示例#1
0
void viennacl_gmres(double	* result,   //output vector
  		            mwIndex	* cols,    //input vector holding column jumpers
    	            mwIndex	* rows,    //input vector holding row indices
                    double *entries,
                    double *rhs,
                    mwSize     num_cols,
                    mwSize     nnzmax
		   )
{
    viennacl::vector<double>                    vcl_rhs(num_cols);
    viennacl::vector<double>                    vcl_result(num_cols);
    viennacl::compressed_matrix<double>     vcl_matrix(num_cols, num_cols);

    //convert from column-wise storage to row-wise storage
    std::vector< std::map< unsigned int, double > >  stl_matrix(num_cols);

    for (mwIndex j=0; j<num_cols; ++j)
    {
       for (mwIndex i = cols[j]; i<cols[j+1]; ++i)
         stl_matrix[rows[i]][j] = entries[i];
    }

    //now copy matrix to GPU:
    copy(stl_matrix, vcl_matrix);
    copy(rhs, rhs + num_cols, vcl_rhs.begin());
    stl_matrix.clear(); //clean up this temporary storage

	//solve it:
    vcl_result = solve(vcl_matrix,
                       vcl_rhs,
                       viennacl::linalg::gmres_tag(1e-8, 30, 20));    //relative tolerance of 1e-8, krylov space of dimension 30, 20 restarts max.

    ///////////// copy back to CPU: ///////////////////
    copy(vcl_result.begin(), vcl_result.end(), result);

    return;
}
示例#2
0
int main(int argc, char * argv[])
{

  // create matrice & vectors -----------------------------------------------------

  int n_blocks = 1000;
  int w_sub_a = 8;
  int h_sub_a = 8;
  int w_A = 1 * w_sub_a;
  int h_A = 1 * h_sub_a;
  
  boost::numeric::ublas::vector<float>      b(w_A);
  boost::numeric::ublas::vector<float>      c(h_A);
  
  
  
  
  boost::numeric::ublas::compressed_matrix<float> A(h_A, w_A);
  viennacl::compressed_matrix<float>  vcl_A(h_A, w_A);
  
  // initialize matrice & vectors -----------------------------------------------------
  
  for( int i = 0; i < w_A; i++ )
  {
      b[i] = rand();
  }
//  for( int i = 0; i < n_blocks; i++ )
  {
  int i = 0;
     A(i*h_sub_a,i*h_sub_a) = rand();
     A(i*h_sub_a,i*h_sub_a+1) = rand();
     A(i*h_sub_a+1,i*h_sub_a) = rand();
     A(i*h_sub_a+1,i*h_sub_a+1) = rand();
     
  }
  
  //
  // Set up some ViennaCL objects
  //
  //viennacl::vector<float> vcl_b(static_cast<unsigned int>(b.size()));
  //viennacl::vector<float> vcl_c(static_cast<unsigned int>(c.size())); 
  viennacl::matrix<float> vcl_matrix(static_cast<unsigned int>(c.size()), static_cast<unsigned int>(b.size()));


  // run with native code ---------------------------------------------------


    boost::timer ntimer;
    
    for( int i = 0; i< n_blocks; i++ )
      c=boost::numeric::ublas::prod(A,b);

    std::cout<<"[native] time: " << ntimer.elapsed() <<" seconds\n";


  // run with opencl code -----------------------------------------------------
    
    copy(A, vcl_A);
    
    boost::timer ctimer;
    
    # pragma omp parallel for \
	default ( shared )
    for( int i = 0; i < n_blocks; i++ )
    {  
        viennacl::vector<float> vcl_b(w_A);
        viennacl::vector<float> vcl_c(h_A); 
    
        copy(b, vcl_b);
        vcl_c=viennacl::linalg::prod(vcl_A,vcl_b);
        copy(vcl_c,c );
    }
    
    std::cout<<"[native] time: " << ctimer.elapsed() <<" seconds\n";
 
  // clean up memory -------------------------------------------------------

  return 0;
}
/**
* With this let us go right to main():
**/
int main()
{
  typedef float       ScalarType;


  /**
  * <h2>Part 1: Set up a custom context</h2>
  *
  * The following is rather lengthy because OpenCL is a fairly low-level framework.
  * For comparison, the subsequent code explicitly performs the OpenCL setup that is done
  * in the background within the 'custom_kernels'-tutorial
  **/

  //manually set up a custom OpenCL context:
  std::vector<cl_device_id> device_id_array;

