/*
 * Attitude controller.
 * Input: 'manual_control_setpoint' and 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp', 'vehicle_attitude_setpoint' topic (for manual modes)
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	float yaw_sp_move_rate = 0.0f;
	bool publish_att_sp = false;

	if (_v_control_mode.flag_control_manual_enabled) {
		/* manual input, set or modify attitude setpoint */

		if (_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_climb_rate_enabled) {
			/* in assisted modes poll 'vehicle_attitude_setpoint' topic and modify it */
			vehicle_attitude_setpoint_poll();
		}

		if (!_v_control_mode.flag_control_climb_rate_enabled) {
			/* pass throttle directly if not in altitude stabilized mode */
			_v_att_sp.thrust = _manual_control_sp.z;
			publish_att_sp = true;
		}

		if (!_armed.armed) {
			/* reset yaw setpoint when disarmed */
			_reset_yaw_sp = true;
		}

		/* move yaw setpoint in all modes */
		if (_v_att_sp.thrust < 0.1f) {
			// TODO
			//if (_status.condition_landed) {
			/* reset yaw setpoint if on ground */
			//	reset_yaw_sp = true;
			//}
		} else {
			/* move yaw setpoint */
			yaw_sp_move_rate = _manual_control_sp.r * _params.man_yaw_max;
			_v_att_sp.yaw_body = _wrap_pi(_v_att_sp.yaw_body + yaw_sp_move_rate * dt);
			float yaw_offs_max = _params.man_yaw_max / _params.att_p(2);
			float yaw_offs = _wrap_pi(_v_att_sp.yaw_body - _v_att.yaw);
			if (yaw_offs < - yaw_offs_max) {
				_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw - yaw_offs_max);

			} else if (yaw_offs > yaw_offs_max) {
				_v_att_sp.yaw_body = _wrap_pi(_v_att.yaw + yaw_offs_max);
			}
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

		/* reset yaw setpint to current position if needed */
		if (_reset_yaw_sp) {
			_reset_yaw_sp = false;
			_v_att_sp.yaw_body = _v_att.yaw;
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

		if (!_v_control_mode.flag_control_velocity_enabled) {
			/* update attitude setpoint if not in position control mode */
			_v_att_sp.roll_body = _manual_control_sp.y * _params.man_roll_max;
			_v_att_sp.pitch_body = -_manual_control_sp.x * _params.man_pitch_max;
			_v_att_sp.R_valid = false;
			publish_att_sp = true;
		}

	} else {
		/* in non-manual mode use 'vehicle_attitude_setpoint' topic */
		vehicle_attitude_setpoint_poll();

		/* reset yaw setpoint after non-manual control mode */
		_reset_yaw_sp = true;
	}

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Matrix<3, 3> R_sp;

	if (_v_att_sp.R_valid) {
		/* rotation matrix in _att_sp is valid, use it */
		R_sp.set(&_v_att_sp.R_body[0][0]);

	} else {
		/* rotation matrix in _att_sp is not valid, use euler angles instead */
		R_sp.from_euler(_v_att_sp.roll_body, _v_att_sp.pitch_body, _v_att_sp.yaw_body);

		/* copy rotation matrix back to setpoint struct */
		memcpy(&_v_att_sp.R_body[0][0], &R_sp.data[0][0], sizeof(_v_att_sp.R_body));
		_v_att_sp.R_valid = true;
	}

	/* publish the attitude setpoint if needed */
	if (publish_att_sp) {
		_v_att_sp.timestamp = hrt_absolute_time();

		if (_att_sp_pub > 0) {
			orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_v_att_sp);

		} else {
			_att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_v_att_sp);
		}
	}

	/* rotation matrix for current state */
	math::Matrix<3, 3> R;
	R.set(_v_att.R);

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q;
		q.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q.imag();
		e_R_d.normalize();
		e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit yaw rate */
	_rates_sp(2) = math::constrain(_rates_sp(2), -_params.yaw_rate_max, _params.yaw_rate_max);

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}
void
MulticopterAttitudeControl::task_main()
{

	/*
	 * do subscriptions
	 */
	_v_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_rates_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint));
	_ctrl_state_sub = orb_subscribe(ORB_ID(control_state));
	_v_control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub = orb_subscribe(ORB_ID(actuator_armed));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));
	_motor_limits_sub = orb_subscribe(ORB_ID(multirotor_motor_limits));

