// prim so we can special case for RECTANGLES :( void ComputeVertexShaderID(VertexShaderID *id, u32 vertType, int prim, bool useHWTransform) { bool doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0; bool hasTexcoord = (vertType & GE_VTYPE_TC_MASK) != 0; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); memset(id->d, 0, sizeof(id->d)); id->d[0] = lmode & 1; id->d[0] |= ((int)gstate.isModeThrough()) << 1; id->d[0] |= ((int)enableFog) << 2; id->d[0] |= (doTexture & 1) << 3; id->d[0] |= (hasColor & 1) << 4; if (doTexture) { id->d[0] |= (gstate_c.flipTexture & 1) << 5; id->d[0] |= (doTextureProjection & 1) << 6; } if (useHWTransform) { id->d[0] |= 1 << 8; id->d[0] |= (hasNormal & 1) << 9; // UV generation mode id->d[0] |= gstate.getUVGenMode() << 16; // The next bits are used differently depending on UVgen mode if (doTextureProjection) { id->d[0] |= gstate.getUVProjMode() << 18; } else if (doShadeMapping) { id->d[0] |= gstate.getUVLS0() << 18; id->d[0] |= gstate.getUVLS1() << 20; } // Bones if (vertTypeIsSkinningEnabled(vertType)) id->d[0] |= (TranslateNumBones(vertTypeGetNumBoneWeights(vertType)) - 1) << 22; // Okay, d[1] coming up. ============== if (gstate.isLightingEnabled() || doShadeMapping) { // Light bits for (int i = 0; i < 4; i++) { id->d[1] |= gstate.getLightComputation(i) << (i * 4); id->d[1] |= gstate.getLightType(i) << (i * 4 + 2); } id->d[1] |= (gstate.materialupdate & 7) << 16; for (int i = 0; i < 4; i++) { id->d[1] |= (gstate.isLightChanEnabled(i) & 1) << (20 + i); } } id->d[1] |= gstate.isLightingEnabled() << 24; id->d[1] |= (vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT) << 25; id->d[1] |= gstate.areNormalsReversed() << 26; if (doTextureProjection && gstate.getUVProjMode() == GE_PROJMAP_UV) { id->d[1] |= ((vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT) << 27; // two bits } else {
void GenerateVertexShader(int prim, u32 vertType, char *buffer, bool useHWTransform) { char *p = buffer; // #define USE_FOR_LOOP #if defined(USING_GLES2) WRITE(p, "#version 100\n"); // GLSL ES 1.0 WRITE(p, "precision highp float;\n"); #elif !defined(FORCE_OPENGL_2_0) WRITE(p, "#version 110\n"); // Remove lowp/mediump in non-mobile implementations WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); #else // Need to remove lowp/mediump for Mac WRITE(p, "#define lowp\n"); WRITE(p, "#define mediump\n"); WRITE(p, "#define highp\n"); #endif int lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); int doTexture = gstate.isTextureMapEnabled() && !gstate.isModeClear(); bool doTextureProjection = gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX; bool doShadeMapping = gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP; bool hasColor = (vertType & GE_VTYPE_COL_MASK) != 0 || !useHWTransform; bool hasNormal = (vertType & GE_VTYPE_NRM_MASK) != 0 && useHWTransform; bool enableFog = gstate.isFogEnabled() && !gstate.isModeThrough() && !gstate.isModeClear(); bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool flipV = gstate_c.flipTexture; // This also means that we are texturing from a render target bool flipNormal = gstate.areNormalsReversed(); DoLightComputation doLight[4] = {LIGHT_OFF, LIGHT_OFF, LIGHT_OFF, LIGHT_OFF}; if (useHWTransform) { int shadeLight0 = doShadeMapping ? gstate.getUVLS0() : -1; int shadeLight1 = doShadeMapping ? gstate.getUVLS1() : -1; for (int i = 0; i < 4; i++) { if (i == shadeLight0 || i == shadeLight1) doLight[i] = LIGHT_SHADE; if (gstate.isLightingEnabled() && gstate.isLightChanEnabled(i)) doLight[i] = LIGHT_FULL; } } if (vertTypeIsSkinningEnabled(vertType)) { WRITE(p, "%s", boneWeightAttrDecl[TranslateNumBones(vertTypeGetNumBoneWeights(vertType))]); } if (useHWTransform) WRITE(p, "attribute vec3 position;\n"); else WRITE(p, "attribute vec4 position;\n"); // need to pass the fog coord in w if (useHWTransform && hasNormal) WRITE(p, "attribute mediump vec3 normal;\n"); if (doTexture) { if (!useHWTransform && doTextureProjection) WRITE(p, "attribute vec3 texcoord;\n"); else WRITE(p, "attribute vec2 texcoord;\n"); } if (hasColor) { WRITE(p, "attribute lowp vec4 color0;\n"); if (lmode && !useHWTransform) // only software transform supplies color1 as vertex data WRITE(p, "attribute lowp vec3 color1;\n"); } if (gstate.isModeThrough()) { WRITE(p, "uniform mat4 u_proj_through;\n"); } else { WRITE(p, "uniform mat4 u_proj;\n"); // Add all the uniforms we'll need to transform properly. } bool prescale = g_Config.bPrescaleUV && !throughmode && gstate.getTextureFunction() == 0; if (useHWTransform) { // When transforming by hardware, we need a great deal more uniforms... WRITE(p, "uniform mat4 u_world;\n"); WRITE(p, "uniform mat4 u_view;\n"); if (doTextureProjection) WRITE(p, "uniform mediump mat4 u_texmtx;\n"); if (vertTypeIsSkinningEnabled(vertType)) { int numBones = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); #ifdef USE_BONE_ARRAY WRITE(p, "uniform mediump mat4 u_bone[%i];\n", numBones); #else for (int i = 0; i < numBones; i++) { WRITE(p, "uniform mat4 u_bone%i;\n", i); } #endif } if (doTexture && (flipV || !prescale || gstate.getUVGenMode() == GE_TEXMAP_ENVIRONMENT_MAP || gstate.getUVGenMode() == GE_TEXMAP_TEXTURE_MATRIX)) { WRITE(p, "uniform vec4 u_uvscaleoffset;\n"); } for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_OFF) { // This is needed for shade mapping WRITE(p, "uniform vec3 u_lightpos%i;\n", i); } if (doLight[i] == LIGHT_FULL) { GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) WRITE(p, "uniform mediump vec3 u_lightatt%i;\n", i); if (type == GE_LIGHTTYPE_SPOT || type == GE_LIGHTTYPE_UNKNOWN) { WRITE(p, "uniform mediump vec3 u_lightdir%i;\n", i); WRITE(p, "uniform mediump float u_lightangle%i;\n", i); WRITE(p, "uniform mediump float u_lightspotCoef%i;\n", i); } WRITE(p, "uniform lowp vec3 u_lightambient%i;\n", i); WRITE(p, "uniform lowp vec3 u_lightdiffuse%i;\n", i); if (gstate.isUsingSpecularLight(i)) WRITE(p, "uniform lowp vec3 u_lightspecular%i;\n", i); } } if (gstate.isLightingEnabled()) { WRITE(p, "uniform lowp vec4 u_ambient;\n"); if ((gstate.materialupdate & 2) == 0) WRITE(p, "uniform lowp vec3 u_matdiffuse;\n"); // if ((gstate.materialupdate & 4) == 0) WRITE(p, "uniform lowp vec4 u_matspecular;\n"); // Specular coef is contained in alpha WRITE(p, "uniform lowp vec3 u_matemissive;\n"); } } if (useHWTransform || !hasColor) WRITE(p, "uniform lowp vec4 u_matambientalpha;\n"); // matambient + matalpha if (enableFog) { WRITE(p, "uniform highp vec2 u_fogcoef;\n"); } WRITE(p, "varying lowp vec4 v_color0;\n"); if (lmode) WRITE(p, "varying lowp vec3 v_color1;\n"); if (doTexture) { if (doTextureProjection) WRITE(p, "varying mediump vec3 v_texcoord;\n"); else