08 H
		 */
		qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = QT_TOKEN_DT(1) | QT_TOKEN_TOTALBYTES(0) |
			QT_TOKEN_IOC(1) | QT_TOKEN_CPAGE(0) | QT_TOKEN_CERR(3) |
			QT_TOKEN_PID(usb_pipein(pipe) ?
				QT_TOKEN_PID_OUT : QT_TOKEN_PID_IN) |
			QT_TOKEN_STATUS(QT_TOKEN_STATUS_ACTIVE);
		qtd[qtd_counter].qt_token = cpu_to_hc32(token);
		/* Update previous qTD! */
		*tdp = cpu_to_hc32(virt_to_phys(&qtd[qtd_counter]));
		tdp = &qtd[qtd_counter++].qt_next;
	}

	ctrl->qh_list.qh_link = cpu_to_hc32(virt_to_phys(qh) | QH_LINK_TYPE_QH);

	/* Flush dcache */
	flush_dcache_range((unsigned long)&ctrl->qh_list,
		ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
	flush_dcache_range((unsigned long)qh, ALIGN_END_ADDR(struct QH, qh, 1));
	flush_dcache_range((unsigned long)qtd,
			   ALIGN_END_ADDR(struct qTD, qtd, qtd_count));

	/* Set async. queue head pointer. */
	ehci_writel(&ctrl->hcor->or_asynclistaddr, virt_to_phys(&ctrl->qh_list));

	usbsts = ehci_readl(&ctrl->hcor->or_usbsts);
	ehci_writel(&ctrl->hcor->or_usbsts, (usbsts & 0x3f));

	/* Enable async. schedule. */
	cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
	cmd |= CMD_ASE;
	ehci_writel(&ctrl->hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, STS_ASS,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STS_ASS set\n");
		goto fail;
	}

	/* Wait for TDs to be processed. */
	ts = get_timer(0);
	vtd = &qtd[qtd_counter - 1];
	timeout = USB_TIMEOUT_MS(pipe);
	do {
		/* Invalidate dcache */
		invalidate_dcache_range((unsigned long)&ctrl->qh_list,
			ALIGN_END_ADDR(struct QH, &ctrl->qh_list, 1));
		invalidate_dcache_range((unsigned long)qh,
			ALIGN_END_ADDR(struct QH, qh, 1));
		invalidate_dcache_range((unsigned long)qtd,
			ALIGN_END_ADDR(struct qTD, qtd, qtd_count));

		token = hc32_to_cpu(vtd->qt_token);
		if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE))
			break;
		WATCHDOG_RESET();
	} while (get_timer(ts) < timeout);

	/*
	 * Invalidate the memory area occupied by buffer
	 * Don't try to fix the buffer alignment, if it isn't properly
	 * aligned it's upper layer's fault so let invalidate_dcache_range()
	 * vow about it. But we have to fix the length as it's actual
	 * transfer length and can be unaligned. This is potentially
	 * dangerous operation, it's responsibility of the calling
	 * code to make sure enough space is reserved.
	 */
	invalidate_dcache_range((unsigned long)buffer,
		ALIGN((unsigned long)buffer + length, ARCH_DMA_MINALIGN));

	/* Check that the TD processing happened */
	if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)
		printf("EHCI timed out on TD - token=%#x\n", token);

	/* Disable async schedule. */
	cmd = ehci_readl(&ctrl->hcor->or_usbcmd);
	cmd &= ~CMD_ASE;
	ehci_writel(&ctrl->hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&ctrl->hcor->or_usbsts, STS_ASS, 0,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STS_ASS reset\n");
		goto fail;
	}

	token = hc32_to_cpu(qh->qh_overlay.qt_token);
	if (!(QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_ACTIVE)) {
		debug("TOKEN=%#x\n", token);
		switch (QT_TOKEN_GET_STATUS(token) &
			~(QT_TOKEN_STATUS_SPLITXSTATE | QT_TOKEN_STATUS_PERR)) {
		case 0:
			toggle = QT_TOKEN_GET_DT(token);
			usb_settoggle(dev, usb_pipeendpoint(pipe),
				       usb_pipeout(pipe), toggle);
			dev->status = 0;
			break;
		case QT_TOKEN_STATUS_HALTED:
			dev->status = USB_ST_STALLED;
			break;
		case QT_TOKEN_STATUS_ACTIVE | QT_TOKEN_STATUS_DATBUFERR:
		case QT_TOKEN_STATUS_DATBUFERR:
			dev->status = USB_ST_BUF_ERR;
			break;
		case QT_TOKEN_STATUS_HALTED | QT_TOKEN_STATUS_BABBLEDET:
		case QT_TOKEN_STATUS_BABBLEDET:
			dev->status = USB_ST_BABBLE_DET;
			break;
		default:
			dev->status = USB_ST_CRC_ERR;
			if (QT_TOKEN_GET_STATUS(token) & QT_TOKEN_STATUS_HALTED)
				dev->status |= USB_ST_STALLED;
			break;
		}
		dev->act_len = length - QT_TOKEN_GET_TOTALBYTES(token);
	} else {
		dev->act_len = 0;
#ifndef CONFIG_USB_EHCI_FARADAY
		debug("dev=%u, usbsts=%#x, p[1]=%#x, p[2]=%#x\n",
		      dev->devnum, ehci_readl(&ctrl->hcor->or_usbsts),
		      ehci_readl(&ctrl->hcor->or_portsc[0]),
		      ehci_readl(&ctrl->hcor->or_portsc[1]));
#endif
	}

	free(qtd);
	return (dev->status != USB_ST_NOT_PROC) ? 0 : -1;

fail:
	free(qtd);
	return -1;
}
示例#3
0
static inline int qu_pipeindex (__u32 pipe) 
{
	return (usb_pipeendpoint (pipe) << 1) | (usb_pipecontrol (pipe) ? 
				0 : usb_pipeout (pipe));
}
void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
{
	char *speed, *type;
	memset (qh, 0, sizeof (dwc_otg_qh_t));

	if(urb && urb->dev){
		usb_settoggle (urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe), 1);
	}

	/* Initialize QH */
	switch (usb_pipetype(urb->pipe)) {
	case PIPE_CONTROL:
		qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
		break;
	case PIPE_BULK:
		qh->ep_type = USB_ENDPOINT_XFER_BULK;
		break;
	case PIPE_ISOCHRONOUS:
		qh->ep_type = USB_ENDPOINT_XFER_ISOC;
		break;
	case PIPE_INTERRUPT: 
		qh->ep_type = USB_ENDPOINT_XFER_INT;
		break;
	}

	qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;

	qh->data_toggle = DWC_OTG_HC_PID_DATA0;
	qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
	INIT_LIST_HEAD(&qh->qtd_list);
	INIT_LIST_HEAD(&qh->qh_list_entry);
	qh->channel = NULL;

	/* FS/LS Enpoint on HS Hub 
	 * NOT virtual root hub */
	qh->do_split = 0;
	if (((urb->dev->speed == USB_SPEED_LOW) || 
	     (urb->dev->speed == USB_SPEED_FULL)) &&
	    (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) 
	{
		DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", 
			   usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum, 
			   urb->dev->ttport);
		qh->do_split = 1;
	}

	if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
	    qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
		/* Compute scheduling parameters once and save them. */
		hprt0_data_t hprt;

		/** @todo Account for split transfers in the bus time. */
		int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);

		/* FIXME: work-around patch by Steven */
		qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
					       usb_pipein(urb->pipe),
					       (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
					       bytecount));

		/* Start in a slightly future (micro)frame. */
		qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
						     SCHEDULE_SLOP);
		qh->interval = urb->interval;
#if 0
		/* Increase interrupt polling rate for debugging. */
		if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
			qh->interval = 8;
		}
#endif		
		hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
		if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && 
		    ((urb->dev->speed == USB_SPEED_LOW) || 
		     (urb->dev->speed == USB_SPEED_FULL))) {
			qh->interval *= 8;
			qh->sched_frame |= 0x7;
			qh->start_split_frame = qh->sched_frame;
		}

	}

	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - qh = %p\n", qh);
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Device Address = %d\n",
		    urb->dev->devnum);
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Endpoint %d, %s\n",
		    usb_pipeendpoint(urb->pipe),
		    usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");

    switch(urb->dev->speed) {
    case USB_SPEED_LOW:
        qh->dev_speed = DWC_OTG_EP_SPEED_LOW;
        speed = "low";
        break;
    case USB_SPEED_FULL:
        qh->dev_speed = DWC_OTG_EP_SPEED_FULL;
        speed = "full";
        break;
    case USB_SPEED_HIGH:
        qh->dev_speed = DWC_OTG_EP_SPEED_HIGH;
        speed = "high";
        break;
    default:
        speed = "?";
        break;
    }
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Speed = %s\n", speed);
	
	switch (qh->ep_type) {
	case USB_ENDPOINT_XFER_ISOC: 
		type = "isochronous";	
		break;
	case USB_ENDPOINT_XFER_INT: 
		type = "interrupt";	
		break;
	case USB_ENDPOINT_XFER_CONTROL: 
		type = "control";	
		break;
	case USB_ENDPOINT_XFER_BULK: 
		type = "bulk";	
		break;
	default: 
		type = "?";	
		break;
	}
	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Type = %s\n",type);
	
#ifdef DEBUG
	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
			    qh->usecs);
		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
			    qh->interval);
	}
#endif	
	qh->dw_align_buf = NULL;
	return;
}
示例#5
0
int submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
		       int len,struct devrequest *setup)
{
	int done = 0;
	int devnum = usb_pipedevice(pipe);
	int ep = usb_pipeendpoint(pipe);

	dev->status = 0;

	if (devnum == root_hub_devnum)
		return sl811_rh_submit_urb(dev, pipe, buffer, len, setup);

	PDEBUG(7, "dev = %d pipe = %ld buf = %p size = %d rt = %#x req = %#x bus = %i\n",
	       devnum, ep, buffer, len, (int)setup->requesttype,
	       (int)setup->request, sl811_read(SL811_SOFCNTDIV)*64);

	sl811_write(SL811_DEV_A, devnum);
	sl811_write(SL811_PIDEP_A, PIDEP(USB_PID_SETUP, ep));
	/* setup phase */
	usb_settoggle(dev, ep, 1, 0);
	if (sl811_send_packet(dev, usb_sndctrlpipe(dev, ep),
			      (__u8*)setup, sizeof(*setup)) == sizeof(*setup)) {
		int dir_in = usb_pipein(pipe);
		int max = usb_maxpacket(dev, pipe);

		/* data phase */
		sl811_write(SL811_PIDEP_A,
			    PIDEP(dir_in ? USB_PID_IN : USB_PID_OUT, ep));
		usb_settoggle(dev, ep, usb_pipeout(pipe), 1);
		while (done < len) {
			int res = sl811_send_packet(dev, pipe, (__u8*)buffer+done,
						    max > len - done ? len - done : max);
			if (res < 0) {
				PDEBUG(0, "status data failed!\n");
				dev->status = -res;
				return 0;
			}
			done += res;
			usb_dotoggle(dev, ep, usb_pipeout(pipe));
			if (dir_in && res < max) /* short packet */
				break;
		}

		/* status phase */
		sl811_write(SL811_PIDEP_A,
			    PIDEP(!dir_in ? USB_PID_IN : USB_PID_OUT, ep));
		usb_settoggle(dev, ep, !usb_pipeout(pipe), 1);
		if (sl811_send_packet(dev,
				      !dir_in ? usb_rcvctrlpipe(dev, ep) :
				      usb_sndctrlpipe(dev, ep),
				      0, 0) < 0) {
			PDEBUG(0, "status phase failed!\n");
			dev->status = -1;
		}
	} else {
		PDEBUG(0, "setup phase failed!\n");
		dev->status = -1;
	}

	dev->act_len = done;

	return done;
}
示例#6
0
/*
 * This routine is called by the USB subsystem for each new device
 * in the system. We need to check if the device is ours, and in
 * this case start handling it.
 */
static int ksdazzle_probe(struct usb_interface *intf,
			  const struct usb_device_id *id)
{
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;

	struct usb_device *dev = interface_to_usbdev(intf);
	struct ksdazzle_cb *kingsun = NULL;
	struct net_device *net = NULL;
	int ret = -ENOMEM;
	int pipe, maxp_in, maxp_out;
	__u8 ep_in;
	__u8 ep_out;

	/* Check that there really are two interrupt endpoints. Check based on the
	   one in drivers/usb/input/usbmouse.c
	 */
	interface = intf->cur_altsetting;
	if (interface->desc.bNumEndpoints != 2) {
		err("ksdazzle: expected 2 endpoints, found %d",
		    interface->desc.bNumEndpoints);
		return -ENODEV;
	}
	endpoint = &interface->endpoint[KINGSUN_EP_IN].desc;
	if (!usb_endpoint_is_int_in(endpoint)) {
		err("ksdazzle: endpoint 0 is not interrupt IN");
		return -ENODEV;
	}

	ep_in = endpoint->bEndpointAddress;
	pipe = usb_rcvintpipe(dev, ep_in);
	maxp_in = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
	if (maxp_in > 255 || maxp_in <= 1) {
		err("ksdazzle: endpoint 0 has max packet size %d not in range [2..255]", maxp_in);
		return -ENODEV;
	}

	endpoint = &interface->endpoint[KINGSUN_EP_OUT].desc;
	if (!usb_endpoint_is_int_out(endpoint)) {
		err("ksdazzle: endpoint 1 is not interrupt OUT");
		return -ENODEV;
	}

	ep_out = endpoint->bEndpointAddress;
	pipe = usb_sndintpipe(dev, ep_out);
	maxp_out = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	/* Allocate network device container. */
	net = alloc_irdadev(sizeof(*kingsun));
	if (!net)
		goto err_out1;

	SET_NETDEV_DEV(net, &intf->dev);
	kingsun = netdev_priv(net);
	kingsun->netdev = net;
	kingsun->usbdev = dev;
	kingsun->ep_in = ep_in;
	kingsun->ep_out = ep_out;
	kingsun->irlap = NULL;
	kingsun->tx_urb = NULL;
	kingsun->tx_buf_clear = NULL;
	kingsun->tx_buf_clear_used = 0;
	kingsun->tx_buf_clear_sent = 0;

	kingsun->rx_urb = NULL;
	kingsun->rx_buf = NULL;
	kingsun->rx_unwrap_buff.in_frame = FALSE;
	kingsun->rx_unwrap_buff.state = OUTSIDE_FRAME;
	kingsun->rx_unwrap_buff.skb = NULL;
	kingsun->receiving = 0;
	spin_lock_init(&kingsun->lock);

	kingsun->speed_setuprequest = NULL;
	kingsun->speed_urb = NULL;
	kingsun->speedparams.baudrate = 0;