	/* initialize parameters cache */
	parameters_update();

	/* wakeup source: vehicle attitude */
	px4_pollfd_struct_t fds[1];

	fds[0].fd = _ctrl_state_sub;
	fds[0].events = POLLIN;

	while (!_task_should_exit) {

		/* wait for up to 100ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		perf_begin(_loop_perf);

		/* run controller on attitude changes */
		if (fds[0].revents & POLLIN) {
			static uint64_t last_run = 0;
			float dt = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too small (< 2ms) and too large (> 20ms) dt's */
			if (dt < 0.002f) {
				dt = 0.002f;

			} else if (dt > 0.02f) {
				dt = 0.02f;
			}

			/* copy attitude and control state topics */
			orb_copy(ORB_ID(control_state), _ctrl_state_sub, &_ctrl_state);

			/* check for updates in other topics */
			parameter_update_poll();
			vehicle_control_mode_poll();
			arming_status_poll();
			vehicle_manual_poll();
			vehicle_status_poll();
			vehicle_motor_limits_poll();

			/* Check if we are in rattitude mode and the pilot is above the threshold on pitch
			 * or roll (yaw can rotate 360 in normal att control).  If both are true don't
			 * even bother running the attitude controllers */
			if (_vehicle_status.main_state == vehicle_status_s::MAIN_STATE_RATTITUDE) {
				if (fabsf(_manual_control_sp.y) > _params.rattitude_thres ||
				    fabsf(_manual_control_sp.x) > _params.rattitude_thres) {
					_v_control_mode.flag_control_attitude_enabled = false;
				}
			}

			if (_v_control_mode.flag_control_attitude_enabled) {

				if (_ts_opt_recovery == nullptr) {
					// the  tailsitter recovery instance has not been created, thus, the vehicle
					// is not a tailsitter, do normal attitude control
					control_attitude(dt);

				} else {
					vehicle_attitude_setpoint_poll();
					_thrust_sp = _v_att_sp.thrust;
					math::Quaternion q(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
					math::Quaternion q_sp(&_v_att_sp.q_d[0]);
					_ts_opt_recovery->setAttGains(_params.att_p, _params.yaw_ff);
					_ts_opt_recovery->calcOptimalRates(q, q_sp, _v_att_sp.yaw_sp_move_rate, _rates_sp);

					/* limit rates */
					for (int i = 0; i < 3; i++) {
						_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
					}
				}

				/* publish attitude rates setpoint */
				_v_rates_sp.roll = _rates_sp(0);
				_v_rates_sp.pitch = _rates_sp(1);
				_v_rates_sp.yaw = _rates_sp(2);
				_v_rates_sp.thrust = _thrust_sp;
				_v_rates_sp.timestamp = hrt_absolute_time();

				if (_v_rates_sp_pub != nullptr) {
					orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

				} else if (_rates_sp_id) {
					_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
				}

				//}

			} else {
				/* attitude controller disabled, poll rates setpoint topic */
				if (_v_control_mode.flag_control_manual_enabled) {
					/* manual rates control - ACRO mode */
					_rates_sp = math::Vector<3>(_manual_control_sp.y, -_manual_control_sp.x,
								    _manual_control_sp.r).emult(_params.acro_rate_max);
					_thrust_sp = math::min(_manual_control_sp.z, MANUAL_THROTTLE_MAX_MULTICOPTER);

					/* publish attitude rates setpoint */
					_v_rates_sp.roll = _rates_sp(0);
					_v_rates_sp.pitch = _rates_sp(1);
					_v_rates_sp.yaw = _rates_sp(2);
					_v_rates_sp.thrust = _thrust_sp;
					_v_rates_sp.timestamp = hrt_absolute_time();

					if (_v_rates_sp_pub != nullptr) {
						orb_publish(_rates_sp_id, _v_rates_sp_pub, &_v_rates_sp);

					} else if (_rates_sp_id) {
						_v_rates_sp_pub = orb_advertise(_rates_sp_id, &_v_rates_sp);
					}

