static void ugen_stop_io(struct usb_fifo *f) { /* stop transfers */ usbd_transfer_stop(f->xfer[0]); usbd_transfer_stop(f->xfer[1]); }
static void uhid_stop_write(struct usb_fifo *fifo) { struct uhid_softc *sc = usb_fifo_softc(fifo); usbd_transfer_stop(sc->sc_xfer[UHID_CTRL_DT_WR]); usbd_transfer_stop(sc->sc_xfer[UHID_INTR_DT_WR]); }
static void ipheth_stop(struct usb_ether *ue) { struct ipheth_softc *sc = uether_getsc(ue); /* * Stop the USB transfers, if not already stopped: */ usbd_transfer_stop(sc->sc_xfer[IPHETH_BULK_TX]); usbd_transfer_stop(sc->sc_xfer[IPHETH_BULK_RX]); }
static void uhso_ucom_stop_write(struct ucom_softc *ucom) { struct uhso_softc *sc = ucom->sc_parent; if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_MUX) { usbd_transfer_stop( sc->sc_tty[ucom->sc_subunit].ht_xfer[UHSO_CTRL_WRITE]); } else if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_BULK) { usbd_transfer_stop(sc->sc_xfer[UHSO_BULK_ENDPT_WRITE]); } }
static void usie_uc_stop_write(struct ucom_softc *ucom) { struct usie_softc *sc = ucom->sc_parent; usbd_transfer_stop(sc->sc_uc_xfer[ucom->sc_subunit][USIE_UC_TX]); }
static void usie_uc_cfg_close(struct ucom_softc *ucom) { struct usie_softc *sc = ucom->sc_parent; usbd_transfer_stop(sc->sc_uc_xfer[ucom->sc_subunit][USIE_UC_STATUS]); }
static void usbd_irpcancel(device_object *dobj, irp *ip) { device_t dev = IRP_NDIS_DEV(ip); struct ndis_softc *sc = device_get_softc(dev); struct ndisusb_ep *ne = IRP_NDISUSB_EP(ip); if (ne == NULL) { ip->irp_cancel = TRUE; IoReleaseCancelSpinLock(ip->irp_cancelirql); return; } /* * Make sure that the current USB transfer proxy is * cancelled and then restarted. */ NDISUSB_LOCK(sc); usbd_transfer_stop(ne->ne_xfer[0]); usbd_transfer_start(ne->ne_xfer[0]); NDISUSB_UNLOCK(sc); ip->irp_cancel = TRUE; IoReleaseCancelSpinLock(ip->irp_cancelirql); }
static void usbd_task(device_object *dobj, void *arg) { irp *ip; list_entry *l; struct ndis_softc *sc = arg; struct ndisusb_ep *ne; struct ndisusb_task *nt; union usbd_urb *urb; if (IsListEmpty(&sc->ndisusb_tasklist)) return; KeAcquireSpinLockAtDpcLevel(&sc->ndisusb_tasklock); l = sc->ndisusb_tasklist.nle_flink; while (l != &sc->ndisusb_tasklist) { nt = CONTAINING_RECORD(l, struct ndisusb_task, nt_tasklist); ip = nt->nt_ctx; urb = usbd_geturb(ip); KeReleaseSpinLockFromDpcLevel(&sc->ndisusb_tasklock); NDISUSB_LOCK(sc); switch (nt->nt_type) { case NDISUSB_TASK_TSTART: ne = usbd_get_ndisep(ip, urb->uu_bulkintr.ubi_epdesc); if (ne == NULL) goto exit; usbd_transfer_start(ne->ne_xfer[0]); break; case NDISUSB_TASK_IRPCANCEL: ne = usbd_get_ndisep(ip, (nt->nt_type == NDISUSB_TASK_IRPCANCEL) ? urb->uu_bulkintr.ubi_epdesc : urb->uu_pipe.upr_handle); if (ne == NULL) goto exit; usbd_transfer_stop(ne->ne_xfer[0]); usbd_transfer_start(ne->ne_xfer[0]); break; case NDISUSB_TASK_VENDOR: ne = (urb->uu_vcreq.uvc_trans_flags & USBD_TRANSFER_DIRECTION_IN) ? &sc->ndisusb_dread_ep : &sc->ndisusb_dwrite_ep; usbd_transfer_start(ne->ne_xfer[0]); break; default: break; } exit: NDISUSB_UNLOCK(sc); KeAcquireSpinLockAtDpcLevel(&sc->ndisusb_tasklock); l = l->nle_flink; RemoveEntryList(&nt->nt_tasklist); free(nt, M_USBDEV); } KeReleaseSpinLockFromDpcLevel(&sc->ndisusb_tasklock); }