	/* Allocate input buffer */
	kingsun->rx_buf = kmalloc(KINGSUN_RCV_MAX, GFP_KERNEL);
	if (!kingsun->rx_buf)
		goto free_mem;

	/* Allocate output buffer */
	kingsun->tx_buf_clear = kmalloc(KINGSUN_SND_FIFO_SIZE, GFP_KERNEL);
	if (!kingsun->tx_buf_clear)
		goto free_mem;

	/* Allocate and initialize speed setup packet */
	kingsun->speed_setuprequest =
	    kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
	if (!kingsun->speed_setuprequest)
		goto free_mem;
	kingsun->speed_setuprequest->bRequestType =
	    USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
	kingsun->speed_setuprequest->bRequest = KINGSUN_REQ_SEND;
	kingsun->speed_setuprequest->wValue = cpu_to_le16(0x0200);
	kingsun->speed_setuprequest->wIndex = cpu_to_le16(0x0001);
	kingsun->speed_setuprequest->wLength =
	    cpu_to_le16(sizeof(struct ksdazzle_speedparams));

	printk(KERN_INFO "KingSun/Dazzle IRDA/USB found at address %d, "
	       "Vendor: %x, Product: %x\n",
	       dev->devnum, le16_to_cpu(dev->descriptor.idVendor),
	       le16_to_cpu(dev->descriptor.idProduct));

	/* Initialize QoS for this device */
	irda_init_max_qos_capabilies(&kingsun->qos);

	/* Baud rates known to be supported. Please uncomment if devices (other
	   than a SonyEriccson K300 phone) can be shown to support higher speeds
	   with this dongle.
	 */
	kingsun->qos.baud_rate.bits =
	    IR_2400 | IR_9600 | IR_19200 | IR_38400 | IR_57600 | IR_115200;
	kingsun->qos.min_turn_time.bits &= KINGSUN_MTT;
	irda_qos_bits_to_value(&kingsun->qos);

	/* Override the network functions we need to use */
	net->hard_start_xmit = ksdazzle_hard_xmit;
	net->open = ksdazzle_net_open;
	net->stop = ksdazzle_net_close;
	net->do_ioctl = ksdazzle_net_ioctl;

	ret = register_netdev(net);
	if (ret != 0)
		goto free_mem;

	dev_info(&net->dev, "IrDA: Registered KingSun/Dazzle device %s\n",
		 net->name);

	usb_set_intfdata(intf, kingsun);

	/* Situation at this point:
	   - all work buffers allocated
	   - setup requests pre-filled
	   - urbs not allocated, set to NULL
	   - max rx packet known (is KINGSUN_FIFO_SIZE)
	   - unwrap state machine (partially) initialized, but skb == NULL
	 */

	return 0;

      free_mem:
	kfree(kingsun->speed_setuprequest);
	kfree(kingsun->tx_buf_clear);
	kfree(kingsun->rx_buf);
	free_netdev(net);
      err_out1:
	return ret;
}
示例#7
0
static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_mouse *mouse;
	struct input_dev *input_dev;
	int pipe, maxp;
	int error = -ENOMEM;

	interface = intf->cur_altsetting;

	if (interface->desc.bNumEndpoints != 1)
		return -ENODEV;

	endpoint = &interface->endpoint[0].desc;
	if (!usb_endpoint_is_int_in(endpoint))
		return -ENODEV;

	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!mouse || !input_dev)
		goto fail1;

	mouse->data = usb_buffer_alloc(dev, 8, GFP_ATOMIC, &mouse->data_dma);
	if (!mouse->data)
		goto fail1;

	mouse->irq = usb_alloc_urb(0, GFP_KERNEL);
	if (!mouse->irq)
		goto fail2;

	mouse->usbdev = dev;
	mouse->dev = input_dev;

	if (dev->manufacturer)
		strlcpy(mouse->name, dev->manufacturer, sizeof(mouse->name));

	if (dev->product) {
		if (dev->manufacturer)
			strlcat(mouse->name, " ", sizeof(mouse->name));
		strlcat(mouse->name, dev->product, sizeof(mouse->name));
	}

	if (!strlen(mouse->name))
		snprintf(mouse->name, sizeof(mouse->name),
			 "USB HIDBP Mouse %04x:%04x",
			 le16_to_cpu(dev->descriptor.idVendor),
			 le16_to_cpu(dev->descriptor.idProduct));

	usb_make_path(dev, mouse->phys, sizeof(mouse->phys));
	strlcat(mouse->phys, "/input0", sizeof(mouse->phys));

	input_dev->name = mouse->name;
	input_dev->phys = mouse->phys;
	usb_to_input_id(dev, &input_dev->id);
	input_dev->dev.parent = &intf->dev;

	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
		BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE);
	input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |
		BIT_MASK(BTN_EXTRA);
	input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);

	input_set_drvdata(input_dev, mouse);

	input_dev->open = usb_mouse_open;
	input_dev->close = usb_mouse_close;

	usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,
			 (maxp > 8 ? 8 : maxp),
			 usb_mouse_irq, mouse, endpoint->bInterval);
	mouse->irq->transfer_dma = mouse->data_dma;
	mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

	error = input_register_device(mouse->dev);
	if (error)
		goto fail3;

	usb_set_intfdata(intf, mouse);
	return 0;

fail3:	
	usb_free_urb(mouse->irq);
fail2:	
	usb_buffer_free(dev, 8, mouse->data, mouse->data_dma);
fail1:	
	input_free_device(input_dev);
	kfree(mouse);
	return error;
}
static int usb_remote_probe(struct usb_interface *intf,
				const struct usb_device_id *id)
{
	struct usb_device *dev = NULL;
	struct usb_host_interface *idesc = NULL;
	struct usb_host_endpoint *ep_ctl2;
#else
static void *usb_remote_probe(struct usb_device *dev, unsigned int ifnum,
				const struct usb_device_id *id)
{
	struct usb_interface *intf;
	struct usb_interface_descriptor *idesc;
	struct usb_endpoint_descriptor *ep_ctl2;
#endif
	struct igorplug *ir = NULL;
	struct lirc_driver *driver = NULL;
	int devnum, pipe, maxp;
	int minor = 0;
	char buf[63], name[128] = "";
	int mem_failure = 0;
	int ret;

	dprintk(": usb probe called.\n");

#if defined(KERNEL_2_5)
	dev = interface_to_usbdev(intf);

#  if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 5)
	idesc = &intf->altsetting[intf->act_altsetting];  /* in 2.6.4 */
#  else
	idesc = intf->cur_altsetting;  /* in 2.6.6 */
#  endif

	if (idesc->desc.bNumEndpoints != 1)
		return -ENODEV;
	ep_ctl2 = idesc->endpoint;
	if (((ep_ctl2->desc.bEndpointAddress & USB_ENDPOINT_DIR_MASK)
	    != USB_DIR_IN)
	    || (ep_ctl2->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
	    != USB_ENDPOINT_XFER_CONTROL)
		return -ENODEV;
	pipe = usb_rcvctrlpipe(dev, ep_ctl2->desc.bEndpointAddress);
#else
	intf = &dev->actconfig->interface[ifnum];
	idesc = &intf->altsetting[intf->act_altsetting];
	if (idesc->bNumEndpoints != 1)
		return NULL;
	ep_ctl2 = idesc->endpoint;
	if (((ep_ctl2->bEndpointAddress & USB_ENDPOINT_DIR_MASK)
	    != USB_DIR_IN)
	    || (ep_ctl2->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
	    != USB_ENDPOINT_XFER_CONTROL)
		return NULL;
	pipe = usb_rcvctrlpipe(dev, ep_ctl2->bEndpointAddress);
#endif
	devnum = dev->devnum;
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	dprintk(DRIVER_NAME "[%d]: bytes_in_key=%d maxp=%d\n",
		devnum, CODE_LENGTH, maxp);


	mem_failure = 0;
	ir = kzalloc(sizeof(struct igorplug), GFP_KERNEL);
	if (!ir) {
		mem_failure = 1;
		goto mem_failure_switch;
	}

	driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
	if (!driver) {
		mem_failure = 2;
		goto mem_failure_switch;
	}

#if defined(KERNEL_2_5)
	ir->buf_in = usb_buffer_alloc(dev,
			      DEVICE_BUFLEN+DEVICE_HEADERLEN,
			      GFP_ATOMIC, &ir->dma_in);
#else
	ir->buf_in = kmalloc(DEVICE_BUFLEN+DEVICE_HEADERLEN,
			     GFP_KERNEL);
#endif
	if (!ir->buf_in) {
		mem_failure = 3;
		goto mem_failure_switch;
	}

	strcpy(driver->name, DRIVER_NAME " ");
	driver->minor = -1;
	driver->code_length = CODE_LENGTH * 8; /* in bits */
	driver->features = LIRC_CAN_REC_MODE2;
	driver->data = ir;
	driver->buffer_size = DEVICE_BUFLEN + ADDITIONAL_LIRC_BYTES;
	driver->set_use_inc = &set_use_inc;
	driver->set_use_dec = &set_use_dec;
	driver->sample_rate = sample_rate;    /* per second */
	driver->add_to_buf = &usb_remote_poll;
#ifdef LIRC_HAVE_SYSFS
	driver->dev = &intf->dev;
#endif
	driver->owner = THIS_MODULE;

	minor = lirc_register_driver(driver);
	if (minor < 0)
		mem_failure = 9;

mem_failure_switch:

	switch (mem_failure) {
	case 9:
#if defined(KERNEL_2_5)
		usb_buffer_free(dev, DEVICE_BUFLEN+DEVICE_HEADERLEN,
			ir->buf_in, ir->dma_in);
#else
		kfree(ir->buf_in);
#endif
	case 3:
		kfree(driver);
	case 2:
		kfree(ir);
	case 1:
		printk(KERN_ERR DRIVER_NAME "[%d]: out of memory (code=%d)\n",
			devnum, mem_failure);
#if defined(KERNEL_2_5)
		return -ENOMEM;
#else
		return NULL;
#endif
	}

	driver->minor = minor;
	ir->d = driver;
	ir->devnum = devnum;
	ir->usbdev = dev;
	ir->len_in = DEVICE_BUFLEN+DEVICE_HEADERLEN;
	ir->in_space = 1; /* First mode2 event is a space. */
	do_gettimeofday(&ir->last_time);

	if (dev->descriptor.iManufacturer
	    && usb_string(dev, dev->descriptor.iManufacturer,
			  buf, sizeof(buf)) > 0)
		strlcpy(name, buf, sizeof(name));
	if (dev->descriptor.iProduct
	    && usb_string(dev, dev->descriptor.iProduct, buf, sizeof(buf)) > 0)
		snprintf(name + strlen(name), sizeof(name) - strlen(name),
			 " %s", buf);
	printk(KERN_INFO DRIVER_NAME "[%d]: %s on usb%d:%d\n", devnum, name,
	       dev->bus->busnum, devnum);

	/* clear device buffer */
	ret = usb_control_msg(ir->usbdev, usb_rcvctrlpipe(ir->usbdev, 0),
		SET_INFRABUFFER_EMPTY, USB_TYPE_VENDOR|USB_DIR_IN,
		/*unused*/0, /*unused*/0,
		/*dummy*/ir->buf_in, /*dummy*/ir->len_in,
		/*timeout*/HZ * USB_CTRL_GET_TIMEOUT);
	if (ret < 0)
		printk(KERN_WARNING DRIVER_NAME
		       "[%d]: SET_INFRABUFFER_EMPTY: error %d\n",
			devnum, ret);

#if defined(KERNEL_2_5)
	usb_set_intfdata(intf, ir);
	return 0;
#else
	return ir;
#endif
}


#if defined(KERNEL_2_5)
static void usb_remote_disconnect(struct usb_interface *intf)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	struct igorplug *ir = usb_get_intfdata(intf);
#else
static void usb_remote_disconnect(struct usb_device *dev, void *ptr)
{
	struct igorplug *ir = ptr;
#endif

	if (!ir || !ir->d)
		return;

	printk(KERN_INFO DRIVER_NAME
	       "[%d]: usb remote disconnected\n", ir->devnum);

	lirc_unregister_driver(ir->d->minor);

	lirc_buffer_free(ir->d->rbuf);
	kfree(ir->d->rbuf);
	kfree(ir->d);


#if defined(KERNEL_2_5)
	usb_buffer_free(dev, ir->len_in, ir->buf_in, ir->dma_in);
#else
	kfree(ir->buf_in);
#endif

	kfree(ir);
}

static struct usb_device_id usb_remote_id_table [] = {
	/* Igor Plug USB (Atmel's Manufact. ID) */
	{ USB_DEVICE(0x03eb, 0x0002) },
	/* Fit PC2 Infrared Adapter */
	{ USB_DEVICE(0x03eb, 0x21fe) },

	/* Terminating entry */
	{ }
};

static struct usb_driver usb_remote_driver = {
	LIRC_THIS_MODULE(.owner = THIS_MODULE)
	.name =		DRIVER_NAME,
	.probe =	usb_remote_probe,
	.disconnect =	usb_remote_disconnect,
	.id_table =	usb_remote_id_table
};

static int __init usb_remote_init(void)
{
	int i;

	printk(KERN_INFO DRIVER_NAME ": " DRIVER_DESC " v" DRIVER_VERSION "\n");
	printk(KERN_INFO DRIVER_NAME ": " DRIVER_AUTHOR "\n");
	dprintk(": debug mode enabled\n");

	i = usb_register(&usb_remote_driver);
	if (i < 0) {
		printk(KERN_ERR DRIVER_NAME
		       ": usb register failed, result = %d\n", i);
		return -ENODEV;
	}

	return 0;
}
示例#9
0
static int hub_configure(struct usb_hub *hub,
                         struct usb_endpoint_descriptor *endpoint)
{
    struct usb_device *dev = interface_to_usbdev (hub->intf);
    struct device *hub_dev;
    u16 hubstatus, hubchange;
    unsigned int pipe;
    int maxp, ret;
    char *message;

    hub->buffer = usb_buffer_alloc(dev, sizeof(*hub->buffer), GFP_KERNEL,
                                   &hub->buffer_dma);
    if (!hub->buffer) {
        message = "can't allocate hub irq buffer";
        ret = -ENOMEM;
        goto fail;
    }

    hub->status = kmalloc(sizeof(*hub->status), GFP_KERNEL);
    if (!hub->status) {
        message = "can't kmalloc hub status buffer";
        ret = -ENOMEM;
        goto fail;
    }

    hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
    if (!hub->descriptor) {
        message = "can't kmalloc hub descriptor";
        ret = -ENOMEM;
        goto fail;
    }