WRITE(p, "varying mediump vec2 v_texcoord;\n"); } if (enableFog) { // See the fragment shader generator if (gl_extensions.gpuVendor == GPU_VENDOR_POWERVR) { WRITE(p, "varying highp float v_fogdepth;\n"); } else { WRITE(p, "varying mediump float v_fogdepth;\n"); } } WRITE(p, "void main() {\n"); if (!useHWTransform) { // Simple pass-through of vertex data to fragment shader if (doTexture) WRITE(p, " v_texcoord = texcoord;\n"); if (hasColor) { WRITE(p, " v_color0 = color0;\n"); if (lmode) WRITE(p, " v_color1 = color1;\n"); } else { WRITE(p, " v_color0 = u_matambientalpha;\n"); if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } if (enableFog) { WRITE(p, " v_fogdepth = position.w;\n"); } if (gstate.isModeThrough()) { WRITE(p, " gl_Position = u_proj_through * vec4(position.xyz, 1.0);\n"); } else { WRITE(p, " gl_Position = u_proj * vec4(position.xyz, 1.0);\n"); } } else { // Step 1: World Transform / Skinning if (!vertTypeIsSkinningEnabled(vertType)) { // No skinning, just standard T&L. WRITE(p, " vec3 worldpos = (u_world * vec4(position.xyz, 1.0)).xyz;\n"); if (hasNormal) WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(%snormal, 0.0)).xyz);\n", flipNormal ? "-" : ""); else WRITE(p, " mediump vec3 worldnormal = vec3(0.0, 0.0, 1.0);\n"); } else { int numWeights = TranslateNumBones(vertTypeGetNumBoneWeights(vertType)); static const char *rescale[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescale[vertTypeGetWeightMask(vertType) >> GE_VTYPE_WEIGHT_SHIFT]; static const char * const boneWeightAttr[8] = { "w1.x", "w1.y", "w1.z", "w1.w", "w2.x", "w2.y", "w2.z", "w2.w", }; #if defined(USE_FOR_LOOP) && defined(USE_BONE_ARRAY) // To loop through the weights, we unfortunately need to put them in a float array. // GLSL ES sucks - no way to directly initialize an array! switch (numWeights) { case 1: WRITE(p, " float w[1]; w[0] = w1;\n"); break; case 2: WRITE(p, " float w[2]; w[0] = w1.x; w[1] = w1.y;\n"); break; case 3: WRITE(p, " float w[3]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z;\n"); break; case 4: WRITE(p, " float w[4]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w;\n"); break; case 5: WRITE(p, " float w[5]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2;\n"); break; case 6: WRITE(p, " float w[6]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y;\n"); break; case 7: WRITE(p, " float w[7]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z;\n"); break; case 8: WRITE(p, " float w[8]; w[0] = w1.x; w[1] = w1.y; w[2] = w1.z; w[3] = w1.w; w[4] = w2.x; w[5] = w2.y; w[6] = w2.z; w[7] = w2.w;\n"); break; } WRITE(p, " mat4 skinMatrix = w[0] * u_bone[0];\n"); if (numWeights > 1) { WRITE(p, " for (int i = 1; i < %i; i++) {\n", numWeights); WRITE(p, " skinMatrix += w[i] * u_bone[i];\n"); WRITE(p, " }\n"); } #else #ifdef USE_BONE_ARRAY if (numWeights == 1) WRITE(p, " mat4 skinMatrix = w1 * u_bone[0]"); else WRITE(p, " mat4 skinMatrix = w1.x * u_bone[0]"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "w1"; if (numWeights == 5 && i == 4) weightAttr = "w2"; WRITE(p, " + %s * u_bone[%i]", weightAttr, i); } #else // Uncomment this to screw up bone shaders to check the vertex shader software fallback // WRITE(p, "THIS SHOULD ERROR! #error"); if (numWeights == 1) WRITE(p, " mat4 skinMatrix = w1 * u_bone0"); else WRITE(p, " mat4 skinMatrix = w1.x * u_bone0"); for (int i = 1; i < numWeights; i++) { const char *weightAttr = boneWeightAttr[i]; // workaround for "cant do .x of scalar" issue if (numWeights == 1 && i == 0) weightAttr = "w1"; if (numWeights == 5 && i == 4) weightAttr = "w2"; WRITE(p, " + %s * u_bone%i", weightAttr, i); } #endif #endif WRITE(p, ";\n"); // Trying to simplify this results in bugs in LBP... WRITE(p, " vec3 skinnedpos = (skinMatrix * vec4(position, 1.0)).xyz %s;\n", factor); WRITE(p, " vec3 worldpos = (u_world * vec4(skinnedpos, 1.0)).xyz;\n"); if (hasNormal) { WRITE(p, " mediump vec3 skinnednormal = (skinMatrix * vec4(%snormal, 0.0)).xyz %s;\n", flipNormal ? "-" : "", factor); WRITE(p, " mediump vec3 worldnormal = normalize((u_world * vec4(skinnednormal, 0.0)).xyz);\n"); } else { WRITE(p, " mediump vec3 worldnormal = (u_world * (skinMatrix * vec4(0.0, 0.0, 1.0, 0.0))).xyz;\n"); } } WRITE(p, " vec4 viewPos = u_view * vec4(worldpos, 1.0);\n"); // Final view and projection transforms. WRITE(p, " gl_Position = u_proj * viewPos;\n"); // TODO: Declare variables for dots for shade mapping if needed. const char *ambientStr = (gstate.materialupdate & 1) ? (hasColor ? "color0" : "u_matambientalpha") : "u_matambientalpha"; const char *diffuseStr = (gstate.materialupdate & 2) ? (hasColor ? "color0.rgb" : "u_matambientalpha.rgb") : "u_matdiffuse"; const char *specularStr = (gstate.materialupdate & 4) ? (hasColor ? "color0.rgb" : "u_matambientalpha.rgb") : "u_matspecular.rgb"; bool diffuseIsZero = true; bool specularIsZero = true; bool distanceNeeded = false; if (gstate.isLightingEnabled()) { WRITE(p, " lowp vec4 lightSum0 = u_ambient * %s + vec4(u_matemissive, 0.0);\n", ambientStr); for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; diffuseIsZero = false; if (gstate.isUsingSpecularLight(i)) specularIsZero = false; GELightType type = gstate.getLightType(i); if (type != GE_LIGHTTYPE_DIRECTIONAL) distanceNeeded = true; } if (!specularIsZero) { WRITE(p, " lowp vec3 lightSum1 = vec3(0.0);\n"); } if (!diffuseIsZero) { WRITE(p, " vec3 toLight;\n"); WRITE(p, " lowp vec3 diffuse;\n"); } if (distanceNeeded) { WRITE(p, " float distance;\n"); WRITE(p, " lowp float lightScale;\n"); } } // Calculate lights if needed. If shade mapping is enabled, lights may need to be // at least partially calculated. for (int i = 0; i < 4; i++) { if (doLight[i] != LIGHT_FULL) continue; GELightType type = gstate.getLightType(i); if (type == GE_LIGHTTYPE_DIRECTIONAL) { // We prenormalize light positions for directional lights. WRITE(p, " toLight = u_lightpos%i;\n", i); } else { WRITE(p, " toLight = u_lightpos%i - worldpos;\n", i); WRITE(p, " distance = length(toLight);\n"); WRITE(p, " toLight /= distance;\n"); } bool doSpecular = gstate.isUsingSpecularLight(i); bool poweredDiffuse = gstate.isUsingPoweredDiffuseLight(i); if (poweredDiffuse) { WRITE(p, " mediump float dot%i = pow(dot(toLight, worldnormal), u_matspecular.a);\n", i); // Ugly NaN check. pow(0.0, 0.0) may be undefined, but PSP seems to treat it as 1.0. // Seen in Tales of the World: Radiant Mythology (#2424.) WRITE(p, " if (!(dot%i < 1.0) && !