  //get all available devices
  viennacl::ocl::platform pf;
  std::cout << "Platform info: " << pf.info() << std::endl;
  std::vector<viennacl::ocl::device> devices = pf.devices(CL_DEVICE_TYPE_DEFAULT);
  std::cout << devices[0].name() << std::endl;
  std::cout << "Number of devices for custom context: " << devices.size() << std::endl;

  //set up context using all found devices:
  for (std::size_t i=0; i<devices.size(); ++i)
  {
      device_id_array.push_back(devices[i].id());
  }

  std::cout << "Creating context..." << std::endl;
  cl_int err;
  cl_context my_context = clCreateContext(0, cl_uint(device_id_array.size()), &(device_id_array[0]), NULL, NULL, &err);
  VIENNACL_ERR_CHECK(err);


  //create two Vectors:
  unsigned int vector_size = 10;
  std::vector<ScalarType> vec1(vector_size);
  std::vector<ScalarType> vec2(vector_size);
  std::vector<ScalarType> result(vector_size);

  //
  // fill the operands vec1 and vec2:
  //
  for (unsigned int i=0; i<vector_size; ++i)
  {
    vec1[i] = static_cast<ScalarType>(i);
    vec2[i] = static_cast<ScalarType>(vector_size-i);
  }

  //
  // create memory in OpenCL context:
  //
  cl_mem mem_vec1 = clCreateBuffer(my_context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, vector_size * sizeof(ScalarType), &(vec1[0]), &err);
  VIENNACL_ERR_CHECK(err);
  cl_mem mem_vec2 = clCreateBuffer(my_context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, vector_size * sizeof(ScalarType), &(vec2[0]), &err);
  VIENNACL_ERR_CHECK(err);
  cl_mem mem_result = clCreateBuffer(my_context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, vector_size * sizeof(ScalarType), &(result[0]), &err);
  VIENNACL_ERR_CHECK(err);

  //
  // create a command queue for each device:
  //

  std::vector<cl_command_queue> queues(devices.size());
  for (std::size_t i=0; i<devices.size(); ++i)
  {
    queues[i] = clCreateCommandQueue(my_context, devices[i].id(), 0, &err);
    VIENNACL_ERR_CHECK(err);
  }

  //
  // create and build a program in the context:
  //
  std::size_t source_len = std::string(my_compute_program).length();
  cl_program my_prog = clCreateProgramWithSource(my_context, 1, &my_compute_program, &source_len, &err);
  err = clBuildProgram(my_prog, 0, NULL, NULL, NULL, NULL);

/*            char buffer[1024];
            cl_build_status status;
            clGetProgramBuildInfo(my_prog, devices[1].id(), CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &status, NULL);
            clGetProgramBuildInfo(my_prog, devices[1].id(), CL_PROGRAM_BUILD_LOG, sizeof(char)*1024, &buffer, NULL);
            std::cout << "Build Scalar: Err = " << err << " Status = " << status << std::endl;
            std::cout << "Log: " << buffer << std::endl;*/

  VIENNACL_ERR_CHECK(err);

  //
  // create a kernel from the program:
  //
  const char * kernel_name = "elementwise_prod";
  cl_kernel my_kernel = clCreateKernel(my_prog, kernel_name, &err);
  VIENNACL_ERR_CHECK(err);


  //
  // Execute elementwise_prod kernel on first queue: result = vec1 .* vec2;
  //
  err = clSetKernelArg(my_kernel, 0, sizeof(cl_mem), (void*)&mem_vec1);
  VIENNACL_ERR_CHECK(err);
  err = clSetKernelArg(my_kernel, 1, sizeof(cl_mem), (void*)&mem_vec2);
  VIENNACL_ERR_CHECK(err);
  err = clSetKernelArg(my_kernel, 2, sizeof(cl_mem), (void*)&mem_result);
  VIENNACL_ERR_CHECK(err);
  err = clSetKernelArg(my_kernel, 3, sizeof(unsigned int), (void*)&vector_size);
  VIENNACL_ERR_CHECK(err);
  std::size_t global_size = vector_size;
  std::size_t local_size = vector_size;
  err = clEnqueueNDRangeKernel(queues[0], my_kernel, 1, NULL, &global_size, &local_size, 0, NULL, NULL);
  VIENNACL_ERR_CHECK(err);