    /* Request the entire hub descriptor.
     * hub->descriptor can handle USB_MAXCHILDREN ports,
     * but the hub can/will return fewer bytes here.
     */
    ret = get_hub_descriptor(dev, hub->descriptor,
                             sizeof(*hub->descriptor));
    if (ret < 0) {
        message = "can't read hub descriptor";
        goto fail;
    } else if (hub->descriptor->bNbrPorts > USB_MAXCHILDREN) {
        message = "hub has too many ports!";
        ret = -ENODEV;
        goto fail;
    }

    hub_dev = hubdev(dev);
    dev->maxchild = hub->descriptor->bNbrPorts;
    dev_info (hub_dev, "%d port%s detected\n", dev->maxchild,
              (dev->maxchild == 1) ? "" : "s");

    le16_to_cpus(&hub->descriptor->wHubCharacteristics);

    if (hub->descriptor->wHubCharacteristics & HUB_CHAR_COMPOUND) {
        int	i;
        char	portstr [USB_MAXCHILDREN + 1];

        for (i = 0; i < dev->maxchild; i++)
            portstr[i] = hub->descriptor->DeviceRemovable
                         [((i + 1) / 8)] & (1 << ((i + 1) % 8))
                         ? 'F' : 'R';
        portstr[dev->maxchild] = 0;
        dev_dbg(hub_dev, "compound device; port removable status: %s\n", portstr);
    } else
        dev_dbg(hub_dev, "standalone hub\n");

    switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_LPSM) {
    case 0x00:
        dev_dbg(hub_dev, "ganged power switching\n");
        break;
    case 0x01:
        dev_dbg(hub_dev, "individual port power switching\n");
        break;
    case 0x02:
    case 0x03:
        dev_dbg(hub_dev, "unknown reserved power switching mode\n");
        break;
    }

    switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_OCPM) {
    case 0x00:
        dev_dbg(hub_dev, "global over-current protection\n");
        break;
    case 0x08:
        dev_dbg(hub_dev, "individual port over-current protection\n");
        break;
    case 0x10:
    case 0x18:
        dev_dbg(hub_dev, "no over-current protection\n");
        break;
    }

    spin_lock_init (&hub->tt.lock);
    INIT_LIST_HEAD (&hub->tt.clear_list);
    INIT_WORK (&hub->tt.kevent, hub_tt_kevent, hub);
    switch (dev->descriptor.bDeviceProtocol) {
    case 0:
        break;
    case 1:
        dev_dbg(hub_dev, "Single TT\n");
        hub->tt.hub = dev;
        break;
    case 2:
        dev_dbg(hub_dev, "TT per port\n");
        hub->tt.hub = dev;
        hub->tt.multi = 1;
        break;
    default:
        dev_dbg(hub_dev, "Unrecognized hub protocol %d\n",
                dev->descriptor.bDeviceProtocol);
        break;
    }

    switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_TTTT) {
    case 0x00:
        if (dev->descriptor.bDeviceProtocol != 0)
            dev_dbg(hub_dev, "TT requires at most 8 FS bit times\n");
        break;
    case 0x20:
        dev_dbg(hub_dev, "TT requires at most 16 FS bit times\n");
        break;
    case 0x40:
        dev_dbg(hub_dev, "TT requires at most 24 FS bit times\n");
        break;
    case 0x60:
        dev_dbg(hub_dev, "TT requires at most 32 FS bit times\n");
        break;
    }

    dev_dbg(hub_dev, "Port indicators are %s supported\n",
            (hub->descriptor->wHubCharacteristics & HUB_CHAR_PORTIND)
            ? "" : "not");

    dev_dbg(hub_dev, "power on to power good time: %dms\n",
            hub->descriptor->bPwrOn2PwrGood * 2);
    dev_dbg(hub_dev, "hub controller current requirement: %dmA\n",
            hub->descriptor->bHubContrCurrent);

    ret = hub_hub_status(hub, &hubstatus, &hubchange);
    if (ret < 0) {
        message = "can't get hub status";
        goto fail;
    }

    dev_dbg(hub_dev, "local power source is %s\n",
            (hubstatus & HUB_STATUS_LOCAL_POWER)
            ? "lost (inactive)" : "good");

    dev_dbg(hub_dev, "%sover-current condition exists\n",
            (hubstatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");

    /* Start the interrupt endpoint */
    pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
    maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

    if (maxp > sizeof(*hub->buffer))
        maxp = sizeof(*hub->buffer);

    hub->urb = usb_alloc_urb(0, GFP_KERNEL);
    if (!hub->urb) {
        message = "couldn't allocate interrupt urb";
        ret = -ENOMEM;
        goto fail;
    }

    usb_fill_int_urb(hub->urb, dev, pipe, *hub->buffer, maxp, hub_irq,
                     hub, endpoint->bInterval);
    hub->urb->transfer_dma = hub->buffer_dma;
    hub->urb->transfer_flags |= URB_NO_DMA_MAP;
    ret = usb_submit_urb(hub->urb, GFP_KERNEL);
    if (ret) {
        message = "couldn't submit status urb";
        goto fail;
    }

    /* Wake up khubd */
    wake_up(&khubd_wait);

    hub_power_on(hub);

    return 0;

fail:
    dev_err (&hub->intf->dev, "config failed, %s (err %d)\n",
             message, ret);
    /* hub_disconnect() frees urb and descriptor */
    return ret;
}
示例#10
0
static int igorplugusb_remote_probe(struct usb_interface *intf,
				    const struct usb_device_id *id)
{
	struct usb_device *dev = NULL;
	struct usb_host_interface *idesc = NULL;
	struct usb_endpoint_descriptor *ep;
	struct igorplug *ir = NULL;
	struct lirc_driver *driver = NULL;
	int devnum, pipe, maxp;
	int minor = 0;
	char buf[63], name[128] = "";
	int mem_failure = 0;
	int ret;

	dprintk(DRIVER_NAME ": usb probe called.\n");

	dev = interface_to_usbdev(intf);

	idesc = intf->cur_altsetting;

	if (idesc->desc.bNumEndpoints != 1)
		return -ENODEV;

	ep = &idesc->endpoint->desc;
	if (((ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK)
	    != USB_DIR_IN)
	    || (ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
	    != USB_ENDPOINT_XFER_CONTROL)
		return -ENODEV;

	pipe = usb_rcvctrlpipe(dev, ep->bEndpointAddress);
	devnum = dev->devnum;
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	dprintk(DRIVER_NAME "[%d]: bytes_in_key=%zu maxp=%d\n",
		devnum, CODE_LENGTH, maxp);

	mem_failure = 0;
	ir = kzalloc(sizeof(struct igorplug), GFP_KERNEL);
	if (!ir) {
		mem_failure = 1;
		goto mem_failure_switch;
	}
	driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
	if (!driver) {
		mem_failure = 2;
		goto mem_failure_switch;
	}

	ir->buf_in = usb_alloc_coherent(dev, DEVICE_BUFLEN + DEVICE_HEADERLEN,
					GFP_ATOMIC, &ir->dma_in);
	if (!ir->buf_in) {
		mem_failure = 3;
		goto mem_failure_switch;
	}

	strcpy(driver->name, DRIVER_NAME " ");
	driver->minor = -1;
	driver->code_length = CODE_LENGTH * 8; /* in bits */
	driver->features = LIRC_CAN_REC_MODE2;
	driver->data = ir;
	driver->chunk_size = CODE_LENGTH;
	driver->buffer_size = DEVICE_BUFLEN + ADDITIONAL_LIRC_BYTES;
	driver->set_use_inc = &set_use_inc;
	driver->set_use_dec = &set_use_dec;
	driver->sample_rate = sample_rate;    /* per second */
	driver->add_to_buf = &igorplugusb_remote_poll;
	driver->dev = &intf->dev;
	driver->owner = THIS_MODULE;

	minor = lirc_register_driver(driver);
	if (minor < 0)
		mem_failure = 9;

mem_failure_switch:

	switch (mem_failure) {
	case 9:
		usb_free_coherent(dev, DEVICE_BUFLEN + DEVICE_HEADERLEN,
			ir->buf_in, ir->dma_in);
	case 3:
		kfree(driver);
	case 2:
		kfree(ir);
	case 1:
		printk(DRIVER_NAME "[%d]: out of memory (code=%d)\n",
			devnum, mem_failure);
		return -ENOMEM;
	}

	driver->minor = minor;
	ir->d = driver;
	ir->devnum = devnum;
	ir->usbdev = dev;
	ir->len_in = DEVICE_BUFLEN + DEVICE_HEADERLEN;
	ir->in_space = 1; /* First mode2 event is a space. */
	do_gettimeofday(&ir->last_time);

	if (dev->descriptor.iManufacturer
	    && usb_string(dev, dev->descriptor.iManufacturer,
			  buf, sizeof(buf)) > 0)
		strlcpy(name, buf, sizeof(name));
	if (dev->descriptor.iProduct
	    && usb_string(dev, dev->descriptor.iProduct, buf, sizeof(buf)) > 0)
		snprintf(name + strlen(name), sizeof(name) - strlen(name),
			 " %s", buf);
	printk(DRIVER_NAME "[%d]: %s on usb%d:%d\n", devnum, name,
	       dev->bus->busnum, devnum);

	/* clear device buffer */
	ret = usb_control_msg(ir->usbdev, usb_rcvctrlpipe(ir->usbdev, 0),
		SET_INFRABUFFER_EMPTY, USB_TYPE_VENDOR|USB_DIR_IN,
		/*unused*/0, /*unused*/0,
		/*dummy*/ir->buf_in, /*dummy*/ir->len_in,
		/*timeout*/HZ * USB_CTRL_GET_TIMEOUT);
	if (ret < 0)
		printk(DRIVER_NAME "[%d]: SET_INFRABUFFER_EMPTY: error %d\n",
			devnum, ret);

	usb_set_intfdata(intf, ir);
	return 0;
}
示例#11
0
static int onetouch_connect_input(struct us_data *ss)
{
	struct usb_device *udev = ss->pusb_dev;
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_onetouch *onetouch;
	struct input_dev *input_dev;
	int pipe, maxp;
	int error = -ENOMEM;

	interface = ss->pusb_intf->cur_altsetting;

	if (interface->desc.bNumEndpoints != 3)
		return -ENODEV;

	endpoint = &interface->endpoint[2].desc;
	if (!usb_endpoint_is_int_in(endpoint))
		return -ENODEV;

	pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe));

	onetouch = kzalloc(sizeof(struct usb_onetouch), GFP_KERNEL);
	input_dev = input_allocate_device();
	if (!onetouch || !input_dev)
		goto fail1;

	onetouch->data = usb_alloc_coherent(udev, ONETOUCH_PKT_LEN,
					    GFP_KERNEL, &onetouch->data_dma);
	if (!onetouch->data)
		goto fail1;

	onetouch->irq = usb_alloc_urb(0, GFP_KERNEL);
	if (!onetouch->irq)
		goto fail2;

	onetouch->udev = udev;
	onetouch->dev = input_dev;

	if (udev->manufacturer)
		strlcpy(onetouch->name, udev->manufacturer,
			sizeof(onetouch->name));
	if (udev->product) {
		if (udev->manufacturer)
			strlcat(onetouch->name, " ", sizeof(onetouch->name));
		strlcat(onetouch->name, udev->product, sizeof(onetouch->name));
	}

	if (!strlen(onetouch->name))
		snprintf(onetouch->name, sizeof(onetouch->name),
			 "Maxtor Onetouch %04x:%04x",
			 le16_to_cpu(udev->descriptor.idVendor),
			 le16_to_cpu(udev->descriptor.idProduct));

	usb_make_path(udev, onetouch->phys, sizeof(onetouch->phys));
	strlcat(onetouch->phys, "/input0", sizeof(onetouch->phys));

	input_dev->name = onetouch->name;
	input_dev->phys = onetouch->phys;
	usb_to_input_id(udev, &input_dev->id);
	input_dev->dev.parent = &udev->dev;

	set_bit(EV_KEY, input_dev->evbit);
	set_bit(ONETOUCH_BUTTON, input_dev->keybit);
	clear_bit(0, input_dev->keybit);

	input_set_drvdata(input_dev, onetouch);

	input_dev->open = usb_onetouch_open;
	input_dev->close = usb_onetouch_close;

	usb_fill_int_urb(onetouch->irq, udev, pipe, onetouch->data,
			 (maxp > 8 ? 8 : maxp),
			 usb_onetouch_irq, onetouch, endpoint->bInterval);
	onetouch->irq->transfer_dma = onetouch->data_dma;
	onetouch->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

	ss->extra_destructor = onetouch_release_input;
	ss->extra = onetouch;
#ifdef CONFIG_PM
	ss->suspend_resume_hook = usb_onetouch_pm_hook;
#endif

	error = input_register_device(onetouch->dev);
	if (error)
		goto fail3;

	return 0;

 fail3:	usb_free_urb(onetouch->irq);
 fail2:	usb_free_coherent(udev, ONETOUCH_PKT_LEN,
			  onetouch->data, onetouch->data_dma);
 fail1:	kfree(onetouch);
	input_free_device(input_dev);
	return error;
}
示例#12
0
static int
dwc2_transfer(struct usb_device *dev, unsigned long pipe, int size,
	      int pid, ep_dir_t dir, uint32_t ch_num, u8 *data_buf)
{
	struct dwc_ctrl *ctrl = dev->controller;
	pUSB_OTG_REG reg = ctrl->otgReg;
	uint32_t do_copy;
	int ret;
	uint32_t packet_cnt;
	uint32_t packet_size;
	uint32_t transferred = 0;
	uint32_t inpkt_length;
	uint32_t eptype;
	HCTSIZ_DATA hctsiz = { .d32 = 0 };
	HCCHAR_DATA hcchar = { .d32 = 0 };
	void *aligned_buf;

	debug("# %s #dev %p, size %d, pid %d, dir %d, buf %p\n",
	      __func__, dev, size, pid, dir, data_buf);

	if (dev->speed != USB_SPEED_HIGH) {
		printf("Support high-speed only\n");
		return -1;
	}

	if (size > DMA_SIZE) {
		printf("Transfer too large: %d\n", size);
		return -1;
	}
	packet_size = usb_maxpacket(dev, pipe);
	packet_cnt = DIV_ROUND_UP(size, packet_size);
	inpkt_length = roundup(size, packet_size);

	/* At least 1 packet should be programed */
	packet_cnt = (packet_cnt == 0) ? 1 : packet_cnt;

	/*
	 * For an IN, this field is the buffer size that the application has
	 * reserved for the transfer. The application should program this field
	 * as integer multiple of the maximum packet size for IN transactions.
	 */
	hctsiz.xfersize = (dir == EPDIR_OUT) ? size : inpkt_length;
	hctsiz.pktcnt = packet_cnt;
	hctsiz.pid = pid;

	hcchar.mps = packet_size;
	hcchar.epnum = usb_pipeendpoint(pipe);
	hcchar.epdir = dir;

	switch (usb_pipetype(pipe)) {
	case PIPE_CONTROL:
		eptype = 0;
		break;
	case PIPE_BULK:
		eptype = 2;
		break;
	default:
		printf("Un-supported type\n");
		return -EOPNOTSUPP;
	}
	hcchar.eptype = eptype;
	hcchar.multicnt = 1;
	hcchar.devaddr = usb_pipedevice(pipe);
	hcchar.chdis = 0;
	hcchar.chen = 1;