static void uhso_ucom_stop_read(struct ucom_softc *ucom) { struct uhso_softc *sc = ucom->sc_parent; if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_MUX) { sc->sc_tty[ucom->sc_subunit].ht_open = 0; usbd_transfer_stop( sc->sc_tty[ucom->sc_subunit].ht_xfer[UHSO_CTRL_READ]); } else if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_BULK) { sc->sc_tty[0].ht_open = 0; usbd_transfer_start(sc->sc_xfer[UHSO_BULK_ENDPT_READ]); if (sc->sc_xfer[UHSO_BULK_ENDPT_INTR] != NULL) usbd_transfer_stop(sc->sc_xfer[UHSO_BULK_ENDPT_INTR]); } }
static void cdce_stop(struct usb_ether *ue) { struct cdce_softc *sc = uether_getsc(ue); struct ifnet *ifp = uether_getifp(ue); CDCE_LOCK_ASSERT(sc, MA_OWNED); ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* * stop all the transfers, if not already stopped: */ usbd_transfer_stop(sc->sc_xfer[CDCE_BULK_RX]); usbd_transfer_stop(sc->sc_xfer[CDCE_BULK_TX]); usbd_transfer_stop(sc->sc_xfer[CDCE_INTR_RX]); usbd_transfer_stop(sc->sc_xfer[CDCE_INTR_TX]); }
static void usie_if_stop(struct usie_softc *sc) { usb_callout_drain(&sc->sc_if_sync_ch); mtx_lock(&sc->sc_mtx); /* usie_cns_req() clears IFF_* flags */ usie_cns_req(sc, USIE_CNS_ID_STOP, USIE_CNS_OB_LINK_UPDATE); usbd_transfer_stop(sc->sc_if_xfer[USIE_IF_TX]); usbd_transfer_stop(sc->sc_if_xfer[USIE_IF_RX]); usbd_transfer_stop(sc->sc_if_xfer[USIE_IF_STATUS]); /* shutdown device */ usie_if_cmd(sc, USIE_HIP_DOWN); mtx_unlock(&sc->sc_mtx); }
static void ugen_close(struct usb_fifo *f, int fflags) { DPRINTFN(6, "flag=0x%x\n", fflags); /* cleanup */ mtx_lock(f->priv_mtx); usbd_transfer_stop(f->xfer[0]); usbd_transfer_stop(f->xfer[1]); mtx_unlock(f->priv_mtx); usbd_transfer_unsetup(f->xfer, 2); usb_fifo_free_buffer(f); if (ugen_fs_uninit(f)) { /* ignore any errors - we are closing */ DPRINTFN(6, "no FIFOs\n"); } }
static int32_t usbd_func_abort_pipe(irp *ip) { device_t dev = IRP_NDIS_DEV(ip); struct ndis_softc *sc = device_get_softc(dev); struct ndisusb_ep *ne; union usbd_urb *urb; urb = usbd_geturb(ip); ne = usbd_get_ndisep(ip, urb->uu_pipe.upr_handle); if (ne == NULL) { device_printf(IRP_NDIS_DEV(ip), "get NULL endpoint info.\n"); return (USBD_STATUS_INVALID_PIPE_HANDLE); } NDISUSB_LOCK(sc); usbd_transfer_stop(ne->ne_xfer[0]); usbd_transfer_start(ne->ne_xfer[0]); NDISUSB_UNLOCK(sc); return (USBD_STATUS_SUCCESS); }
static int ugen_ioctl(struct usb_fifo *f, u_long cmd, void *addr, int fflags) { struct usb_config usb_config[1]; struct usb_device_request req; union { struct usb_fs_complete *pcomp; struct usb_fs_start *pstart; struct usb_fs_stop *pstop; struct usb_fs_open *popen; struct usb_fs_close *pclose; struct usb_fs_clear_stall_sync *pstall; void *addr; } u; struct usb_endpoint *ep; struct usb_endpoint_descriptor *ed; int error = 0; uint8_t iface_index; uint8_t isread; uint8_t ep_index; u.addr = addr; DPRINTFN(6, "cmd=0x%08lx\n", cmd); switch (cmd) { case USB_FS_COMPLETE: mtx_lock(f->priv_mtx); error = ugen_fs_get_complete(f, &ep_index); mtx_unlock(f->priv_mtx); if (error) { error = EBUSY; break; } u.pcomp->ep_index = ep_index; error = ugen_fs_copy_out(f, u.pcomp->ep_index); break; case USB_FS_START: error = ugen_fs_copy_in(f, u.pstart->ep_index); if (error) { break; } mtx_lock(f->priv_mtx); usbd_transfer_start(f->fs_xfer[u.pstart->ep_index]); mtx_unlock(f->priv_mtx); break; case USB_FS_STOP: if (u.pstop->ep_index >= f->fs_ep_max) { error = EINVAL; break; } mtx_lock(f->priv_mtx); usbd_transfer_stop(f->fs_xfer[u.pstop->ep_index]); mtx_unlock(f->priv_mtx); break; case USB_FS_OPEN: if (u.popen->ep_index >= f->fs_ep_max) { error = EINVAL; break; } if (f->fs_xfer[u.popen->ep_index] != NULL) { error = EBUSY; break; } if (u.popen->max_bufsize > USB_FS_MAX_BUFSIZE) { u.popen->max_bufsize = USB_FS_MAX_BUFSIZE; } if (u.popen->max_frames > USB_FS_MAX_FRAMES) { u.popen->max_frames = USB_FS_MAX_FRAMES; break; } if (u.popen->max_frames == 0) { error = EINVAL; break; } ep = usbd_get_ep_by_addr(f->udev, u.popen->ep_no); if (ep == NULL) { error = EINVAL; break; } ed = ep->edesc; if (ed == NULL) { error = ENXIO; break; } iface_index = ep->iface_index; bzero(usb_config, sizeof(usb_config)); usb_config[0].type = ed->bmAttributes & UE_XFERTYPE; usb_config[0].endpoint = ed->bEndpointAddress & UE_ADDR; usb_config[0].direction = ed->bEndpointAddress & (UE_DIR_OUT | UE_DIR_IN); usb_config[0].interval = USB_DEFAULT_INTERVAL; usb_config[0].flags.proxy_buffer = 1; usb_config[0].callback = &ugen_default_fs_callback; usb_config[0].timeout = 0; /* no timeout */ usb_config[0].frames = u.popen->max_frames; usb_config[0].bufsize = u.popen->max_bufsize; usb_config[0].usb_mode = USB_MODE_DUAL; /* both modes */ if (usb_config[0].type == UE_CONTROL) { if (f->udev->flags.usb_mode != USB_MODE_HOST) { error = EINVAL; break; } } else { isread = ((usb_config[0].endpoint & (UE_DIR_IN | UE_DIR_OUT)) == UE_DIR_IN); if (f->udev->flags.usb_mode != USB_MODE_HOST) { isread = !isread; } /* check permissions */ if (isread) { if (!(fflags & FREAD)) { error = EPERM; break; } } else { if (!(fflags & FWRITE)) { error = EPERM; break; } } } error = usbd_transfer_setup(f->udev, &iface_index, f->fs_xfer + u.popen->ep_index, usb_config, 1, f, f->priv_mtx); if (error == 0) { /* update maximums */ u.popen->max_packet_length = f->fs_xfer[u.popen->ep_index]->max_frame_size; u.popen->max_bufsize = f->fs_xfer[u.popen->ep_index]->max_data_length; f->fs_xfer[u.popen->ep_index]->priv_fifo = ((uint8_t *)0) + u.popen->ep_index; } else { error = ENOMEM; } break; case USB_FS_CLOSE: if (u.pclose->ep_index >= f->fs_ep_max) { error = EINVAL; break; } if (f->fs_xfer[u.pclose->ep_index] == NULL) { error = EINVAL; break; } usbd_transfer_unsetup(f->fs_xfer + u.pclose->ep_index, 1); break; case USB_FS_CLEAR_STALL_SYNC: if (u.pstall->ep_index >= f->fs_ep_max) { error = EINVAL; break; } if (f->fs_xfer[u.pstall->ep_index] == NULL) { error = EINVAL; break; } if (f->udev->flags.usb_mode != USB_MODE_HOST) { error = EINVAL; break; } mtx_lock(f->priv_mtx); error = usbd_transfer_pending(f->fs_xfer[u.pstall->ep_index]); mtx_unlock(f->priv_mtx); if (error) { return (EBUSY); } ep = f->fs_xfer[u.pstall->ep_index]->endpoint; /* setup a clear-stall packet */ req.bmRequestType = UT_WRITE_ENDPOINT; req.bRequest = UR_CLEAR_FEATURE; USETW(req.wValue, UF_ENDPOINT_HALT); req.wIndex[0] = ep->edesc->bEndpointAddress; req.wIndex[1] = 0; USETW(req.wLength, 0); error = usbd_do_request(f->udev, NULL, &req, NULL); if (error == 0) { usbd_clear_data_toggle(f->udev, ep); } else { error = ENXIO; } break; default: error = ENOIOCTL; break; } DPRINTFN(6, "error=%d\n", error); return (error); }