				} else {
					/* attitude controller disabled, poll rates setpoint topic */
					vehicle_rates_setpoint_poll();
					_rates_sp(0) = _v_rates_sp.roll;
					_rates_sp(1) = _v_rates_sp.pitch;
					_rates_sp(2) = _v_rates_sp.yaw;
					_thrust_sp = _v_rates_sp.thrust;
				}
			}

			if (_v_control_mode.flag_control_rates_enabled) {
				control_attitude_rates(dt);

				/* publish actuator controls */
				_actuators.control[0] = (PX4_ISFINITE(_att_control(0))) ? _att_control(0) : 0.0f;
				_actuators.control[1] = (PX4_ISFINITE(_att_control(1))) ? _att_control(1) : 0.0f;
				_actuators.control[2] = (PX4_ISFINITE(_att_control(2))) ? _att_control(2) : 0.0f;
				_actuators.control[3] = (PX4_ISFINITE(_thrust_sp)) ? _thrust_sp : 0.0f;
				_actuators.timestamp = hrt_absolute_time();
				_actuators.timestamp_sample = _ctrl_state.timestamp;

				_controller_status.roll_rate_integ = _rates_int(0);
				_controller_status.pitch_rate_integ = _rates_int(1);
				_controller_status.yaw_rate_integ = _rates_int(2);
				_controller_status.timestamp = hrt_absolute_time();

				if (!_actuators_0_circuit_breaker_enabled) {
					if (_actuators_0_pub != nullptr) {
						orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
						perf_end(_controller_latency_perf);

					} else if (_actuators_id) {
						_actuators_0_pub = orb_advertise(_actuators_id, &_actuators);
					}

				}

				/* publish controller status */
				if (_controller_status_pub != nullptr) {
					orb_publish(ORB_ID(mc_att_ctrl_status), _controller_status_pub, &_controller_status);

				} else {
					_controller_status_pub = orb_advertise(ORB_ID(mc_att_ctrl_status), &_controller_status);
				}
			}
		}

		perf_end(_loop_perf);
	}

	_control_task = -1;
	return;
}
/**
 * Attitude controller.
 * Input: 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp'
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	vehicle_attitude_setpoint_poll();

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Matrix<3, 3> R_sp;
	R_sp.set(_v_att_sp.R_body);

	/* get current rotation matrix from control state quaternions */
	math::Quaternion q_att(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
	math::Matrix<3, 3> R = q_att.to_dcm();

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q;
		q.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q.imag();
		e_R_d.normalize();
		e_R_d *= 2.0f * atan2f(e_R_d.length(), q(0));

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit rates */
	for (int i = 0; i < 3; i++) {
		_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
	}

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += _v_att_sp.yaw_sp_move_rate * yaw_w * _params.yaw_ff;
}
void
GroundRoverAttitudeControl::task_main()
{
	_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_battery_status_sub = orb_subscribe(ORB_ID(battery_status));

	parameters_update();

	/* get an initial update for all sensor and status data */
	vehicle_attitude_setpoint_poll();
	vehicle_control_mode_poll();
	manual_control_setpoint_poll();
	battery_status_poll();

	/* wakeup source */
	px4_pollfd_struct_t fds[2];

	/* Setup of loop */
	fds[0].fd = _params_sub;
	fds[0].events = POLLIN;
	fds[1].fd = _att_sub;
	fds[1].events = POLLIN;

	_task_running = true;

	while (!_task_should_exit) {
		static int loop_counter = 0;

		/* wait for up to 500ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit, etc. */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		perf_begin(_loop_perf);

		/* only update parameters if they changed */
		if (fds[0].revents & POLLIN) {
			/* read from param to clear updated flag */
			struct parameter_update_s update;
			orb_copy(ORB_ID(parameter_update), _params_sub, &update);

			/* update parameters from storage */
			parameters_update();
		}

		/* only run controller if attitude changed */
		if (fds[1].revents & POLLIN) {
			static uint64_t last_run = 0;
			float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too large deltaT's */
			if (deltaT > 1.0f ||
			    fabsf(deltaT) < 0.00001f ||
			    !PX4_ISFINITE(deltaT)) {
				deltaT = 0.01f;
			}

			/* load local copies */
			orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att);

			vehicle_attitude_setpoint_poll();
			vehicle_control_mode_poll();
			manual_control_setpoint_poll();
			battery_status_poll();