(dot%i > 0.0))\n", i, i); WRITE(p, " dot%i = 1.0;\n", i); } else { WRITE(p, " mediump float dot%i = dot(toLight, worldnormal);\n", i); } const char *timesLightScale = " * lightScale"; // Attenuation switch (type) { case GE_LIGHTTYPE_DIRECTIONAL: timesLightScale = ""; break; case GE_LIGHTTYPE_POINT: WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0);\n", i); break; case GE_LIGHTTYPE_SPOT: case GE_LIGHTTYPE_UNKNOWN: WRITE(p, " lowp float angle%i = dot(normalize(u_lightdir%i), toLight);\n", i, i); WRITE(p, " if (angle%i >= u_lightangle%i) {\n", i, i); WRITE(p, " lightScale = clamp(1.0 / dot(u_lightatt%i, vec3(1.0, distance, distance*distance)), 0.0, 1.0) * pow(angle%i, u_lightspotCoef%i);\n", i, i, i); WRITE(p, " } else {\n"); WRITE(p, " lightScale = 0.0;\n"); WRITE(p, " }\n"); break; default: // ILLEGAL break; } WRITE(p, " diffuse = (u_lightdiffuse%i * %s) * max(dot%i, 0.0);\n", i, diffuseStr, i); if (doSpecular) { WRITE(p, " dot%i = dot(normalize(toLight + vec3(0.0, 0.0, 1.0)), worldnormal);\n", i); WRITE(p, " if (dot%i > 0.0)\n", i); WRITE(p, " lightSum1 += u_lightspecular%i * %s * (pow(dot%i, u_matspecular.a) %s);\n", i, specularStr, i, timesLightScale); } WRITE(p, " lightSum0.rgb += (u_lightambient%i * %s.rgb + diffuse)%s;\n", i, ambientStr, timesLightScale); } if (gstate.isLightingEnabled()) { // Sum up ambient, emissive here. if (lmode) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); // v_color1 only exists when lmode = 1. if (specularIsZero) { WRITE(p, " v_color1 = vec3(0.0);\n"); } else { WRITE(p, " v_color1 = clamp(lightSum1, 0.0, 1.0);\n"); } } else { if (specularIsZero) { WRITE(p, " v_color0 = clamp(lightSum0, 0.0, 1.0);\n"); } else { WRITE(p, " v_color0 = clamp(clamp(lightSum0, 0.0, 1.0) + vec4(lightSum1, 0.0), 0.0, 1.0);\n"); } } } else { // Lighting doesn't affect color. if (hasColor) { WRITE(p, " v_color0 = color0;\n"); } else { WRITE(p, " v_color0 = u_matambientalpha;\n"); } if (lmode) WRITE(p, " v_color1 = vec3(0.0);\n"); } // Step 3: UV generation if (doTexture) { switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // Scale-offset. Easy. case GE_TEXMAP_UNKNOWN: // Not sure what this is, but Riviera uses it. Treating as coords works. if (prescale && !flipV) { WRITE(p, " v_texcoord = texcoord;\n"); } else { WRITE(p, " v_texcoord = texcoord * u_uvscaleoffset.xy + u_uvscaleoffset.zw;\n"); } break; case GE_TEXMAP_TEXTURE_MATRIX: // Projection mapping. { std::string temp_tc; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source temp_tc = "vec4(position.xyz, 1.0)"; break; case GE_PROJMAP_UV: // Use unscaled UV as source { static const char *rescaleuv[4] = {"", " * 1.9921875", " * 1.999969482421875", ""}; // 2*127.5f/128.f, 2*32767.5f/32768.f, 1.0f}; const char *factor = rescaleuv[(vertType & GE_VTYPE_TC_MASK) >> GE_VTYPE_TC_SHIFT]; temp_tc = StringFromFormat("vec4(texcoord.xy %s, 0.0, 1.0)", factor); } break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(normalize(-normal), 1.0)" : "vec4(normalize(normal), 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; case GE_PROJMAP_NORMAL: // Use non-normalized transformed normal as source if (hasNormal) temp_tc = flipNormal ? "vec4(-normal, 1.0)" : "vec4(normal, 1.0)"; else temp_tc = "vec4(0.0, 0.0, 1.0, 1.0)"; break; } // Transform by texture matrix. XYZ as we are doing projection mapping. WRITE(p, " v_texcoord = (u_texmtx * %s).xyz * vec3(u_uvscaleoffset.xy, 1.0);\n", temp_tc.c_str()); } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use dots from light sources. WRITE(p, " v_texcoord = u_uvscaleoffset.xy * vec2(1.0 + dot(normalize(u_lightpos%i), worldnormal), 1.0 - dot(normalize(u_lightpos%i), worldnormal)) * 0.5;\n", gstate.getUVLS0(), gstate.getUVLS1()); break; default: // ILLEGAL break; } if (flipV) WRITE(p, " v_texcoord.y = 1.0 - v_texcoord.y;\n"); } // Compute fogdepth if (enableFog) WRITE(p, " v_fogdepth = (viewPos.z + u_fogcoef.x) * u_fogcoef.y;\n"); } WRITE(p, "}\n"); }