	/*
	 * Check the buffer address which should be 4-byte aligned and DMA
	 * coherent
	 */
	//do_copy = !dma_coherent(data_buf) || ((uintptr_t)data_buf & 0x3);
	do_copy = 1;//(uintptr_t)data_buf & 0x3;
	aligned_buf = do_copy ? ctrl->align_buf : data_buf;

	if (do_copy && (dir == EPDIR_OUT))
		memcpy(aligned_buf, data_buf, size);

	if (dir == EPDIR_OUT)
		flush_dcache_range(aligned_buf, aligned_buf +
				   roundup(size, ARCH_DMA_MINALIGN));

	writel(hctsiz.d32, &reg->Host.hchn[ch_num].hctsizn);
	writel((uint32_t)aligned_buf, &reg->Host.hchn[ch_num].hcdman);
	writel(hcchar.d32, &reg->Host.hchn[ch_num].hccharn);

	ret = dwc_wait_for_complete(dev, ch_num);

	if (ret >= 0) {
		/* Calculate actual transferred length */
		transferred = (dir == EPDIR_IN) ? inpkt_length - ret : ret;

		if (dir == EPDIR_IN)
			invalidate_dcache_range(aligned_buf, aligned_buf +
				roundup(transferred, ARCH_DMA_MINALIGN));

		if (do_copy && (dir == EPDIR_IN))
			memcpy(data_buf, aligned_buf, transferred);
	}

	/* Save data toggle */
	hctsiz.d32 = readl(&reg->Host.hchn[ch_num].hctsizn);
	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe),
	              (hctsiz.pid >> 1));

	if (ret < 0) {
		printf("%s Transfer stop code: %d\n", __func__, ret);
		return ret;
	}

	return transferred;
}

int usb_lowlevel_stop(int index)
{
	pUSB_OTG_REG reg = (pUSB_OTG_REG)rkusb_active_hcd->regbase;
	HPRT0_DATA hprt0 = { .d32 = 0 };
	GUSBCFG_DATA gusbcfg = { .d32 = 0 };

	/* Stop connect and put everything of port state in reset. */
	hprt0.prtena = 1;
	hprt0.prtenchng = 1;
	hprt0.prtconndet = 1;
	writel(hprt0.d32, &reg->Host.hprt);

	gusbcfg.d32 = 0x1400;
	writel(gusbcfg.d32, &reg->Core.gusbcfg);

	return 0;
}

static void dwc2_reinit(pUSB_OTG_REG regbase)
{
	pUSB_OTG_REG reg = regbase;
	GUSBCFG_DATA gusbcfg = { .d32 = 0 };
	GRSTCTL_DATA grstctl = { .d32 = 0 };
	GINTSTS_DATA gintsts = { .d32 = 0 };
	GAHBCFG_DATA gahbcfg = { .d32 = 0 };
	RXFIFOSIZE_DATA grxfsiz = { .d32 = 0 };
	HCINTMSK_DATA hcintmsk = { .d32 = 0 };
	TXFIFOSIZE_DATA gnptxfsiz = { .d32 = 0 };

	const int timeout = 10000;
	int i;
	/* Wait for AHB idle */
	for (i = 0; i < timeout; i++) {
		udelay(1);
		grstctl.d32 = readl(&reg->Core.grstctl);
		if (grstctl.ahbidle)
			break;
	}
	if (i == timeout) {
		printf("DWC2 Init error AHB Idle\n");
		return;
	}

	/* Restart the Phy Clock */
	writel(0x0, &reg->ClkGate.PCGCR);
	/* Core soft reset */
	grstctl.csftrst = 1;
	writel(grstctl.d32, &reg->Core.grstctl);
	for (i = 0; i < timeout; i++) {
		udelay(1);
		grstctl.d32 = readl(&reg->Core.grstctl);
		if (!grstctl.csftrst)
			break;
	}
	if (i == timeout) {
		printf("DWC2 Init error reset fail\n");
		return;
	}

	/* Set 16bit PHY if & Force host mode */
	gusbcfg.d32 = readl(&reg->Core.gusbcfg);
	gusbcfg.phyif = 1;
	gusbcfg.forcehstmode = 1;
	gusbcfg.forcedevmode = 0;
	writel(gusbcfg.d32, &reg->Core.gusbcfg);
	/* Wait for force host mode effect, it may takes 100ms */
	for (i = 0; i < timeout; i++) {
		udelay(10);
		gintsts.d32 = readl(&reg->Core.gintsts);
		if (gintsts.curmod)
			break;
	}
	if (i == timeout) {
		printf("DWC2 Init error force host mode fail\n");
		return;
	}

	/*
	 * Config FIFO
	 * The non-periodic tx fifo and rx fifo share one continuous
	 * piece of IP-internal SRAM.
	 */
	grxfsiz.rxfdep = DWC2_RXFIFO_DEPTH;
	writel(grxfsiz.d32, &reg->Core.grxfsiz);
	gnptxfsiz.nptxfstaddr = DWC2_RXFIFO_DEPTH;
	gnptxfsiz.nptxfdep = DWC2_NPTXFIFO_DEPTH;
	writel(gnptxfsiz.d32, &reg->Core.gnptxfsiz);

	/* Init host channels */
	hcintmsk.xfercomp = 1;
	hcintmsk.xacterr = 1;
	hcintmsk.stall = 1;
	hcintmsk.chhltd = 1;
	hcintmsk.bblerr = 1;
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		writel(hcintmsk.d32, &reg->Host.hchn[i].hcintmaskn);

	/* Unmask interrupt & Use configure dma mode */
	gahbcfg.glblintrmsk = 1;
	gahbcfg.hbstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR8;
	gahbcfg.dmaen = 1;
	writel(gahbcfg.d32, &reg->Core.gahbcfg);

	printf("DWC2@0x%p init finished!\n", regbase);
}

int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
{
	pUSB_OTG_REG reg = (pUSB_OTG_REG)rkusb_active_hcd->regbase;
	struct dwc_ctrl *dwcctl;

	dwcctl = malloc(sizeof(struct dwc_ctrl));
	if (!dwcctl)
		return -ENOMEM;

	dwcctl->otgReg = reg;
	dwcctl->rootdev = 0;
	dwcctl->align_buf = memalign(USB_DMA_MINALIGN, DMA_SIZE);
	if (!dwcctl->align_buf)
		return -ENOMEM;

	dwc2_reinit(reg);
	*controller = dwcctl;

	return 0;
}

int
submit_bulk_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
                int length)
{
	ep_dir_t data_dir;
	int pid;
	int ret = 0;

	if (usb_pipetype(pipe) != PIPE_BULK) {
		debug("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
		return -1;
	}

	if (usb_pipein(pipe))
		data_dir = EPDIR_IN;
	else if (usb_pipeout(pipe))
		data_dir = EPDIR_OUT;
	else
		return -1;

	pid = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));
	if (pid)
		pid = DWC_HCTSIZ_DATA1;
	else
		pid = DWC_HCTSIZ_DATA0;

	ret = dwc2_transfer(dev, pipe, length, pid, data_dir, 0, buffer);

	if (ret < 0)
		return -1;

	dev->act_len = ret;
	dev->status = 0;
	return 0;
}

int
submit_control_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
		   int length, struct devrequest *setup)
{
	int ret = 0;
	struct dwc_ctrl *ctrl = dev->controller;
	ep_dir_t data_dir;

	if (usb_pipetype(pipe) != PIPE_CONTROL) {
		debug("non-control pipe (type=%lu)", usb_pipetype(pipe));
		return -1;
	}

	if (usb_pipedevice(pipe) == ctrl->rootdev) {
		if (!ctrl->rootdev)
			dev->speed = USB_SPEED_HIGH;
		return dwc2_submit_root(dev, pipe, buffer, length, setup);
	}

	if (usb_pipein(pipe))
		data_dir = EPDIR_IN;
	else if (usb_pipeout(pipe))
		data_dir = EPDIR_OUT;
	else
		return -1;

	/* Setup Phase */
	if (dwc2_transfer(dev, pipe, 8, PID_SETUP, EPDIR_OUT, 0,
			  (u8 *)setup) < 0)
		return -1;
	/* Data Phase */
	if (length > 0) {
		ret = dwc2_transfer(dev, pipe, length, PID_DATA1, data_dir,
				    0, buffer);
		if (ret < 0)
			return -1;
	}
	/* Status Phase */
	if (dwc2_transfer(dev, pipe, 0, PID_DATA1, !data_dir, 0, NULL) < 0)
		return -1;

	dev->act_len = ret;
	dev->status = 0;
	return 0;
}
int
submit_int_msg(struct usb_device *dev, unsigned long pipe, void *buffer,
	       int length, int interval)
{
	return 0;
}
示例#13
0
/*
 * queue up an urb for anything except the root hub
 */
static int admhc_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
		gfp_t mem_flags)
{
	struct admhcd	*ahcd = hcd_to_admhcd(hcd);
	struct ed	*ed;
	struct urb_priv	*urb_priv;
	unsigned int	pipe = urb->pipe;
	int		td_cnt = 0;
	unsigned long	flags;
	int		ret = 0;

#ifdef ADMHC_VERBOSE_DEBUG
	spin_lock_irqsave(&ahcd->lock, flags);
	urb_print(ahcd, urb, "ENQEUE", usb_pipein(pipe), -EINPROGRESS);
	spin_unlock_irqrestore(&ahcd->lock, flags);
#endif

	/* every endpoint has an ed, locate and maybe (re)initialize it */
	ed = ed_get(ahcd, urb->ep, urb->dev, pipe, urb->interval);
	if (!ed)
		return -ENOMEM;

	/* for the private part of the URB we need the number of TDs */
	switch (ed->type) {
	case PIPE_CONTROL:
		if (urb->transfer_buffer_length > TD_DATALEN_MAX)
			/* td_submit_urb() doesn't yet handle these */
			return -EMSGSIZE;

		/* 1 TD for setup, 1 for ACK, plus ... */
		td_cnt = 2;
		/* FALLTHROUGH */
	case PIPE_BULK:
		/* one TD for every 4096 Bytes (can be upto 8K) */
		td_cnt += urb->transfer_buffer_length / TD_DATALEN_MAX;
		/* ... and for any remaining bytes ... */
		if ((urb->transfer_buffer_length % TD_DATALEN_MAX) != 0)
			td_cnt++;
		/* ... and maybe a zero length packet to wrap it up */
		if (td_cnt == 0)
			td_cnt++;
		else if ((urb->transfer_flags & URB_ZERO_PACKET) != 0
			&& (urb->transfer_buffer_length
				% usb_maxpacket(urb->dev, pipe,
					usb_pipeout (pipe))) == 0)
			td_cnt++;
		break;
	case PIPE_INTERRUPT:
		/*
		 * for Interrupt IN/OUT transactions, each ED contains
		 * only 1 TD.
		 * TODO: check transfer_buffer_length?
		 */
		td_cnt = 1;
		break;
	case PIPE_ISOCHRONOUS:
		/* number of packets from URB */
		td_cnt = urb->number_of_packets;
		break;
	}

	urb_priv = urb_priv_alloc(ahcd, td_cnt, mem_flags);
	if (!urb_priv)
		return -ENOMEM;

	urb_priv->ed = ed;

	spin_lock_irqsave(&ahcd->lock, flags);
	/* don't submit to a dead HC */
	if (!test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)) {
		ret = -ENODEV;
		goto fail;
	}
	if (!HC_IS_RUNNING(hcd->state)) {
		ret = -ENODEV;
		goto fail;
	}

	ret = usb_hcd_link_urb_to_ep(hcd, urb);
	if (ret)
		goto fail;

	/* schedule the ed if needed */
	if (ed->state == ED_IDLE) {
		ret = ed_schedule(ahcd, ed);
		if (ret < 0) {
			usb_hcd_unlink_urb_from_ep(hcd, urb);
			goto fail;
		}
		if (ed->type == PIPE_ISOCHRONOUS) {
			u16	frame = admhc_frame_no(ahcd);

			/* delay a few frames before the first TD */
			frame += max_t (u16, 8, ed->interval);
			frame &= ~(ed->interval - 1);
			frame |= ed->branch;
			urb->start_frame = frame;

			/* yes, only URB_ISO_ASAP is supported, and
			 * urb->start_frame is never used as input.
			 */
		}
	} else if (ed->type == PIPE_ISOCHRONOUS)
		urb->start_frame = ed->last_iso + ed->interval;

	/* fill the TDs and link them to the ed; and
	 * enable that part of the schedule, if needed
	 * and update count of queued periodic urbs
	 */
	urb->hcpriv = urb_priv;
	td_submit_urb(ahcd, urb);

#ifdef ADMHC_VERBOSE_DEBUG
	admhc_dump_ed(ahcd, "admhc_urb_enqueue", urb_priv->ed, 1);
#endif

fail:
	if (ret)
		urb_priv_free(ahcd, urb_priv);

	spin_unlock_irqrestore(&ahcd->lock, flags);
	return ret;
}
示例#14
0
文件: hub.c 项目: davidbau/davej
static int usb_hub_configure(struct usb_hub *hub, struct usb_endpoint_descriptor *endpoint)
{
	struct usb_device *dev = hub->dev;
	struct usb_hub_status hubstatus;
	char portstr[USB_MAXCHILDREN + 1];
	unsigned int pipe;
	int i, maxp, ret;

	hub->descriptor = kmalloc(HUB_DESCRIPTOR_MAX_SIZE, GFP_KERNEL);
	if (!hub->descriptor) {
		err("Unable to kmalloc %d bytes for hub descriptor", HUB_DESCRIPTOR_MAX_SIZE);
		return -1;
	}