			/* decide if in stabilized or full manual control */
			if (_vcontrol_mode.flag_control_rates_enabled) {
				/* Run attitude controllers */
				if (_vcontrol_mode.flag_control_attitude_enabled) {

					Eulerf euler_angles(matrix::Quatf(_att.q));

					/* Calculate the control output for the steering as yaw */
					float yaw_u = pid_calculate(&_steering_ctrl, _att_sp.yaw_body, euler_angles.psi(), _att.yawspeed, deltaT);

					float angle_diff = 0.0f;

					if (_att_sp.yaw_body * euler_angles.psi() < 0.0f) {
						if (_att_sp.yaw_body < 0.0f) {
							angle_diff = euler_angles.psi() - _att_sp.yaw_body ;

						} else {
							angle_diff = _att_sp.yaw_body - euler_angles.psi();
						}

						// a switch might have happened
						if ((double)angle_diff > M_PI) {
							yaw_u = -yaw_u;
						}

					}

					math::constrain(yaw_u, -1.0f, 1.0f);

					if (PX4_ISFINITE(yaw_u)) {
						_actuators.control[actuator_controls_s::INDEX_YAW] = yaw_u + _parameters.trim_yaw;

					} else {
						_actuators.control[actuator_controls_s::INDEX_YAW] = _parameters.trim_yaw;

						perf_count(_nonfinite_output_perf);

						if (_debug && loop_counter % 10 == 0) {
							warnx("yaw_u %.4f", (double)yaw_u);
						}
					}

					/* throttle passed through if it is finite and if no engine failure was detected */
					_actuators.control[actuator_controls_s::INDEX_THROTTLE] = _att_sp.thrust;

					/* scale effort by battery status */
					if (_parameters.bat_scale_en && _battery_status.scale > 0.0f &&
					    _actuators.control[actuator_controls_s::INDEX_THROTTLE] > 0.1f) {

						_actuators.control[actuator_controls_s::INDEX_THROTTLE] *= _battery_status.scale;
					}
				}

			} else {
				/* manual/direct control */
				_actuators.control[actuator_controls_s::INDEX_ROLL] = _manual.y;
				_actuators.control[actuator_controls_s::INDEX_PITCH] = -_manual.x;
				_actuators.control[actuator_controls_s::INDEX_YAW] = _manual.r * _parameters.man_yaw_scale + _parameters.trim_yaw;
				_actuators.control[actuator_controls_s::INDEX_THROTTLE] = _manual.z;
			}

			/* lazily publish the setpoint only once available */
			_actuators.timestamp = hrt_absolute_time();
			_actuators.timestamp_sample = _att.timestamp;

			/* Only publish if any of the proper modes are enabled */
			if (_vcontrol_mode.flag_control_attitude_enabled ||
			    _vcontrol_mode.flag_control_manual_enabled) {

				/* publish the actuator controls */
				if (_actuators_0_pub != nullptr) {
					orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, _actuators_0_pub, &_actuators);

				} else {
					_actuators_0_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &_actuators);
				}
			}
		}

		loop_counter++;
		perf_end(_loop_perf);
	}

	warnx("exiting.\n");

	_control_task = -1;
	_task_running = false;
}
示例#5
0
void VtolAttitudeControl::task_main()
{
	PX4_WARN("started");
	fflush(stdout);

	/* do subscriptions */
	_v_att_sp_sub          = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_mc_virtual_att_sp_sub = orb_subscribe(ORB_ID(mc_virtual_attitude_setpoint));
	_fw_virtual_att_sp_sub = orb_subscribe(ORB_ID(fw_virtual_attitude_setpoint));
	_mc_virtual_v_rates_sp_sub = orb_subscribe(ORB_ID(mc_virtual_rates_setpoint));
	_fw_virtual_v_rates_sp_sub = orb_subscribe(ORB_ID(fw_virtual_rates_setpoint));
	_v_att_sub             = orb_subscribe(ORB_ID(vehicle_attitude));
	_v_att_sp_sub          = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_v_control_mode_sub    = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub            = orb_subscribe(ORB_ID(parameter_update));
	_manual_control_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_armed_sub             = orb_subscribe(ORB_ID(actuator_armed));
	_local_pos_sub         = orb_subscribe(ORB_ID(vehicle_local_position));
	_airspeed_sub          = orb_subscribe(ORB_ID(airspeed));
	_battery_status_sub	   = orb_subscribe(ORB_ID(battery_status));
	_vehicle_cmd_sub	   = orb_subscribe(ORB_ID(vehicle_command));

