/*******************************************************************//** Retrieves a data from a storage. If it is present, a pointer to the stored copy of data is returned, otherwise NULL is returned. */ static const void* ha_storage_get( /*===========*/ ha_storage_t* storage, /*!< in: hash storage */ const void* data, /*!< in: data to check for */ ulint data_len) /*!< in: data length */ { ha_storage_node_t* node; ulint fold; /* avoid repetitive calls to ut_fold_binary() in the HASH_SEARCH macro */ fold = ut_fold_binary(data, data_len); #define IS_FOUND \ node->data_len == data_len && memcmp(node->data, data, data_len) == 0 HASH_SEARCH( next, /* node->"next" */ storage->hash, /* the hash table */ fold, /* key */ ha_storage_node_t*, /* type of node->next */ node, /* auxiliary variable */ , /* assertion */ IS_FOUND); /* search criteria */ if (node == NULL) { return(NULL); } /* else */ return(node->data); }
/*******************************************************************//** Copies data into the storage and returns a pointer to the copy. If the same data chunk is already present, then pointer to it is returned. Data chunks are considered to be equal if len1 == len2 and memcmp(data1, data2, len1) == 0. If "data" is not present (and thus data_len bytes need to be allocated) and the size of storage is going to become more than "memlim" then "data" is not added and NULL is returned. To disable this behavior "memlim" can be set to 0, which stands for "no limit". */ UNIV_INTERN const void* ha_storage_put_memlim( /*==================*/ ha_storage_t* storage, /*!< in/out: hash storage */ const void* data, /*!< in: data to store */ ulint data_len, /*!< in: data length */ ulint memlim) /*!< in: memory limit to obey */ { void* raw; ha_storage_node_t* node; const void* data_copy; ulint fold; /* check if data chunk is already present */ data_copy = ha_storage_get(storage, data, data_len); if (data_copy != NULL) { return(data_copy); } /* not present */ /* check if we are allowed to allocate data_len bytes */ if (memlim > 0 && ha_storage_get_size(storage) + data_len > memlim) { return(NULL); } /* we put the auxiliary node struct and the data itself in one continuous block */ raw = mem_heap_alloc(storage->heap, sizeof(ha_storage_node_t) + data_len); node = (ha_storage_node_t*) raw; data_copy = (byte*) raw + sizeof(*node); memcpy((byte*) raw + sizeof(*node), data, data_len); node->data_len = data_len; node->data = data_copy; /* avoid repetitive calls to ut_fold_binary() in the HASH_INSERT macro */ fold = ut_fold_binary(data, data_len); HASH_INSERT( ha_storage_node_t, /* type used in the hash chain */ next, /* node->"next" */ storage->hash, /* the hash table */ fold, /* key */ node); /* add this data to the hash */ /* the output should not be changed because it will spoil the hash table */ return(data_copy); }
ulint buf_calc_page_old_checksum( /*=======================*/ /* out: checksum */ uchar* page) /* in: buffer page */ { ulint checksum; checksum= ut_fold_binary(page, FIL_PAGE_FILE_FLUSH_LSN); checksum= checksum & 0xFFFFFFFF; return(checksum); }
ulint buf_calc_page_new_checksum( /*=======================*/ /* out: checksum */ uchar* page) /* in: buffer page */ { ulint checksum; /* Since the fields FIL_PAGE_FILE_FLUSH_LSN and ..._ARCH_LOG_NO are written outside the buffer pool to the first pages of data files, we have to skip them in the page checksum calculation. We must also skip the field FIL_PAGE_SPACE_OR_CHKSUM where the checksum is stored, and also the last 8 bytes of page because there we store the old formula checksum. */ checksum= ut_fold_binary(page + FIL_PAGE_OFFSET, FIL_PAGE_FILE_FLUSH_LSN - FIL_PAGE_OFFSET) + ut_fold_binary(page + FIL_PAGE_DATA, UNIV_PAGE_SIZE - FIL_PAGE_DATA - FIL_PAGE_END_LSN_OLD_CHKSUM); checksum= checksum & 0xFFFFFFFF; return(checksum); }