void TransformDrawEngine::SoftwareTransformAndDraw( int prim, u8 *decoded, LinkedShader *program, int vertexCount, u32 vertType, void *inds, int indexType, const DecVtxFormat &decVtxFormat, int maxIndex) { bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif float uscale = 1.0f; float vscale = 1.0f; bool scaleUV = false; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } else { scaleUV = !g_Config.bPrescaleUV; } bool skinningEnabled = vertTypeIsSkinningEnabled(vertType); int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); VertexReader reader(decoded, decVtxFormat, vertType); for (int index = 0; index < maxIndex; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; float c0[4] = {1, 1, 1, 1}; float c1[4] = {0, 0, 0, 0}; float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; if (throughmode) { // Do not touch the coordinates or the colors. No lighting. reader.ReadPos(v); if (reader.hasColor0()) { reader.ReadColor0(c0); for (int j = 0; j < 4; j++) { c1[j] = 0.0f; } } else { c0[0] = gstate.getMaterialAmbientR() / 255.f; c0[1] = gstate.getMaterialAmbientG() / 255.f; c0[2] = gstate.getMaterialAmbientB() / 255.f; c0[3] = gstate.getMaterialAmbientA() / 255.f; } if (reader.hasUV()) { reader.ReadUV(uv); uv[0] *= uscale; uv[1] *= vscale; } fogCoef = 1.0f; // Scale UV? } else { // We do software T&L for now float out[3], norm[3]; float pos[3], nrm[3]; Vec3f normal(0, 0, 1); reader.ReadPos(pos); if (reader.hasNormal()) reader.ReadNrm(nrm); if (!skinningEnabled) { Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { Norm3ByMatrix43(norm, nrm, gstate.worldMatrix); normal = Vec3f(norm).Normalized(); } } else { float weights[8]; reader.ReadWeights(weights); // Skinning Vec3f psum(0,0,0); Vec3f nsum(0,0,0); for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12); Vec3f tpos(out); psum += tpos * weights[i]; if (reader.hasNormal()) { Norm3ByMatrix43(norm, nrm, gstate.boneMatrix+i*12); Vec3f tnorm(norm); nsum += tnorm * weights[i]; } } } // Yes, we really must multiply by the world matrix too. Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix); if (reader.hasNormal()) { Norm3ByMatrix43(norm, nsum.AsArray(), gstate.worldMatrix); normal = Vec3f(norm).Normalized(); } } // Perform lighting here if enabled. don't need to check through, it's checked above. float unlitColor[4] = {1, 1, 1, 1}; if (reader.hasColor0()) { reader.ReadColor0(unlitColor); } else { unlitColor[0] = gstate.getMaterialAmbientR() / 255.f; unlitColor[1] = gstate.getMaterialAmbientG() / 255.f; unlitColor[2] = gstate.getMaterialAmbientB() / 255.f; unlitColor[3] = gstate.getMaterialAmbientA() / 255.f; } float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor, out, normal); if (gstate.isLightingEnabled()) { // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 for (int j = 0; j < 4; j++) { c0[j] = ((c0[j] + litColor1[j]) > 1.0f) ? 