	_actuator_inputs_mc    = orb_subscribe(ORB_ID(actuator_controls_virtual_mc));
	_actuator_inputs_fw    = orb_subscribe(ORB_ID(actuator_controls_virtual_fw));

	parameters_update();  // initialize parameter cache

	/* update vtol vehicle status*/
	_vtol_vehicle_status.fw_permanent_stab = _params.vtol_fw_permanent_stab == 1 ? true : false;

	// make sure we start with idle in mc mode
	_vtol_type->set_idle_mc();

	/* wakeup source*/
	px4_pollfd_struct_t fds[3] = {};	/*input_mc, input_fw, parameters*/

	fds[0].fd     = _actuator_inputs_mc;
	fds[0].events = POLLIN;
	fds[1].fd     = _actuator_inputs_fw;
	fds[1].events = POLLIN;
	fds[2].fd     = _params_sub;
	fds[2].events = POLLIN;

	while (!_task_should_exit) {
		/*Advertise/Publish vtol vehicle status*/
		if (_vtol_vehicle_status_pub != nullptr) {
			orb_publish(ORB_ID(vtol_vehicle_status), _vtol_vehicle_status_pub, &_vtol_vehicle_status);

		} else {
			_vtol_vehicle_status.timestamp = hrt_absolute_time();
			_vtol_vehicle_status_pub = orb_advertise(ORB_ID(vtol_vehicle_status), &_vtol_vehicle_status);
		}

		/* wait for up to 100ms for data */
		int pret = px4_poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);


		/* timed out - periodic check for _task_should_exit */
		if (pret == 0) {
			continue;
		}

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			/* sleep a bit before next try */
			usleep(100000);
			continue;
		}

		if (fds[2].revents & POLLIN) {	//parameters were updated, read them now
			/* read from param to clear updated flag */
			struct parameter_update_s update;
			orb_copy(ORB_ID(parameter_update), _params_sub, &update);

			/* update parameters from storage */
			parameters_update();
		}

		_vtol_vehicle_status.fw_permanent_stab = _params.vtol_fw_permanent_stab == 1 ? true : false;

		mc_virtual_att_sp_poll();
		fw_virtual_att_sp_poll();
		vehicle_control_mode_poll();	//Check for changes in vehicle control mode.
		vehicle_manual_poll();			//Check for changes in manual inputs.
		arming_status_poll();			//Check for arming status updates.
		vehicle_attitude_setpoint_poll();//Check for changes in attitude set points
		vehicle_attitude_poll();		//Check for changes in attitude
		actuator_controls_mc_poll();	//Check for changes in mc_attitude_control output
		actuator_controls_fw_poll();	//Check for changes in fw_attitude_control output
		vehicle_rates_sp_mc_poll();
		vehicle_rates_sp_fw_poll();
		parameters_update_poll();
		vehicle_local_pos_poll();			// Check for new sensor values
		vehicle_airspeed_poll();
		vehicle_battery_poll();
		vehicle_cmd_poll();

		// update the vtol state machine which decides which mode we are in
		_vtol_type->update_vtol_state();

		// reset transition command if not in offboard control
		if (!_v_control_mode.flag_control_offboard_enabled) {
			if (_vtol_type->get_mode() == ROTARY_WING) {
				_transition_command = vehicle_status_s::VEHICLE_VTOL_STATE_MC;

			} else if (_vtol_type->get_mode() == FIXED_WING) {
				_transition_command = vehicle_status_s::VEHICLE_VTOL_STATE_FW;
			}
		}

		// check in which mode we are in and call mode specific functions
		if (_vtol_type->get_mode() == ROTARY_WING) {
			// vehicle is in rotary wing mode
			_vtol_vehicle_status.vtol_in_rw_mode = true;
			_vtol_vehicle_status.vtol_in_trans_mode = false;

			// got data from mc attitude controller
			if (fds[0].revents & POLLIN) {
				orb_copy(ORB_ID(actuator_controls_virtual_mc), _actuator_inputs_mc, &_actuators_mc_in);