	/* Request the entire hub descriptor. */
	ret = usb_get_hub_descriptor(dev, hub->descriptor, HUB_DESCRIPTOR_MAX_SIZE);
		/* <hub->descriptor> is large enough for a hub with 127 ports;
		 * the hub can/will return fewer bytes here. */
	if (ret < 0) {
		err("Unable to get hub descriptor (err = %d)", ret);
		kfree(hub->descriptor);
		return -1;
	}

	hub->nports = dev->maxchild = hub->descriptor->bNbrPorts;
	info("%d port%s detected", hub->nports, (hub->nports == 1) ? "" : "s");

	if (hub->descriptor->wHubCharacteristics & HUB_CHAR_COMPOUND)
		dbg("part of a compound device");
	else
		dbg("standalone hub");

	switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_LPSM) {
		case 0x00:
			dbg("ganged power switching");
			break;
		case 0x01:
			dbg("individual port power switching");
			break;
		case 0x02:
		case 0x03:
			dbg("unknown reserved power switching mode");
			break;
	}

	switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_OCPM) {
		case 0x00:
			dbg("global over-current protection");
			break;
		case 0x08:
			dbg("individual port over-current protection");
			break;
		case 0x10:
		case 0x18:
			dbg("no over-current protection");
                        break;
	}

	dbg("power on to power good time: %dms", hub->descriptor->bPwrOn2PwrGood * 2);
	dbg("hub controller current requirement: %dmA", hub->descriptor->bHubContrCurrent);

	for (i = 0; i < dev->maxchild; i++)
		portstr[i] = hub->descriptor->bitmap[((i + 1) / 8)] & (1 << ((i + 1) % 8)) ? 'F' : 'R';
	portstr[dev->maxchild] = 0;

	dbg("port removable status: %s", portstr);

	ret = usb_get_hub_status(dev, &hubstatus);
	if (ret < 0) {
		err("Unable to get hub status (err = %d)", ret);
		kfree(hub->descriptor);
		return -1;
	}

	le16_to_cpus(&hubstatus.wHubStatus);

	dbg("local power source is %s",
		(hubstatus.wHubStatus & HUB_STATUS_LOCAL_POWER) ? "lost (inactive)" : "good");

	dbg("%sover-current condition exists",
		(hubstatus.wHubStatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");

	/* Start the interrupt endpoint */
	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	if (maxp > sizeof(hub->buffer))
		maxp = sizeof(hub->buffer);

	hub->urb = usb_alloc_urb(0);
	if (!hub->urb) {
		err("couldn't allocate interrupt urb");
		kfree(hub->descriptor);
		return -1;
	}

	FILL_INT_URB(hub->urb, dev, pipe, hub->buffer, maxp, hub_irq,
		hub, endpoint->bInterval);
	ret = usb_submit_urb(hub->urb);
	if (ret) {
		err("usb_submit_urb failed (%d)", ret);
		kfree(hub->descriptor);
		return -1;
	}
		
	/* Wake up khubd */
	wake_up(&khubd_wait);

	usb_hub_power_on(hub);

	return 0;
}
示例#15
0
static int usb_hub_configure(USB_HUB_T *hub, EP_INFO_T *ep_info)
{
    USB_DEV_T           *dev = hub->dev;
    USB_HUB_STATUS_T    hubstatus;
    uint32_t            pipe;
    int                 maxp, ret;

    USB_info("[HUB] Enter usb_hub_configure()... hub:%d\n", hub->dev->devnum);

    /* Request the entire hub descriptor. */
    ret = usb_get_hub_descriptor(dev, &hub->descriptor, sizeof(USB_HUB_DESC_T));

    /* <hub->descriptor> is large enough for a hub with 127 ports;
     * the hub can/will return fewer bytes here. */
    if(ret < 0)
    {
        USB_error("Erro - Unable to get hub descriptor (err = %d)\n", ret);
        return ret;
    }

    dev->maxchild = hub->descriptor.bNbrPorts;

#ifdef USB_VERBOSE_DEBUG
    USB_info("%d port%s detected\n", hub->descriptor.bNbrPorts, (hub->descriptor.bNbrPorts == 1) ? "" : "s");

    /* D2: Identifying a Compound Device */
    if(hub->descriptor.wHubCharacteristics & HUB_CHAR_COMPOUND)
    {
        USB_info("part of a compound device\n");
    }
    else
    {
        USB_info("standalone hub\n");
    }

    /* D1..D0: Logical Power Switching Mode */
    switch(hub->descriptor.wHubCharacteristics & HUB_CHAR_LPSM)
    {
        case 0x00:
            USB_info("ganged power switching\n");
            break;
        case 0x01:
            USB_info("individual port power switching\n");
            break;
        case 0x02:
        case 0x03:
            USB_info("unknown reserved power switching mode\n");
            break;
    }

    /* D4..D3: Over-current Protection Mode */
    switch(hub->descriptor.wHubCharacteristics & HUB_CHAR_OCPM)
    {
        case 0x00:
            USB_info("global over-current protection\n");
            break;
        case 0x08:
            USB_info("individual port over-current protection\n");
            break;
        case 0x10:
        case 0x18:
            USB_info("no over-current protection\n");
            break;
    }

    switch(dev->descriptor.bDeviceProtocol)
    {
        case 0:
            break;
        case 1:
            USB_debug("Single TT, ");
            break;
        case 2:
            USB_debug("TT per port, ");
            break;
        default:
            USB_debug("Unrecognized hub protocol %d", dev->descriptor.bDeviceProtocol);
            break;
    }

    USB_info("power on to power good time: %dms\n", hub->descriptor.bPwrOn2PwrGood * 2);
    USB_info("hub controller current requirement: %dmA\n", hub->descriptor.bHubContrCurrent);
#endif

    ret = usb_get_hub_status(dev, &hubstatus);
    if(ret < 0)
    {
        USB_error("Unable to get hub %d status (err = %d)\n", hub->dev->devnum, ret);
        return ret;
    }

    hubstatus.wHubStatus = USB_SWAP16(hubstatus.wHubStatus);

#ifdef USB_VERBOSE_DEBUG
    /* Hub status bit 0, Local Power Source */
    if(hubstatus.wHubStatus & HUB_STATUS_LOCAL_POWER)
    {
        USB_info("local power source is lost (inactive)\n");
    }
    else
    {
        USB_info("local power source is good\n");
    }

    /* Hub status bit 1, Over-current Indicator */
    if(hubstatus.wHubStatus & HUB_STATUS_OVERCURRENT)
    {
        USB_info("!! over-current\n");
    }
    else
    {
        USB_info("No over-current.\n");
    }
#endif

    /* Start the interrupt endpoint */
    pipe = usb_rcvintpipe(dev, ep_info->bEndpointAddress);
    maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

    if(maxp > sizeof(hub->buffer))
        maxp = sizeof(hub->buffer);

    hub->urb = USBH_AllocUrb();
    if(!hub->urb)
    {
        USB_error("Error - couldn't allocate interrupt urb");
        return USB_ERR_NOMEM;
    }

#if 1   /* YCHuang 2012.06.01 */
    if(ep_info->bInterval < 16)
        ep_info->bInterval = 16;
#endif
    FILL_INT_URB(hub->urb, dev, pipe, hub->buffer, maxp, hub_irq,
                 hub, ep_info->bInterval);
    ret = USBH_SubmitUrb(hub->urb);
    if(ret)
    {
        USB_error("Error - USBH_SubmitUrb failed (%d)", ret);
        USBH_FreeUrb(hub->urb);
        return ret;
    }

    if(g_ohci_bus.root_hub != hub->dev)
        usb_hub_power_on(hub);
    return 0;
}
示例#16
0
文件: hci_usb.c 项目: TitaniumBoy/lin
static void * hci_usb_probe(struct usb_device *udev, unsigned int ifnum, const struct usb_device_id *id)
{
	struct usb_endpoint_descriptor *bulk_out_ep, *intr_in_ep, *bulk_in_ep;
	struct usb_interface_descriptor *uif;
	struct usb_endpoint_descriptor *ep;
	struct hci_usb *husb;
	struct hci_dev *hdev;
	int i, size, pipe;
	__u8 * buf;

	DBG("udev %p ifnum %d", udev, ifnum);

	/* Check device signature */
	if ((udev->descriptor.bDeviceClass    != HCI_DEV_CLASS)   ||
	    (udev->descriptor.bDeviceSubClass != HCI_DEV_SUBCLASS)||
	    (udev->descriptor.bDeviceProtocol != HCI_DEV_PROTOCOL) )
		return NULL;

	MOD_INC_USE_COUNT;

	uif = &udev->actconfig->interface[ifnum].altsetting[0];

	if (uif->bNumEndpoints != 3) {
		DBG("Wrong number of endpoints %d", uif->bNumEndpoints);
		MOD_DEC_USE_COUNT;
		return NULL;
	}

	bulk_out_ep = intr_in_ep = bulk_in_ep = NULL;

	/* Find endpoints that we need */
	for ( i = 0; i < uif->bNumEndpoints; ++i) {
		ep = &uif->endpoint[i];

		switch (ep->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
			case USB_ENDPOINT_XFER_BULK:
				if (ep->bEndpointAddress & USB_DIR_IN)
					bulk_in_ep  = ep;
				else
					bulk_out_ep = ep;
				break;

			case USB_ENDPOINT_XFER_INT:
				intr_in_ep = ep;
				break;
		};
	}

	if (!bulk_in_ep || !bulk_out_ep || !intr_in_ep) {
		DBG("Endpoints not found: %p %p %p", bulk_in_ep, bulk_out_ep, intr_in_ep);
		MOD_DEC_USE_COUNT;
		return NULL;
	}

	if (!(husb = kmalloc(sizeof(struct hci_usb), GFP_KERNEL))) {
		ERR("Can't allocate: control structure");
		MOD_DEC_USE_COUNT;
		return NULL;
	}

	memset(husb, 0, sizeof(struct hci_usb));

	husb->udev = udev;
	husb->bulk_out_ep_addr = bulk_out_ep->bEndpointAddress;

	if (!(husb->ctrl_urb = usb_alloc_urb(0))) {
		ERR("Can't allocate: control URB");
		goto probe_error;
	}

	if (!(husb->write_urb = usb_alloc_urb(0))) {
		ERR("Can't allocate: write URB");
		goto probe_error;
	}

	if (!(husb->read_urb = usb_alloc_urb(0))) {
		ERR("Can't allocate: read URB");
		goto probe_error;
	}

	ep = bulk_in_ep;
	pipe = usb_rcvbulkpipe(udev, ep->bEndpointAddress);
	size = HCI_MAX_FRAME_SIZE;

	if (!(buf = kmalloc(size, GFP_KERNEL))) {
		ERR("Can't allocate: read buffer");
		goto probe_error;
	}

	FILL_BULK_URB(husb->read_urb, udev, pipe, buf, size, hci_usb_bulk_read, husb);
	husb->read_urb->transfer_flags |= USB_QUEUE_BULK;

	ep = intr_in_ep;
	pipe = usb_rcvintpipe(udev, ep->bEndpointAddress);
	size = usb_maxpacket(udev, pipe, usb_pipeout(pipe));

	if (!(husb->intr_urb = usb_alloc_urb(0))) {
		ERR("Can't allocate: interrupt URB");
		goto probe_error;
	}

	if (!(buf = kmalloc(size, GFP_KERNEL))) {
		ERR("Can't allocate: interrupt buffer");
		goto probe_error;
	}

	FILL_INT_URB(husb->intr_urb, udev, pipe, buf, size, hci_usb_intr, husb, ep->bInterval);

	skb_queue_head_init(&husb->tx_ctrl_q);
	skb_queue_head_init(&husb->tx_write_q);

	/* Initialize and register HCI device */
	hdev = &husb->hdev;

	hdev->type = HCI_USB;
	hdev->driver_data = husb;

	hdev->open  = hci_usb_open;
	hdev->close = hci_usb_close;
	hdev->flush = hci_usb_flush;
	hdev->send	= hci_usb_send_frame;

	if (hci_register_dev(hdev) < 0) {
		ERR("Can't register HCI device %s", hdev->name);
		goto probe_error;
	}

	return husb;

probe_error:
	hci_usb_free_bufs(husb);
	kfree(husb);
	MOD_DEC_USE_COUNT;
	return NULL;
}
示例#17
0
static int usb_mouse_probe(struct usb_interface *intf, const struct usb_device_id *id) //@: vf_usb_operation_probe_t
/*@ requires
		usb_interface(usb_mouse_probe, ?disconnect_cb, intf, _, ?originalData, false, ?fracsize)
		&*& permission_to_submit_urb(?urbs_submitted, false)
		&*& not_in_interrupt_context(currentThread)
		&*& [fracsize]probe_disconnect_userdata(usb_mouse_probe, disconnect_cb)()
		&*& [?callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb);
	@*/
	/*@ ensures
		not_in_interrupt_context(currentThread)
		&*& [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb)
		&*& result == 0 ? // success
			// probe_disconnect_userdata is not returned, so the user "has to put it somewhere",
			// and give it back with _disconnect.
			// you can put it in usb_interface: it includes userdata which
			// can eat whatever probe_disconnect_userdata contains.
			usb_interface(usb_mouse_probe, disconnect_cb, intf, _, ?data, true, fracsize)
			//&*& permission_to_submit_urb(_, false)
		: // failure
			usb_interface(usb_mouse_probe, disconnect_cb, intf, _, ?data, false, fracsize)
			
			// XXX meh, the permission count thing is annoying and I don't think it actually
			// solves much at all, so made it "_" for now.
			&*& permission_to_submit_urb(_, false)
			&*& data == originalData || data == 0
			&*& [fracsize]probe_disconnect_userdata(usb_mouse_probe, _)()
		;
	@*/
{
	struct usb_host_endpoint* ep;
	//@ open [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb);
	//@ close [callback_link_f]usb_probe_callback_link(usb_mouse_probe)(disconnect_cb);
	struct usb_device *dev = interface_to_usbdev(intf);
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;
	struct usb_mouse *mouse;
	
	struct input_dev *input_dev;
	int pipe, maxp;
	int error = -ENOMEM;
	
	//@ open usb_interface(usb_mouse_probe, _, _, _, _, _, _);

	interface = intf->cur_altsetting;
	
	//@ open [?f2]usb_host_interface(interface);
	//@ open [?f3]usb_interface_descriptor(&interface->desc, ?bNumEndpoints, ?bInterfaceNumber);

	if (interface->desc.bNumEndpoints != 1) {
		//@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber);
		//@ close [f2]usb_host_interface(interface);
		//@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize);
		return -ENODEV;
	}
	
	ep = interface->endpoint;
	endpoint = &(ep->desc);
	//@ open usb_host_endpoint(interface->endpoint);
	
	//int usb_endpoint_is_int_in_res = ;
	if (! usb_endpoint_is_int_in(endpoint)) {
	 	//@ close usb_host_endpoint(interface->endpoint);
	 	//@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber);
		//@ close [f2]usb_host_interface(interface);
		//@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize);
		return -ENODEV;
	}

	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	
	// original: maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
	__u16 usb_maxpacket_ret = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
	maxp = usb_maxpacket_ret;

	mouse = kzalloc(sizeof(struct usb_mouse), GFP_KERNEL);
	
	input_dev = input_allocate_device();
	if (! mouse || ! input_dev)
		goto fail1;
	
	//@ uchars_to_chars(mouse);
	//@ close_struct(mouse);
	