1.0f : (c0[j] + litColor1[j]); } } } else { if (reader.hasColor0()) { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } } else { c0[0] = gstate.getMaterialAmbientR() / 255.f; c0[1] = gstate.getMaterialAmbientG() / 255.f; c0[2] = gstate.getMaterialAmbientB() / 255.f; c0[3] = gstate.getMaterialAmbientA() / 255.f; } if (lmode) { for (int j = 0; j < 4; j++) { c1[j] = 0.0f; } } } float ruv[2] = {0.0f, 0.0f}; if (reader.hasUV()) reader.ReadUV(ruv); // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // Texture scale/offset is only performed in this mode. if (scaleUV) { uv[0] = ruv[0]*gstate_c.uv.uScale + gstate_c.uv.uOff; uv[1] = ruv[1]*gstate_c.uv.vScale + gstate_c.uv.vOff; } else { uv[0] = ruv[0]; uv[1] = ruv[1]; } uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source if (reader.hasNormal()) { source = Vec3f(norm).Normalized(); } else { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); source = Vec3f(0.0f, 0.0f, 1.0f); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! if (reader.hasNormal()) { source = Vec3f(norm); } else { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); source = Vec3f(0.0f, 0.0f, 1.0f); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { Vec3f lightpos0 = Vec3f(gstate_c.lightpos[gstate.getUVLS0()]).Normalized(); Vec3f lightpos1 = Vec3f(gstate_c.lightpos[gstate.getUVLS1()]).Normalized(); uv[0] = (1.0f + Dot(lightpos0, normal))/2.0f; uv[1] = (1.0f - Dot(lightpos1, normal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; } // TODO: Write to a flexible buffer, we don't always need all four components. memcpy(&transformed[index].x, v, 3 * sizeof(float)); transformed[index].fog = fogCoef; memcpy(&transformed[index].u, uv, 3 * sizeof(float)); if (gstate_c.flipTexture) { transformed[index].v = 1.0f - transformed[index].v; } for (int i = 0; i < 4; i++) { transformed[index].color0[i] = c0[i] * 255.0f; } for (int i = 0; i < 3; i++) { transformed[index].color1[i] = c1[i] * 255.0f; } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real OpenGL clears. This can provide a speedup on certain mobile chips. // Disabled for now - depth does not come out exactly the same. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. if (false && maxIndex > 1 && gstate.isModeClear() && prim == GE_PRIM_RECTANGLES && IsReallyAClear(maxIndex)) { u32 clearColor; memcpy(&clearColor, transformed[0].color0, 4); float clearDepth = transformed[0].z; const float col[4] = { ((clearColor & 0xFF)) / 255.0f, ((clearColor & 0xFF00) >> 8) / 255.0f, ((clearColor & 0xFF0000) >> 16) / 255.0f, ((clearColor & 0xFF000000) >> 24) / 255.0f, }; bool colorMask = gstate.isClearModeColorMask(); bool alphaMask = gstate.isClearModeAlphaMask(); glstate.colorMask.set(colorMask, colorMask, colorMask, alphaMask); if (alphaMask) { glstate.stencilTest.set(true); // Clear stencil // TODO: extract the stencilValue properly, see below int stencilValue = 0; glstate.stencilFunc.set(GL_ALWAYS, stencilValue, 255); } else { // Don't touch stencil glstate.stencilTest.set(false); } glstate.scissorTest.set(false); bool depthMask = gstate.isClearModeDepthMask(); int target = 0; if (colorMask || alphaMask) target |= GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; if (depthMask) target |= GL_DEPTH_BUFFER_BIT; glClearColor(col[0], col[1], col[2], col[3]); #ifdef USING_GLES2 glClearDepthf(clearDepth); #else glClearDepth(clearDepth); #endif glClearStencil(0); // TODO - take from alpha? glClear(target); return; }