				_vtol_type->update_mc_state();

				fill_mc_att_rates_sp();
			}

		} else if (_vtol_type->get_mode() == FIXED_WING) {
			// vehicle is in fw mode
			_vtol_vehicle_status.vtol_in_rw_mode = false;
			_vtol_vehicle_status.vtol_in_trans_mode = false;

			// got data from fw attitude controller
			if (fds[1].revents & POLLIN) {
				orb_copy(ORB_ID(actuator_controls_virtual_fw), _actuator_inputs_fw, &_actuators_fw_in);
				vehicle_manual_poll();

				_vtol_type->update_fw_state();

				fill_fw_att_rates_sp();
			}

		} else if (_vtol_type->get_mode() == TRANSITION) {
			// vehicle is doing a transition
			_vtol_vehicle_status.vtol_in_trans_mode = true;
			_vtol_vehicle_status.vtol_in_rw_mode = true; //making mc attitude controller work during transition

			bool got_new_data = false;

			if (fds[0].revents & POLLIN) {
				orb_copy(ORB_ID(actuator_controls_virtual_mc), _actuator_inputs_mc, &_actuators_mc_in);
				got_new_data = true;
			}

			if (fds[1].revents & POLLIN) {
				orb_copy(ORB_ID(actuator_controls_virtual_fw), _actuator_inputs_fw, &_actuators_fw_in);
				got_new_data = true;
			}

			// update transition state if got any new data
			if (got_new_data) {
				_vtol_type->update_transition_state();
				fill_mc_att_rates_sp();
				publish_att_sp();
			}

		} else if (_vtol_type->get_mode() == EXTERNAL) {
			// we are using external module to generate attitude/thrust setpoint
			_vtol_type->update_external_state();
		}

		publish_att_sp();
		_vtol_type->fill_actuator_outputs();

		/* Only publish if the proper mode(s) are enabled */
		if (_v_control_mode.flag_control_attitude_enabled ||
		    _v_control_mode.flag_control_rates_enabled ||
		    _v_control_mode.flag_control_manual_enabled) {
			if (_actuators_0_pub != nullptr) {
				orb_publish(ORB_ID(actuator_controls_0), _actuators_0_pub, &_actuators_out_0);

			} else {
				_actuators_0_pub = orb_advertise(ORB_ID(actuator_controls_0), &_actuators_out_0);
			}

			if (_actuators_1_pub != nullptr) {
				orb_publish(ORB_ID(actuator_controls_1), _actuators_1_pub, &_actuators_out_1);

			} else {
				_actuators_1_pub = orb_advertise(ORB_ID(actuator_controls_1), &_actuators_out_1);
			}
		}

		// publish the attitude rates setpoint
		if (_v_rates_sp_pub != nullptr) {
			orb_publish(ORB_ID(vehicle_rates_setpoint), _v_rates_sp_pub, &_v_rates_sp);

		} else {
			_v_rates_sp_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &_v_rates_sp);
		}
	}

	warnx("exit");
	_control_task = -1;
	return;
}
示例#6
0
/**
 * Attitude controller.
 * Input: 'vehicle_attitude_setpoint' topics (depending on mode)
 * Output: '_rates_sp' vector, '_thrust_sp'
 */
void
MulticopterAttitudeControl::control_attitude(float dt)
{
	vehicle_attitude_setpoint_poll();

	_thrust_sp = _v_att_sp.thrust;

	/* construct attitude setpoint rotation matrix */
	math::Quaternion q_sp(_v_att_sp.q_d[0], _v_att_sp.q_d[1], _v_att_sp.q_d[2], _v_att_sp.q_d[3]);
	math::Matrix<3, 3> R_sp = q_sp.to_dcm();

	/* get current rotation matrix from control state quaternions */
	math::Quaternion q_att(_ctrl_state.q[0], _ctrl_state.q[1], _ctrl_state.q[2], _ctrl_state.q[3]);
	math::Matrix<3, 3> R = q_att.to_dcm();

	/* all input data is ready, run controller itself */

	/* try to move thrust vector shortest way, because yaw response is slower than roll/pitch */
	math::Vector<3> R_z(R(0, 2), R(1, 2), R(2, 2));
	math::Vector<3> R_sp_z(R_sp(0, 2), R_sp(1, 2), R_sp(2, 2));