	//@ assert chars((void*) &mouse->name, 128, ?zeros);
	//@ assume(mem(0, zeros)); // follows because kzalloc is used
	//@ assert chars((void*) &mouse->phys, 64, ?zeros2);
	//@ assume(mem(0, zeros2)); // follows because kzalloc is used
	
	mouse->usbdev = 0;
	mouse->dev = 0;
	mouse->irq = 0;
	mouse->data = 0;
	mouse->data_dma = 0;
	
	mouse->data = usb_alloc_coherent(dev, 8, GFP_ATOMIC, &mouse->data_dma);
	//@ signed char* data_tmp = mouse->data;
	if (! mouse->data) {
		//@ open_struct(mouse);
		//@ chars_to_uchars(mouse);
		goto fail1;
	}

	mouse->irq = usb_alloc_urb(0, GFP_KERNEL);
	if (! mouse->irq)
		goto fail2;

	mouse->usbdev = dev;
	mouse->dev = input_dev;

	if (dev->manufacturer)
		strlcpy(mouse->name, dev->manufacturer, 128/*sizeof(mouse->name)*/);

	if (dev->product) {
		if (dev->manufacturer) {
			strlcat(mouse->name, " ", 128/*sizeof(mouse->name)*/);
		}
		strlcat(mouse->name, dev->product, 128/*sizeof(mouse->name)*/);
	}
	if (strlen(mouse->name))
	  	; 
	  	//TODO
		//snprintf(mouse->name, 128 /*sizeof(mouse->name)*/,
		//	 "USB HIDBP Mouse %04x:%04x",
		//	 le16_to_cpu(dev->descriptor.idVendor),
		//	 le16_to_cpu(dev->descriptor.idProduct));

	usb_make_path(dev, mouse->phys, 64/*sizeof(mouse->phys)*/);
	strlcat(mouse->phys, "/input0", 64/*sizeof(mouse->phys)*/);

	
	//@ open input_dev_unregistered(input_dev, _, _, _, _, _, _);
	
	input_dev->name = mouse->name;
	input_dev->phys = mouse->phys;
	//@ close usb_device(dev, _);
	usb_to_input_id(dev, &input_dev->id);
	//@ open usb_device(dev, _);
	//TODO: input_dev->dev.parent = &intf->dev;
	//TODO:
	/*input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
		BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE);
	input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y);
	input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |
		BIT_MASK(BTN_EXTRA);
	input_dev->relbit[0] |= BIT_MASK(REL_WHEEL);*/
	
	//@ close input_dev_unregistered(input_dev, _, _, _, _, _, _);

	input_set_drvdata(input_dev, mouse);
	
	//@ open input_dev_unregistered(input_dev, _, _, _, _, _, _);

	input_dev->open = usb_mouse_open;
	input_dev->close = usb_mouse_close;
	input_dev->event = usb_mouse_event_dummy; // not original code, HACK
	
	//@ close usb_device(dev, _);
	//@ close complete_t_ghost_param(usb_mouse_irq, usb_mouse_irq);

	usb_fill_int_urb(mouse->irq, dev, pipe, mouse->data,
			 (maxp > 8 ? 8 : maxp),
			 usb_mouse_irq, mouse, endpoint->bInterval);
	mouse->irq->transfer_dma = mouse->data_dma;
	mouse->irq->transfer_flags = mouse->irq->transfer_flags | URB_NO_TRANSFER_DMA_MAP;
	
	/*@ urb_transfer_flags_add_no_transfer_dma_map(
		mouse->irq, data_tmp, mouse->data_dma, 8, mouse->irq->transfer_flags); @*/
	//@ assert mouse->irq |-> ?irq;
	//@ close urb_struct(true, irq, _, data_tmp, mouse->data_dma, 8, true, usb_mouse_irq, mouse, 0);
	
	//@ close input_open_t_ghost_param(usb_mouse_open, usb_mouse_open);
	//@ close input_close_t_ghost_param(usb_mouse_close, usb_mouse_close);
	//@ assume(is_input_event_t_no_pointer(usb_mouse_event_dummy) == true); // HACK HACK HACK, there are no events for this driver
	//@ close input_event_t_ghost_param(usb_mouse_event_dummy, usb_mouse_event_dummy);
	
	//@ close input_dev_unregistered(input_dev, _, _, _, _, _, _);
	
	//@ input_ghost_register_device(input_dev, fracsize);
	//@ close input_open_callback_link(usb_mouse_open)(usb_mouse_close, usb_mouse_event_dummy);
	//@ close input_close_callback_link(usb_mouse_close)(usb_mouse_open, usb_mouse_event_dummy);
	//@ close input_event_callback_link(usb_mouse_event_dummy)(usb_mouse_open, usb_mouse_close);
	//@ assert input_dev_ghost_registered(_, _, _, _, _, _, _, _, ?input_register_result);
	/*@
	if (input_register_result == 0){
		close userdef_input_drvdata(usb_mouse_open, usb_mouse_close, usb_mouse_event_dummy)(input_dev, false, mouse, fracsize);
	}
	@*/
	//@ assume( true && (void*) 0 != ((void*) mouse->phys));
	//@ assert chars(mouse->phys, 64, ?phys_text);
	//@ close maybe_chars(1, mouse->phys, 64, phys_text);
	error = input_register_device(mouse->dev);
	if (error != 0) {
		//@ open maybe_chars(1, _, _, _);
		//@ open input_open_callback_link(usb_mouse_open)(usb_mouse_close, usb_mouse_event_dummy);
		//@ open input_close_callback_link(usb_mouse_close)(usb_mouse_open, usb_mouse_event_dummy);
		//@ open input_event_callback_link(usb_mouse_event_dummy)(usb_mouse_open, usb_mouse_close);
		//@ open input_open_t_ghost_param(usb_mouse_open, usb_mouse_open);
		//@ open input_close_t_ghost_param(usb_mouse_close, usb_mouse_close);
		//@ open input_event_t_ghost_param(usb_mouse_event_dummy, usb_mouse_event_dummy);
		goto fail3;
	}
	//@ close usb_interface_descriptor(&interface->desc, 1, _);
	//@ close usb_host_endpoint(interface->endpoint);
	//@ close [f2]usb_host_interface(interface);
	//@ close usb_interface(usb_mouse_probe, usb_mouse_disconnect, intf, dev, originalData, false, fracsize);
	//@ close userdef_usb_interface_data(usb_mouse_probe, usb_mouse_disconnect)(intf, dev, mouse, fracsize);
	usb_set_intfdata(intf, mouse);
	return 0;

fail3:	
   	//@ close urb_struct_maybe(true, irq, _, _, _, _, _, _, _, _);
	usb_free_urb(mouse->irq);
fail2:	
	usb_free_coherent(dev, 8, mouse->data, mouse->data_dma);
	//@ open_struct(mouse);
	//@ chars_to_uchars(mouse);
fail1:	
	input_free_device(input_dev);
	kfree(mouse);
	//@ close [f3]usb_interface_descriptor(&interface->desc, bNumEndpoints, bInterfaceNumber);
	//@ close usb_host_endpoint(interface->endpoint);
	//@ close [f2]usb_host_interface(interface);
	//@ close usb_interface(usb_mouse_probe, disconnect_cb, intf, _, originalData, false, fracsize);
	return error;
}
示例#18
0
static int sl811_send_packet(struct usb_device *dev, unsigned long pipe, __u8 *buffer, int len)
{
	__u8 ctrl = SL811_USB_CTRL_ARM | SL811_USB_CTRL_ENABLE;
	__u16 status = 0;
	int err = 0, time_start = get_timer(0);
	int need_preamble = !(rh_status.wPortStatus & USB_PORT_STAT_LOW_SPEED) &&
		(dev->speed == USB_SPEED_LOW);

	if (len > 239)
		return -1;

	if (usb_pipeout(pipe))
		ctrl |= SL811_USB_CTRL_DIR_OUT;
	if (usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe)))
		ctrl |= SL811_USB_CTRL_TOGGLE_1;
	if (need_preamble)
		ctrl |= SL811_USB_CTRL_PREAMBLE;

	sl811_write(SL811_INTRSTS, 0xff);

	while (err < 3) {
		sl811_write(SL811_ADDR_A, 0x10);
		sl811_write(SL811_LEN_A, len);
		if (usb_pipeout(pipe) && len)
			sl811_write_buf(0x10, buffer, len);

		if (!(rh_status.wPortStatus & USB_PORT_STAT_LOW_SPEED) &&
		    sl811_read(SL811_SOFCNTDIV)*64 < calc_needed_buswidth(len, need_preamble))
			ctrl |= SL811_USB_CTRL_SOF;
		else
			ctrl &= ~SL811_USB_CTRL_SOF;

		sl811_write(SL811_CTRL_A, ctrl);
		while (!(sl811_read(SL811_INTRSTS) & SL811_INTR_DONE_A)) {
			if (5*CONFIG_SYS_HZ < get_timer(time_start)) {
				printf("USB transmit timed out\n");
				return -USB_ST_CRC_ERR;
			}
		}

		sl811_write(SL811_INTRSTS, 0xff);
		status = sl811_read(SL811_STS_A);

		if (status & SL811_USB_STS_ACK) {
			int remainder = sl811_read(SL811_CNT_A);
			if (remainder) {
				PDEBUG(0, "usb transfer remainder = %d\n", remainder);
				len -= remainder;
			}
			if (usb_pipein(pipe) && len)
				sl811_read_buf(0x10, buffer, len);
			return len;
		}

		if ((status & SL811_USB_STS_NAK) == SL811_USB_STS_NAK)
			continue;

		PDEBUG(0, "usb transfer error %#x\n", (int)status);
		err++;
	}

	err = 0;

	if (status & SL811_USB_STS_ERROR)
		err |= USB_ST_BUF_ERR;
	if (status & SL811_USB_STS_TIMEOUT)
		err |= USB_ST_CRC_ERR;
	if (status & SL811_USB_STS_STALL)
		err |= USB_ST_STALLED;

	return -err;
}
示例#19
0
static int usb_lmpcm_probe(struct usb_interface *intf, const struct usb_device_id *id) {

	struct usb_device *dev = interface_to_usbdev(intf);
	struct usb_host_interface *interface;


	struct usb_endpoint_descriptor *endpoint;
	lmpcm_t *mouse;
	int pipe, maxp;
	char *buf;


	// Get mouse endpoint

	interface = intf->cur_altsetting;

	if ( interface->desc.bNumEndpoints != 1 ) return -ENODEV;
	endpoint = &interface->endpoint[0].desc;


	// Check endpoint

	if (!(endpoint->bEndpointAddress & USB_DIR_IN))
		return -ENODEV;

	if ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
		return -ENODEV;


	// Create endpoint pipe

	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));


	// Create lmpcm object

	if (!(mouse = lmpcm_new(dev)))
		return -ENOMEM;

	// Initialize input device

	input_device_init(mouse->inputdev,intf,dev);


	// Set device name

	if (!(buf = kmalloc(63, GFP_KERNEL))) {
		lmpcm_free(mouse);
		return -ENOMEM;
	}


	if (dev->descriptor.iManufacturer &&
		usb_string(dev, dev->descriptor.iManufacturer, buf, 63) > 0)
			strcat(mouse->name, buf);

	if (dev->descriptor.iProduct &&
		usb_string(dev, dev->descriptor.iProduct, buf, 63) > 0)
			sprintf(mouse->name, "%s %s", mouse->name, buf);

	if (!strlen(mouse->name))
		sprintf(mouse->name, "lmpcm_usb.c: Logitech MediaPlay Mouse on usb%04x:%04x",
			mouse->inputdev->id.vendor, mouse->inputdev->id.product);

	kfree(buf);


	// Initialize interrupt transfer

	usb_fill_int_urb(mouse->urb,dev,pipe,mouse->data,((maxp > 8)?8:maxp),usb_lmpcm_handle,mouse,endpoint->bInterval);
	mouse->urb->transfer_dma = mouse->data_dma;
	mouse->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;


	// Register input device

	input_register_device(mouse->inputdev);


	printk(KERN_INFO "lmpcm_usb.c: Detected device: %s\n", mouse->name);

	// Set usb handler interface data

	usb_set_intfdata(intf,mouse);


	return 0;

}
示例#20
0
int tm6000_ir_init(struct tm6000_core *dev)
{
	struct tm6000_IR *ir;
	struct ir_input_dev *ir_input_dev;
	int err = -ENOMEM;
	int pipe, size, rc;

	if (!enable_ir)
		return -ENODEV;

	if (!dev->caps.has_remote)
		return 0;

	if (!dev->ir_codes)
		return 0;

	ir = kzalloc(sizeof(*ir), GFP_KERNEL);
	ir_input_dev = kzalloc(sizeof(*ir_input_dev), GFP_KERNEL);
	ir_input_dev->input_dev = input_allocate_device();
	if (!ir || !ir_input_dev || !ir_input_dev->input_dev)
		goto err_out_free;

	/* record handles to ourself */
	ir->dev = dev;
	dev->ir = ir;

	ir->input = ir_input_dev;

	/* input einrichten */
	ir->props.allowed_protos = IR_TYPE_RC5 | IR_TYPE_NEC;
	ir->props.priv = ir;
	ir->props.change_protocol = tm6000_ir_change_protocol;
	ir->props.open = tm6000_ir_start;
	ir->props.close = tm6000_ir_stop;
	ir->props.driver_type = RC_DRIVER_SCANCODE;

	ir->polling = 50;

	snprintf(ir->name, sizeof(ir->name), "tm5600/60x0 IR (%s)",
						dev->name);

	usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
	strlcat(ir->phys, "/input0", sizeof(ir->phys));

	tm6000_ir_change_protocol(ir, IR_TYPE_UNKNOWN);
	err = ir_input_init(ir_input_dev->input_dev, &ir->ir, IR_TYPE_OTHER);
	if (err < 0)
		goto err_out_free;

	ir_input_dev->input_dev->name = ir->name;
	ir_input_dev->input_dev->phys = ir->phys;
	ir_input_dev->input_dev->id.bustype = BUS_USB;
	ir_input_dev->input_dev->id.version = 1;
	ir_input_dev->input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
	ir_input_dev->input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);

	ir_input_dev->input_dev->dev.parent = &dev->udev->dev;

	if (&dev->int_in) {
		dprintk("IR over int\n");

		ir->int_urb = usb_alloc_urb(0, GFP_KERNEL);

		pipe = usb_rcvintpipe(dev->udev,
			dev->int_in.endp->desc.bEndpointAddress
			& USB_ENDPOINT_NUMBER_MASK);

		size = usb_maxpacket(dev->udev, pipe, usb_pipeout(pipe));
		dprintk("IR max size: %d\n", size);

		ir->int_urb->transfer_buffer = kzalloc(size, GFP_KERNEL);
		if (ir->int_urb->transfer_buffer == NULL) {
			usb_free_urb(ir->int_urb);
			goto err_out_stop;
		}
		dprintk("int interval: %d\n", dev->int_in.endp->desc.bInterval);
		usb_fill_int_urb(ir->int_urb, dev->udev, pipe,
			ir->int_urb->transfer_buffer, size,
			tm6000_ir_urb_received, dev,
			dev->int_in.endp->desc.bInterval);
		rc = usb_submit_urb(ir->int_urb, GFP_KERNEL);
		if (rc) {
			kfree(ir->int_urb->transfer_buffer);
			usb_free_urb(ir->int_urb);
			err = rc;
			goto err_out_stop;
		}
		ir->urb_data = kzalloc(size, GFP_KERNEL);
	}