/*------------------------------------------------------------------------* * usbd_do_request_flags and usbd_do_request * * Description of arguments passed to these functions: * * "udev" - this is the "usb_device" structure pointer on which the * request should be performed. It is possible to call this function * in both Host Side mode and Device Side mode. * * "mtx" - if this argument is non-NULL the mutex pointed to by it * will get dropped and picked up during the execution of this * function, hence this function sometimes needs to sleep. If this * argument is NULL it has no effect. * * "req" - this argument must always be non-NULL and points to an * 8-byte structure holding the USB request to be done. The USB * request structure has a bit telling the direction of the USB * request, if it is a read or a write. * * "data" - if the "wLength" part of the structure pointed to by "req" * is non-zero this argument must point to a valid kernel buffer which * can hold at least "wLength" bytes. If "wLength" is zero "data" can * be NULL. * * "flags" - here is a list of valid flags: * * o USB_SHORT_XFER_OK: allows the data transfer to be shorter than * specified * * o USB_DELAY_STATUS_STAGE: allows the status stage to be performed * at a later point in time. This is tunable by the "hw.usb.ss_delay" * sysctl. This flag is mostly useful for debugging. * * o USB_USER_DATA_PTR: treat the "data" pointer like a userland * pointer. * * "actlen" - if non-NULL the actual transfer length will be stored in * the 16-bit unsigned integer pointed to by "actlen". This * information is mostly useful when the "USB_SHORT_XFER_OK" flag is * used. * * "timeout" - gives the timeout for the control transfer in * milliseconds. A "timeout" value less than 50 milliseconds is * treated like a 50 millisecond timeout. A "timeout" value greater * than 30 seconds is treated like a 30 second timeout. This USB stack * does not allow control requests without a timeout. * * NOTE: This function is thread safe. All calls to * "usbd_do_request_flags" will be serialised by the use of an * internal "sx_lock". * * Returns: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ usb_error_t usbd_do_request_flags(struct usb_device *udev, struct mtx *mtx, struct usb_device_request *req, void *data, uint16_t flags, uint16_t *actlen, usb_timeout_t timeout) { usb_handle_req_t *hr_func; struct usb_xfer *xfer; const void *desc; int err = 0; usb_ticks_t start_ticks; usb_ticks_t delta_ticks; usb_ticks_t max_ticks; uint16_t length; uint16_t temp; if (timeout < 50) { /* timeout is too small */ timeout = 50; } if (timeout > 30000) { /* timeout is too big */ timeout = 30000; } length = UGETW(req->wLength); DPRINTFN(5, "udev=%p bmRequestType=0x%02x bRequest=0x%02x " "wValue=0x%02x%02x wIndex=0x%02x%02x wLength=0x%02x%02x\n", udev, req->bmRequestType, req->bRequest, req->wValue[1], req->wValue[0], req->wIndex[1], req->wIndex[0], req->wLength[1], req->wLength[0]); /* Check if the device is still alive */ if (udev->state < USB_STATE_POWERED) { DPRINTF("usb device has gone\n"); return (USB_ERR_NOT_CONFIGURED); } /* * Set "actlen" to a known value in case the caller does not * check the return value: */ if (actlen) *actlen = 0; #if (USB_HAVE_USER_IO == 0) if (flags & USB_USER_DATA_PTR) return (USB_ERR_INVAL); #endif if (mtx) { mtx_unlock(mtx); if (mtx != &Giant) { mtx_assert(mtx, MA_NOTOWNED); } } /* * Grab the default sx-lock so that serialisation * is achieved when multiple threads are involved: */ sx_xlock(udev->default_sx); hr_func = usbd_get_hr_func(udev); if (hr_func != NULL) { DPRINTF("Handle Request function is set\n"); desc = NULL; temp = 0; if (!(req->bmRequestType & UT_READ)) { if (length != 0) { DPRINTFN(1, "The handle request function " "does not support writing data!