  //
  // Read and output result:
  //
  err = clEnqueueReadBuffer(queues[0], mem_vec1, CL_TRUE, 0, sizeof(ScalarType)*vector_size, &(vec1[0]), 0, NULL, NULL);
  VIENNACL_ERR_CHECK(err);
  err = clEnqueueReadBuffer(queues[0], mem_result, CL_TRUE, 0, sizeof(ScalarType)*vector_size, &(result[0]), 0, NULL, NULL);
  VIENNACL_ERR_CHECK(err);

  std::cout << "vec1  : ";
  for (std::size_t i=0; i<vec1.size(); ++i)
    std::cout << vec1[i] << " ";
  std::cout << std::endl;

  std::cout << "vec2  : ";
  for (std::size_t i=0; i<vec2.size(); ++i)
    std::cout << vec2[i] << " ";
  std::cout << std::endl;

  std::cout << "result: ";
  for (std::size_t i=0; i<result.size(); ++i)
    std::cout << result[i] << " ";
  std::cout << std::endl;

  /**
  * <h2>Part 2: Reuse Custom OpenCL Context with ViennaCL</h2>
  *
  * To let ViennaCL reuse the previously created context, we need to make it known to ViennaCL \em before any ViennaCL objects are created.
  * We inject the custom context as the context with default id '0' when using viennacl::ocl::switch_context().
  **/
  viennacl::ocl::setup_context(0, my_context, device_id_array, queues);
  viennacl::ocl::switch_context(0); //activate the new context (only mandatory with context-id not equal to zero)

  /**
  * Check that ViennaCL really uses the new context:
  **/
  std::cout << "Existing context: " << my_context << std::endl;
  std::cout << "ViennaCL uses context: " << viennacl::ocl::current_context().handle().get() << std::endl;

  /**
  * Wrap existing OpenCL objects into ViennaCL:
  **/
  viennacl::vector<ScalarType> vcl_vec1(mem_vec1, vector_size);
  viennacl::vector<ScalarType> vcl_vec2(mem_vec2, vector_size);
  viennacl::vector<ScalarType> vcl_result(mem_result, vector_size);
  viennacl::scalar<ScalarType> vcl_s = 2.0;

  std::cout << "Standard vector operations within ViennaCL:" << std::endl;
  vcl_result = vcl_s * vcl_vec1 + vcl_vec2;

  std::cout << "vec1  : ";
  std::cout << vcl_vec1 << std::endl;

  std::cout << "vec2  : ";
  std::cout << vcl_vec2 << std::endl;

  std::cout << "result: ";
  std::cout << vcl_result << std::endl;

  /**
  * We can also reuse the existing elementwise_prod kernel.
  * Therefore, we first have to make the existing program known to ViennaCL
  * For more details on the three lines, see tutorial 'custom-kernels'
  **/
  std::cout << "Using existing kernel within the OpenCL backend of ViennaCL:" << std::endl;
  viennacl::ocl::program & my_vcl_prog = viennacl::ocl::current_context().add_program(my_prog, "my_compute_program");
  viennacl::ocl::kernel & my_vcl_kernel = my_vcl_prog.add_kernel(my_kernel, "elementwise_prod");
  viennacl::ocl::enqueue(my_vcl_kernel(vcl_vec1, vcl_vec2, vcl_result, static_cast<cl_uint>(vcl_vec1.size())));  //Note that std::size_t might differ between host and device. Thus, a cast to cl_uint is necessary here.

  std::cout << "vec1  : ";
  std::cout << vcl_vec1 << std::endl;

  std::cout << "vec2  : ";
  std::cout << vcl_vec2 << std::endl;

  std::cout << "result: ";
  std::cout << vcl_result << std::endl;


  /**
  * Since a linear piece of memory can be interpreted in several ways,
  * we will now create a 3x3 row-major matrix out of the linear memory in mem_vec1/
  * The first three entries in vcl_vec2 and vcl_result are used to carry out matrix-vector products:
  **/
  viennacl::matrix<ScalarType> vcl_matrix(mem_vec1, 3, 3);

  vcl_vec2.resize(3);   //note that the resize operation leads to new memory, thus vcl_vec2 is now at a different memory location (values are copied)
  vcl_result.resize(3); //note that the resize operation leads to new memory, thus vcl_vec2 is now at a different memory location (values are copied)
  vcl_result = viennacl::linalg::prod(vcl_matrix, vcl_vec2);

  std::cout << "result of matrix-vector product: ";
  std::cout << vcl_result << std::endl;

  /**
  *  Any further operations can be carried out in the same way.
  *  Just keep in mind that any resizing of vectors or matrices leads to a reallocation of the underlying memory buffer, through which the 'wrapper' is lost.
  **/
  std::cout << "!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!" << std::endl;

  return EXIT_SUCCESS;
}