	/* ir register */
	err = ir_input_register(ir->input->input_dev, dev->ir_codes,
		&ir->props, "tm6000");
	if (err)
		goto err_out_stop;

	return 0;

err_out_stop:
	dev->ir = NULL;
err_out_free:
	kfree(ir_input_dev);
	kfree(ir);
	return err;
}
示例#21
0
static int
ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer,
		   int length, struct devrequest *req)
{
	struct QH *qh;
	struct qTD *td;
	volatile struct qTD *vtd;
	unsigned long ts;
	uint32_t *tdp;
	uint32_t endpt, token, usbsts;
	uint32_t c, toggle;
	uint32_t cmd;
	int timeout;
	int ret = 0;

	debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe,
	      buffer, length, req);
	if (req != NULL)
		debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n",
		      req->request, req->request,
		      req->requesttype, req->requesttype,
		      le16_to_cpu(req->value), le16_to_cpu(req->value),
		      le16_to_cpu(req->index));

	qh = ehci_alloc(sizeof(struct QH), 32);
	if (qh == NULL) {
		debug("unable to allocate QH\n");
		return -1;
	}
	qh->qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH);
	c = (usb_pipespeed(pipe) != USB_SPEED_HIGH &&
	     usb_pipeendpoint(pipe) == 0) ? 1 : 0;
	endpt = (8 << 28) |
	    (c << 27) |
	    (usb_maxpacket(dev, pipe) << 16) |
	    (0 << 15) |
	    (1 << 14) |
	    (usb_pipespeed(pipe) << 12) |
	    (usb_pipeendpoint(pipe) << 8) |
	    (0 << 7) | (usb_pipedevice(pipe) << 0);
	qh->qh_endpt1 = cpu_to_hc32(endpt);
	endpt = (1 << 30) |
	    (dev->portnr << 23) |
	    (dev->parent->devnum << 16) | (0 << 8) | (0 << 0);
	qh->qh_endpt2 = cpu_to_hc32(endpt);
	qh->qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);

	td = NULL;
	tdp = &qh->qh_overlay.qt_next;

	toggle =
	    usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));

	if (req != NULL) {
		td = ehci_alloc(sizeof(struct qTD), 32);
		if (td == NULL) {
			debug("unable to allocate SETUP td\n");
			goto fail;
		}
		td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (0 << 31) |
		    (sizeof(*req) << 16) |
		    (0 << 15) | (0 << 12) | (3 << 10) | (2 << 8) | (0x80 << 0);
		td->qt_token = cpu_to_hc32(token);
		if (ehci_td_buffer(td, req, sizeof(*req)) != 0) {
			debug("unable construct SETUP td\n");
			ehci_free(td, sizeof(*td));
			goto fail;
		}
		*tdp = cpu_to_hc32((uint32_t) td);
		tdp = &td->qt_next;
		toggle = 1;
	}

	if (length > 0 || req == NULL) {
		td = ehci_alloc(sizeof(struct qTD), 32);
		if (td == NULL) {
			debug("unable to allocate DATA td\n");
			goto fail;
		}
		td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (toggle << 31) |
		    (length << 16) |
		    ((req == NULL ? 1 : 0) << 15) |
		    (0 << 12) |
		    (3 << 10) |
		    ((usb_pipein(pipe) ? 1 : 0) << 8) | (0x80 << 0);
		td->qt_token = cpu_to_hc32(token);
		if (ehci_td_buffer(td, buffer, length) != 0) {
			debug("unable construct DATA td\n");
			ehci_free(td, sizeof(*td));
			goto fail;
		}
		*tdp = cpu_to_hc32((uint32_t) td);
		tdp = &td->qt_next;
	}

	if (req != NULL) {
		td = ehci_alloc(sizeof(struct qTD), 32);
		if (td == NULL) {
			debug("unable to allocate ACK td\n");
			goto fail;
		}
		td->qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		td->qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (toggle << 31) |
		    (0 << 16) |
		    (1 << 15) |
		    (0 << 12) |
		    (3 << 10) |
		    ((usb_pipein(pipe) ? 0 : 1) << 8) | (0x80 << 0);
		td->qt_token = cpu_to_hc32(token);
		*tdp = cpu_to_hc32((uint32_t) td);
		tdp = &td->qt_next;
	}

	qh_list.qh_link = cpu_to_hc32((uint32_t) qh | QH_LINK_TYPE_QH);

	/* Flush dcache */
	ehci_flush_dcache(&qh_list);

	usbsts = ehci_readl(&hcor->or_usbsts);
	ehci_writel(&hcor->or_usbsts, (usbsts & 0x3f));

	/* Enable async. schedule. */
	cmd = ehci_readl(&hcor->or_usbcmd);
	cmd |= CMD_ASE;
	ehci_writel(&hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, STD_ASS,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STD_ASS set\n");
		goto fail;
	}

	/* Wait for TDs to be processed. */
	ts = get_timer(0);
	vtd = td;
	timeout = USB_TIMEOUT_MS(pipe);
	do {
		/* Invalidate dcache */
		ehci_invalidate_dcache(&qh_list);
		token = hc32_to_cpu(vtd->qt_token);
		if (!(token & 0x80))
			break;
		WATCHDOG_RESET();
	} while (get_timer(ts) < timeout);

	/* Check that the TD processing happened */
	if (token & 0x80) {
		printf("EHCI timed out on TD - token=%#x\n", token);
	}

	/* Disable async schedule. */
	cmd = ehci_readl(&hcor->or_usbcmd);
	cmd &= ~CMD_ASE;
	ehci_writel(&hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, 0,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STD_ASS reset\n");
		goto fail;
	}

	qh_list.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH);

	token = hc32_to_cpu(qh->qh_overlay.qt_token);
	if (!(token & 0x80)) {
		debug("TOKEN=%#x\n", token);
		switch (token & 0xfc) {
		case 0:
			toggle = token >> 31;
			usb_settoggle(dev, usb_pipeendpoint(pipe),
				       usb_pipeout(pipe), toggle);
			dev->status = 0;
			break;
		case 0x40:
			dev->status = USB_ST_STALLED;
			break;
		case 0xa0:
		case 0x20:
			dev->status = USB_ST_BUF_ERR;
			break;
		case 0x50:
		case 0x10:
			dev->status = USB_ST_BABBLE_DET;
			break;
		default:
			dev->status = USB_ST_CRC_ERR;
			if ((token & 0x40) == 0x40)
				dev->status |= USB_ST_STALLED;
			break;
		}
		dev->act_len = length - ((token >> 16) & 0x7fff);
	} else {
示例#22
0
/*
 * This routine is called by the USB subsystem for each new device
 * in the system. We need to check if the device is ours, and in
 * this case start handling it.
 */
static int kingsun_probe(struct usb_interface *intf,
		      const struct usb_device_id *id)
{
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;

	struct usb_device *dev = interface_to_usbdev(intf);
	struct kingsun_cb *kingsun = NULL;
	struct net_device *net = NULL;
	int ret = -ENOMEM;
	int pipe, maxp_in, maxp_out;
	__u8 ep_in;
	__u8 ep_out;

	/* Check that there really are two interrupt endpoints.
	   Check based on the one in drivers/usb/input/usbmouse.c
	 */
	interface = intf->cur_altsetting;
	if (interface->desc.bNumEndpoints != 2) {
		err("kingsun-sir: expected 2 endpoints, found %d",
		    interface->desc.bNumEndpoints);
		return -ENODEV;
	}
	endpoint = &interface->endpoint[KINGSUN_EP_IN].desc;
	if (!usb_endpoint_is_int_in(endpoint)) {
		err("kingsun-sir: endpoint 0 is not interrupt IN");
		return -ENODEV;
	}

	ep_in = endpoint->bEndpointAddress;
	pipe = usb_rcvintpipe(dev, ep_in);
	maxp_in = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
	if (maxp_in > 255 || maxp_in <= 1) {
		err("%s: endpoint 0 has max packet size %d not in range",
		    __FILE__, maxp_in);
		return -ENODEV;
	}

	endpoint = &interface->endpoint[KINGSUN_EP_OUT].desc;
	if (!usb_endpoint_is_int_out(endpoint)) {
		err("kingsun-sir: endpoint 1 is not interrupt OUT");
		return -ENODEV;
	}

	ep_out = endpoint->bEndpointAddress;
	pipe = usb_sndintpipe(dev, ep_out);
	maxp_out = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	/* Allocate network device container. */
	net = alloc_irdadev(sizeof(*kingsun));
	if(!net)
		goto err_out1;

	SET_NETDEV_DEV(net, &intf->dev);
	kingsun = netdev_priv(net);
	kingsun->irlap = NULL;
	kingsun->tx_urb = NULL;
	kingsun->rx_urb = NULL;
	kingsun->ep_in = ep_in;
	kingsun->ep_out = ep_out;
	kingsun->in_buf = NULL;
	kingsun->out_buf = NULL;
	kingsun->max_rx = (__u8)maxp_in;
	kingsun->max_tx = (__u8)maxp_out;
	kingsun->netdev = net;
	kingsun->usbdev = dev;
	kingsun->rx_buff.in_frame = FALSE;
	kingsun->rx_buff.state = OUTSIDE_FRAME;
	kingsun->rx_buff.skb = NULL;
	kingsun->receiving = 0;
	spin_lock_init(&kingsun->lock);

	/* Allocate input buffer */
	kingsun->in_buf = kmalloc(kingsun->max_rx, GFP_KERNEL);
	if (!kingsun->in_buf)
		goto free_mem;

	/* Allocate output buffer */
	kingsun->out_buf = kmalloc(KINGSUN_FIFO_SIZE, GFP_KERNEL);
	if (!kingsun->out_buf)
		goto free_mem;

	printk(KERN_INFO "KingSun/DonShine IRDA/USB found at address %d, "
		"Vendor: %x, Product: %x\n",
	       dev->devnum, le16_to_cpu(dev->descriptor.idVendor),
	       le16_to_cpu(dev->descriptor.idProduct));

	/* Initialize QoS for this device */
	irda_init_max_qos_capabilies(&kingsun->qos);

	/* That's the Rx capability. */
	kingsun->qos.baud_rate.bits       &= IR_9600;
	kingsun->qos.min_turn_time.bits   &= KINGSUN_MTT;
	irda_qos_bits_to_value(&kingsun->qos);

	/* Override the network functions we need to use */
	net->hard_start_xmit = kingsun_hard_xmit;
	net->open            = kingsun_net_open;
	net->stop            = kingsun_net_close;
	net->get_stats	     = kingsun_net_get_stats;
	net->do_ioctl        = kingsun_net_ioctl;

	ret = register_netdev(net);
	if (ret != 0)
		goto free_mem;

	dev_info(&net->dev, "IrDA: Registered KingSun/DonShine device %s\n",
		 net->name);

	usb_set_intfdata(intf, kingsun);

	/* Situation at this point:
	   - all work buffers allocated
	   - urbs not allocated, set to NULL
	   - max rx packet known (in max_rx)
	   - unwrap state machine (partially) initialized, but skb == NULL
	 */

	return 0;

free_mem:
	if (kingsun->out_buf) kfree(kingsun->out_buf);
	if (kingsun->in_buf) kfree(kingsun->in_buf);
	free_netdev(net);
err_out1:
	return ret;
}
示例#23
0
static int
ehci_submit_async(struct usb_device *dev, unsigned long pipe, void *buffer,
		   int length, struct devrequest *req)
{
	static struct QH qh __attribute__((aligned(32)));
	static struct qTD qtd[3] __attribute__((aligned (32)));
	int qtd_counter = 0;

	volatile struct qTD *vtd;
	unsigned long ts;
	uint32_t *tdp;
	uint32_t endpt, token, usbsts;
	uint32_t c, toggle;
	uint32_t cmd;
	int timeout;
	int ret = 0;

	debug("dev=%p, pipe=%lx, buffer=%p, length=%d, req=%p\n", dev, pipe,
	      buffer, length, req);
	if (req != NULL)
		debug("req=%u (%#x), type=%u (%#x), value=%u (%#x), index=%u\n",
		      req->request, req->request,
		      req->requesttype, req->requesttype,
		      le16_to_cpu(req->value), le16_to_cpu(req->value),
		      le16_to_cpu(req->index));

	memset(&qh, 0, sizeof(struct QH));
	memset(qtd, 0, sizeof(qtd));

	toggle = usb_gettoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe));