\n"); err = USB_ERR_INVAL; goto done; } } /* The root HUB code needs the BUS lock locked */ USB_BUS_LOCK(udev->bus); err = (hr_func) (udev, req, &desc, &temp); USB_BUS_UNLOCK(udev->bus); if (err) goto done; if (length > temp) { if (!(flags & USB_SHORT_XFER_OK)) { err = USB_ERR_SHORT_XFER; goto done; } length = temp; } if (actlen) *actlen = length; if (length > 0) { #if USB_HAVE_USER_IO if (flags & USB_USER_DATA_PTR) { if (copyout(desc, data, length)) { err = USB_ERR_INVAL; goto done; } } else #endif bcopy(desc, data, length); } goto done; /* success */ } /* * Setup a new USB transfer or use the existing one, if any: */ usbd_default_transfer_setup(udev); xfer = udev->default_xfer[0]; if (xfer == NULL) { /* most likely out of memory */ err = USB_ERR_NOMEM; goto done; } USB_XFER_LOCK(xfer); if (flags & USB_DELAY_STATUS_STAGE) xfer->flags.manual_status = 1; else xfer->flags.manual_status = 0; if (flags & USB_SHORT_XFER_OK) xfer->flags.short_xfer_ok = 1; else xfer->flags.short_xfer_ok = 0; xfer->timeout = timeout; start_ticks = ticks; max_ticks = USB_MS_TO_TICKS(timeout); usbd_copy_in(xfer->frbuffers, 0, req, sizeof(*req)); usbd_xfer_set_frame_len(xfer, 0, sizeof(*req)); xfer->nframes = 2; while (1) { temp = length; if (temp > xfer->max_data_length) { temp = usbd_xfer_max_len(xfer); } usbd_xfer_set_frame_len(xfer, 1, temp); if (temp > 0) { if (!(req->bmRequestType & UT_READ)) { #if USB_HAVE_USER_IO if (flags & USB_USER_DATA_PTR) { USB_XFER_UNLOCK(xfer); err = usbd_copy_in_user(xfer->frbuffers + 1, 0, data, temp); USB_XFER_LOCK(xfer); if (err) { err = USB_ERR_INVAL; break; } } else #endif usbd_copy_in(xfer->frbuffers + 1, 0, data, temp); } xfer->nframes = 2; } else { if (xfer->frlengths[0] == 0) { if (xfer->flags.manual_status) { #if USB_DEBUG int temp; temp = usb_ss_delay; if (temp > 5000) { temp = 5000; } if (temp > 0) { usb_pause_mtx( xfer->xroot->xfer_mtx, USB_MS_TO_TICKS(temp)); } #endif xfer->flags.manual_status = 0; } else { break; } } xfer->nframes = 1; } usbd_transfer_start(xfer); while (usbd_transfer_pending(xfer)) { cv_wait(udev->default_cv, xfer->xroot->xfer_mtx); } err = xfer->error; if (err) { break; } /* subtract length of SETUP packet, if any */ if (xfer->aframes > 0) { xfer->actlen -= xfer->frlengths[0]; } else { xfer->actlen = 0; } /* check for short packet */ if (temp > xfer->actlen) { temp = xfer->actlen; length = temp; } if (temp > 0) { if (req->bmRequestType & UT_READ) { #if USB_HAVE_USER_IO if (flags & USB_USER_DATA_PTR) { USB_XFER_UNLOCK(xfer); err = usbd_copy_out_user(xfer->frbuffers + 1, 0, data, temp); USB_XFER_LOCK(xfer); if (err) { err = USB_ERR_INVAL; break; } } else #endif usbd_copy_out(xfer->frbuffers + 1, 0, data, temp); } } /* * Clear "frlengths[0]" so that we don't send the setup * packet again: */ usbd_xfer_set_frame_len(xfer, 0, 0); /* update length and data pointer */ length -= temp; data = USB_ADD_BYTES(data, temp); if (actlen) { (*actlen) += temp; } /* check for timeout */ delta_ticks = ticks - start_ticks; if (delta_ticks > max_ticks) { if (!err) { err = USB_ERR_TIMEOUT; } } if (err) { break; } } if (err) { /* * Make sure that the control endpoint is no longer * blocked in case of a non-transfer related error: */ usbd_transfer_stop(xfer); } USB_XFER_UNLOCK(xfer); done: sx_xunlock(udev->default_sx); if (mtx) { mtx_lock(mtx); } return ((usb_error_t)err); }