	/* axis and sin(angle) of desired rotation */
	math::Vector<3> e_R = R.transposed() * (R_z % R_sp_z);

	/* calculate angle error */
	float e_R_z_sin = e_R.length();
	float e_R_z_cos = R_z * R_sp_z;

	/* calculate weight for yaw control */
	float yaw_w = R_sp(2, 2) * R_sp(2, 2);

	/* calculate rotation matrix after roll/pitch only rotation */
	math::Matrix<3, 3> R_rp;

	if (e_R_z_sin > 0.0f) {
		/* get axis-angle representation */
		float e_R_z_angle = atan2f(e_R_z_sin, e_R_z_cos);
		math::Vector<3> e_R_z_axis = e_R / e_R_z_sin;

		e_R = e_R_z_axis * e_R_z_angle;

		/* cross product matrix for e_R_axis */
		math::Matrix<3, 3> e_R_cp;
		e_R_cp.zero();
		e_R_cp(0, 1) = -e_R_z_axis(2);
		e_R_cp(0, 2) = e_R_z_axis(1);
		e_R_cp(1, 0) = e_R_z_axis(2);
		e_R_cp(1, 2) = -e_R_z_axis(0);
		e_R_cp(2, 0) = -e_R_z_axis(1);
		e_R_cp(2, 1) = e_R_z_axis(0);

		/* rotation matrix for roll/pitch only rotation */
		R_rp = R * (_I + e_R_cp * e_R_z_sin + e_R_cp * e_R_cp * (1.0f - e_R_z_cos));

	} else {
		/* zero roll/pitch rotation */
		R_rp = R;
	}

	/* R_rp and R_sp has the same Z axis, calculate yaw error */
	math::Vector<3> R_sp_x(R_sp(0, 0), R_sp(1, 0), R_sp(2, 0));
	math::Vector<3> R_rp_x(R_rp(0, 0), R_rp(1, 0), R_rp(2, 0));
	e_R(2) = atan2f((R_rp_x % R_sp_x) * R_sp_z, R_rp_x * R_sp_x) * yaw_w;

	if (e_R_z_cos < 0.0f) {
		/* for large thrust vector rotations use another rotation method:
		 * calculate angle and axis for R -> R_sp rotation directly */
		math::Quaternion q_error;
		q_error.from_dcm(R.transposed() * R_sp);
		math::Vector<3> e_R_d = q_error(0) >= 0.0f ? q_error.imag()  * 2.0f : -q_error.imag() * 2.0f;

		/* use fusion of Z axis based rotation and direct rotation */
		float direct_w = e_R_z_cos * e_R_z_cos * yaw_w;
		e_R = e_R * (1.0f - direct_w) + e_R_d * direct_w;
	}

	/* calculate angular rates setpoint */
	_rates_sp = _params.att_p.emult(e_R);

	/* limit rates */
	for (int i = 0; i < 3; i++) {
		if ((_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_auto_enabled) &&
		    !_v_control_mode.flag_control_manual_enabled) {
			_rates_sp(i) = math::constrain(_rates_sp(i), -_params.auto_rate_max(i), _params.auto_rate_max(i));

		} else {
			_rates_sp(i) = math::constrain(_rates_sp(i), -_params.mc_rate_max(i), _params.mc_rate_max(i));
		}
	}

	/* feed forward yaw setpoint rate */
	_rates_sp(2) += _v_att_sp.yaw_sp_move_rate * yaw_w * _params.yaw_ff;

	/* weather-vane mode, dampen yaw rate */
	if ((_v_control_mode.flag_control_velocity_enabled || _v_control_mode.flag_control_auto_enabled) &&
	    _v_att_sp.disable_mc_yaw_control == true && !_v_control_mode.flag_control_manual_enabled) {
		float wv_yaw_rate_max = _params.auto_rate_max(2) * _params.vtol_wv_yaw_rate_scale;
		_rates_sp(2) = math::constrain(_rates_sp(2), -wv_yaw_rate_max, wv_yaw_rate_max);
		// prevent integrator winding up in weathervane mode
		_rates_int(2) = 0.0f;
	}
}