	/*
	 * Setup QH (3.6 in ehci-r10.pdf)
	 *
	 *   qh_link ................. 03-00 H
	 *   qh_endpt1 ............... 07-04 H
	 *   qh_endpt2 ............... 0B-08 H
	 * - qh_curtd
	 *   qh_overlay.qt_next ...... 13-10 H
	 * - qh_overlay.qt_altnext
	 */
	qh.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH);
	c = (usb_pipespeed(pipe) != USB_SPEED_HIGH &&
	     usb_pipeendpoint(pipe) == 0) ? 1 : 0;
	endpt = (8 << 28) |
	    (c << 27) |
	    (usb_maxpacket(dev, pipe) << 16) |
	    (0 << 15) |
	    (1 << 14) |
	    (usb_pipespeed(pipe) << 12) |
	    (usb_pipeendpoint(pipe) << 8) |
	    (0 << 7) | (usb_pipedevice(pipe) << 0);
	qh.qh_endpt1 = cpu_to_hc32(endpt);
	endpt = (1 << 30) |
	    (dev->portnr << 23) |
	    (dev->parent->devnum << 16) | (0 << 8) | (0 << 0);
	qh.qh_endpt2 = cpu_to_hc32(endpt);
	qh.qh_overlay.qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);

	tdp = &qh.qh_overlay.qt_next;

	if (req != NULL) {
		/*
		 * Setup request qTD (3.5 in ehci-r10.pdf)
		 *
		 *   qt_next ................ 03-00 H
		 *   qt_altnext ............. 07-04 H
		 *   qt_token ............... 0B-08 H
		 *
		 *   [ buffer, buffer_hi ] loaded with "req".
		 */
		qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (0 << 31) |
		    (sizeof(*req) << 16) |
		    (0 << 15) | (0 << 12) | (3 << 10) | (2 << 8) | (0x80 << 0);
		qtd[qtd_counter].qt_token = cpu_to_hc32(token);
		if (ehci_td_buffer(&qtd[qtd_counter], req, sizeof(*req)) != 0) {
			debug("unable construct SETUP td\n");
			goto fail;
		}
		/* Update previous qTD! */
		*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
		tdp = &qtd[qtd_counter++].qt_next;
		toggle = 1;
	}

	if (length > 0 || req == NULL) {
		/*
		 * Setup request qTD (3.5 in ehci-r10.pdf)
		 *
		 *   qt_next ................ 03-00 H
		 *   qt_altnext ............. 07-04 H
		 *   qt_token ............... 0B-08 H
		 *
		 *   [ buffer, buffer_hi ] loaded with "buffer".
		 */
		qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (toggle << 31) |
		    (length << 16) |
		    ((req == NULL ? 1 : 0) << 15) |
		    (0 << 12) |
		    (3 << 10) |
		    ((usb_pipein(pipe) ? 1 : 0) << 8) | (0x80 << 0);
		qtd[qtd_counter].qt_token = cpu_to_hc32(token);
		if (ehci_td_buffer(&qtd[qtd_counter], buffer, length) != 0) {
			debug("unable construct DATA td\n");
			goto fail;
		}
		/* Update previous qTD! */
		*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
		tdp = &qtd[qtd_counter++].qt_next;
	}

	if (req != NULL) {
		/*
		 * Setup request qTD (3.5 in ehci-r10.pdf)
		 *
		 *   qt_next ................ 03-00 H
		 *   qt_altnext ............. 07-04 H
		 *   qt_token ............... 0B-08 H
		 */
		qtd[qtd_counter].qt_next = cpu_to_hc32(QT_NEXT_TERMINATE);
		qtd[qtd_counter].qt_altnext = cpu_to_hc32(QT_NEXT_TERMINATE);
		token = (toggle << 31) |
		    (0 << 16) |
		    (1 << 15) |
		    (0 << 12) |
		    (3 << 10) |
		    ((usb_pipein(pipe) ? 0 : 1) << 8) | (0x80 << 0);
		qtd[qtd_counter].qt_token = cpu_to_hc32(token);
		/* Update previous qTD! */
		*tdp = cpu_to_hc32((uint32_t)&qtd[qtd_counter]);
		tdp = &qtd[qtd_counter++].qt_next;
	}

	qh_list.qh_link = cpu_to_hc32((uint32_t)&qh | QH_LINK_TYPE_QH);

	/* Flush dcache */
	flush_dcache_range((uint32_t)&qh_list,
		(uint32_t)&qh_list + sizeof(struct QH));
	flush_dcache_range((uint32_t)&qh, (uint32_t)&qh + sizeof(struct QH));
	flush_dcache_range((uint32_t)qtd, (uint32_t)qtd + sizeof(qtd));

	usbsts = ehci_readl(&hcor->or_usbsts);
	ehci_writel(&hcor->or_usbsts, (usbsts & 0x3f));

	/* Enable async. schedule. */
	cmd = ehci_readl(&hcor->or_usbcmd);
	cmd |= CMD_ASE;
	ehci_writel(&hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, STD_ASS,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STD_ASS set\n");
		goto fail;
	}

	/* Wait for TDs to be processed. */
	ts = get_timer(0);
	vtd = &qtd[qtd_counter - 1];
	timeout = USB_TIMEOUT_MS(pipe);
	do {
		/* Invalidate dcache */
		invalidate_dcache_range((uint32_t)&qh_list,
			(uint32_t)&qh_list + sizeof(struct QH));
		invalidate_dcache_range((uint32_t)&qh,
			(uint32_t)&qh + sizeof(struct QH));
		invalidate_dcache_range((uint32_t)qtd,
			(uint32_t)qtd + sizeof(qtd));

		token = hc32_to_cpu(vtd->qt_token);
		if (!(token & 0x80))
			break;
		WATCHDOG_RESET();
	} while (get_timer(ts) < timeout);

	/* Invalidate the memory area occupied by buffer */
	invalidate_dcache_range(((uint32_t)buffer & ~31),
		((uint32_t)buffer & ~31) + roundup(length, 32));

	/* Check that the TD processing happened */
	if (token & 0x80) {
		printf("EHCI timed out on TD - token=%#x\n", token);
	}

	/* Disable async schedule. */
	cmd = ehci_readl(&hcor->or_usbcmd);
	cmd &= ~CMD_ASE;
	ehci_writel(&hcor->or_usbcmd, cmd);

	ret = handshake((uint32_t *)&hcor->or_usbsts, STD_ASS, 0,
			100 * 1000);
	if (ret < 0) {
		printf("EHCI fail timeout STD_ASS reset\n");
		goto fail;
	}

	qh_list.qh_link = cpu_to_hc32((uint32_t)&qh_list | QH_LINK_TYPE_QH);

	token = hc32_to_cpu(qh.qh_overlay.qt_token);
	if (!(token & 0x80)) {
		debug("TOKEN=%#x\n", token);
		switch (token & 0xfc) {
		case 0:
			toggle = token >> 31;
			usb_settoggle(dev, usb_pipeendpoint(pipe),
				       usb_pipeout(pipe), toggle);
			dev->status = 0;
			break;
		case 0x40:
			dev->status = USB_ST_STALLED;
			break;
		case 0xa0:
		case 0x20:
			dev->status = USB_ST_BUF_ERR;
			break;
		case 0x50:
		case 0x10:
			dev->status = USB_ST_BABBLE_DET;
			break;
		default:
			dev->status = USB_ST_CRC_ERR;
			if ((token & 0x40) == 0x40)
				dev->status |= USB_ST_STALLED;
			break;
		}
		dev->act_len = length - ((token >> 16) & 0x7fff);
	} else {
示例#24
0
文件: hub.c 项目: cilynx/dd-wrt
static int usb_hub_configure(struct usb_hub *hub, struct usb_endpoint_descriptor *endpoint)
{
	struct usb_device *dev = hub->dev;
	struct usb_hub_status *hubstatus;
	char portstr[USB_MAXCHILDREN + 1];
	unsigned int pipe;
	int i, maxp, ret;

	hub->descriptor = kmalloc(sizeof(*hub->descriptor), GFP_KERNEL);
	if (!hub->descriptor) {
		err("Unable to kmalloc %Zd bytes for hub descriptor", sizeof(*hub->descriptor));
		return -1;
	}

	/* Request the entire hub descriptor. */
	ret = usb_get_hub_descriptor(dev, hub->descriptor, sizeof(*hub->descriptor));
		/* <hub->descriptor> is large enough for a hub with 127 ports;
		 * the hub can/will return fewer bytes here. */
	if (ret < 0) {
		err("Unable to get hub descriptor (err = %d)", ret);
		kfree(hub->descriptor);
		return -1;
	}

	dev->maxchild = hub->descriptor->bNbrPorts;
	info("%d port%s detected", hub->descriptor->bNbrPorts, (hub->descriptor->bNbrPorts == 1) ? "" : "s");

	le16_to_cpus(&hub->descriptor->wHubCharacteristics);

	if (hub->descriptor->wHubCharacteristics & HUB_CHAR_COMPOUND)
		dbg("part of a compound device");
	else
		dbg("standalone hub");

	switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_LPSM) {
		case 0x00:
			dbg("ganged power switching");
			break;
		case 0x01:
			dbg("individual port power switching");
			break;
		case 0x02:
		case 0x03:
			dbg("unknown reserved power switching mode");
			break;
	}

	switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_OCPM) {
		case 0x00:
			dbg("global over-current protection");
			break;
		case 0x08:
			dbg("individual port over-current protection");
			break;
		case 0x10:
		case 0x18:
			dbg("no over-current protection");
                        break;
	}

	switch (dev->descriptor.bDeviceProtocol) {
		case 0:
			break;
		case 1:
			dbg("Single TT");
			hub->tt.hub = dev;
			break;
		case 2:
			dbg("TT per port");
			hub->tt.hub = dev;
			hub->tt.multi = 1;
			break;
		default:
			dbg("Unrecognized hub protocol %d",
				dev->descriptor.bDeviceProtocol);
			break;
	}

	switch (hub->descriptor->wHubCharacteristics & HUB_CHAR_TTTT) {
		case 0x00:
			if (dev->descriptor.bDeviceProtocol != 0)
				dbg("TT requires at most 8 FS bit times");
			break;
		case 0x20:
			dbg("TT requires at most 16 FS bit times");
			break;
		case 0x40:
			dbg("TT requires at most 24 FS bit times");
			break;
		case 0x60:
			dbg("TT requires at most 32 FS bit times");
			break;
	}

	dbg("Port indicators are %s supported", 
	    (hub->descriptor->wHubCharacteristics & HUB_CHAR_PORTIND) ? "" : "not");

	dbg("power on to power good time: %dms", hub->descriptor->bPwrOn2PwrGood * 2);
	dbg("hub controller current requirement: %dmA", hub->descriptor->bHubContrCurrent);

	for (i = 0; i < dev->maxchild; i++)
		portstr[i] = hub->descriptor->DeviceRemovable[((i + 1) / 8)] & (1 << ((i + 1) % 8)) ? 'F' : 'R';
	portstr[dev->maxchild] = 0;

	dbg("port removable status: %s", portstr);

	hubstatus = kmalloc(sizeof *hubstatus, GFP_KERNEL);
	if (!hubstatus) {
		err("Unable to allocate hubstatus");
		kfree(hub->descriptor);
		return -1;
	}
	ret = usb_get_hub_status(dev, hubstatus);
	if (ret < 0) {
		err("Unable to get hub status (err = %d)", ret);
		kfree(hubstatus);
		kfree(hub->descriptor);
		return -1;
	}

	le16_to_cpus(&hubstatus->wHubStatus);

	dbg("local power source is %s",
		(hubstatus->wHubStatus & HUB_STATUS_LOCAL_POWER) ? "lost (inactive)" : "good");

	dbg("%sover-current condition exists",
		(hubstatus->wHubStatus & HUB_STATUS_OVERCURRENT) ? "" : "no ");

	kfree(hubstatus);

	/* Start the interrupt endpoint */
	pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress);
	maxp = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	if (maxp > sizeof(hub->buffer))
		maxp = sizeof(hub->buffer);

	hub->urb = usb_alloc_urb(0);
	if (!hub->urb) {
		err("couldn't allocate interrupt urb");
		kfree(hub->descriptor);
		return -1;
	}

	FILL_INT_URB(hub->urb, dev, pipe, hub->buffer, maxp, hub_irq, hub,
		/* NOTE:  in 2.5 fill_int_urb() converts the encoding */
		(dev->speed == USB_SPEED_HIGH)
			? 1 << (endpoint->bInterval - 1)
			: endpoint->bInterval);
	ret = usb_submit_urb(hub->urb);
	if (ret) {
		err("usb_submit_urb failed (%d)", ret);
		kfree(hub->descriptor);
		return -1;
	}
		
	/* Wake up khubd */
	wake_up(&khubd_wait);

	usb_hub_power_on(hub);

	return 0;
}
static int kingsun_probe(struct usb_interface *intf,
		      const struct usb_device_id *id)
{
	struct usb_host_interface *interface;
	struct usb_endpoint_descriptor *endpoint;

	struct usb_device *dev = interface_to_usbdev(intf);
	struct kingsun_cb *kingsun = NULL;
	struct net_device *net = NULL;
	int ret = -ENOMEM;
	int pipe, maxp_in, maxp_out;
	__u8 ep_in;
	__u8 ep_out;

	interface = intf->cur_altsetting;
	if (interface->desc.bNumEndpoints != 2) {
		err("kingsun-sir: expected 2 endpoints, found %d",
		    interface->desc.bNumEndpoints);
		return -ENODEV;
	}
	endpoint = &interface->endpoint[KINGSUN_EP_IN].desc;
	if (!usb_endpoint_is_int_in(endpoint)) {
		err("kingsun-sir: endpoint 0 is not interrupt IN");
		return -ENODEV;
	}

	ep_in = endpoint->bEndpointAddress;
	pipe = usb_rcvintpipe(dev, ep_in);
	maxp_in = usb_maxpacket(dev, pipe, usb_pipeout(pipe));
	if (maxp_in > 255 || maxp_in <= 1) {
		err("%s: endpoint 0 has max packet size %d not in range",
		    __FILE__, maxp_in);
		return -ENODEV;
	}

	endpoint = &interface->endpoint[KINGSUN_EP_OUT].desc;
	if (!usb_endpoint_is_int_out(endpoint)) {
		err("kingsun-sir: endpoint 1 is not interrupt OUT");
		return -ENODEV;
	}

	ep_out = endpoint->bEndpointAddress;
	pipe = usb_sndintpipe(dev, ep_out);
	maxp_out = usb_maxpacket(dev, pipe, usb_pipeout(pipe));

	
	net = alloc_irdadev(sizeof(*kingsun));
	if(!net)
		goto err_out1;

	SET_NETDEV_DEV(net, &intf->dev);
	kingsun = netdev_priv(net);
	kingsun->irlap = NULL;
	kingsun->tx_urb = NULL;
	kingsun->rx_urb = NULL;
	kingsun->ep_in = ep_in;
	kingsun->ep_out = ep_out;
	kingsun->in_buf = NULL;
	kingsun->out_buf = NULL;
	kingsun->max_rx = (__u8)maxp_in;
	kingsun->max_tx = (__u8)maxp_out;
	kingsun->netdev = net;
	kingsun->usbdev = dev;
	kingsun->rx_buff.in_frame = FALSE;
	kingsun->rx_buff.state = OUTSIDE_FRAME;
	kingsun->rx_buff.skb = NULL;
	kingsun->receiving = 0;
	spin_lock_init(&kingsun->lock);

	
	kingsun->in_buf = kmalloc(kingsun->max_rx, GFP_KERNEL);
	if (!kingsun->in_buf)
		goto free_mem;

	
	kingsun->out_buf = kmalloc(KINGSUN_FIFO_SIZE, GFP_KERNEL);
	if (!kingsun->out_buf)
		goto free_mem;

	printk(KERN_INFO "KingSun/DonShine IRDA/USB found at address %d, "
		"Vendor: %x, Product: %x\n",
	       dev->devnum, le16_to_cpu(dev->descriptor.idVendor),
	       le16_to_cpu(dev->descriptor.idProduct));

	
	irda_init_max_qos_capabilies(&kingsun->qos);

	
	kingsun->qos.baud_rate.bits       &= IR_9600;
	kingsun->qos.min_turn_time.bits   &= KINGSUN_MTT;
	irda_qos_bits_to_value(&kingsun->qos);

	
	net->netdev_ops = &kingsun_ops;

	ret = register_netdev(net);
	if (ret != 0)
		goto free_mem;

	dev_info(&net->dev, "IrDA: Registered KingSun/DonShine device %s\n",
		 net->name);

	usb_set_intfdata(intf, kingsun);


	return 0;

free_mem:
	if (kingsun->out_buf) kfree(kingsun->out_buf);
	if (kingsun->in_buf) kfree(kingsun->in_buf);
	free_netdev(net);
err_out1:
	return ret;
}