VertexData TransformUnit::ReadVertex(VertexReader& vreader) { VertexData vertex; float pos[3]; // VertexDecoder normally scales z, but we want it unscaled. vreader.ReadPosThroughZ16(pos); if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) { float uv[2]; vreader.ReadUV(uv); vertex.texturecoords = Vec2<float>(uv[0], uv[1]); } if (vreader.hasNormal()) { float normal[3]; vreader.ReadNrm(normal); vertex.normal = Vec3<float>(normal[0], normal[1], normal[2]); if (gstate.areNormalsReversed()) vertex.normal = -vertex.normal; } if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3<float> tmppos(0.f, 0.f, 0.f); Vec3<float> tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) { Mat3x3<float> bone(&gstate.boneMatrix[12*i]); tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) + Vec3<float>(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])) * W[i]; if (vreader.hasNormal()) tmpnrm += (bone * vertex.normal) * W[i]; } pos[0] = tmppos.x; pos[1] = tmppos.y; pos[2] = tmppos.z; if (vreader.hasNormal()) vertex.normal = tmpnrm; } if (vreader.hasColor0()) { float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4<int>(col[0]*255, col[1]*255, col[2]*255, col[3]*255); } else { vertex.color0 = Vec4<int>(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA()); } if (vreader.hasColor1()) { float col[3]; vreader.ReadColor1(col); vertex.color1 = Vec3<int>(col[0]*255, col[1]*255, col[2]*255); } else { vertex.color1 = Vec3<int>(0, 0, 0); } if (!gstate.isModeThrough()) { vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]); vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos)); ModelCoords viewpos = TransformUnit::WorldToView(vertex.worldpos); vertex.clippos = ClipCoords(TransformUnit::ViewToClip(viewpos)); if (gstate.isFogEnabled()) { float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); // Same fixup as in ShaderManagerGLES.cpp if (my_isnanorinf(fog_end)) { // Not really sure what a sensible value might be, but let's try 64k. fog_end = std::signbit(fog_end) ? -65535.0f : 65535.0f; } if (my_isnanorinf(fog_slope)) { fog_slope = std::signbit(fog_slope) ? -65535.0f : 65535.0f; } vertex.fogdepth = (viewpos.z + fog_end) * fog_slope; } else { vertex.fogdepth = 1.0f; } vertex.screenpos = ClipToScreenInternal(vertex.clippos, &outside_range_flag); if (vreader.hasNormal()) { vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal); // TODO: Isn't there a flag that controls whether to normalize the normal? vertex.worldnormal /= vertex.worldnormal.Length(); } else { vertex.worldnormal = Vec3<float>(0.0f, 0.0f, 1.0f); } Lighting::Process(vertex, vreader.hasColor0()); } else { vertex.screenpos.x = (int)(pos[0] * 16) + gstate.getOffsetX16(); vertex.screenpos.y = (int)(pos[1] * 16) + gstate.getOffsetY16(); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; vertex.fogdepth = 1.f; } return vertex; }
static VertexData ReadVertex(VertexReader& vreader) { VertexData vertex; float pos[3]; // VertexDecoder normally scales z, but we want it unscaled. vreader.ReadPosZ16(pos); if (!gstate.isModeClear() && gstate.isTextureMapEnabled() && vreader.hasUV()) { float uv[2]; vreader.ReadUV(uv); vertex.texturecoords = Vec2<float>(uv[0], uv[1]); } if (vreader.hasNormal()) { float normal[3]; vreader.ReadNrm(normal); vertex.normal = Vec3<float>(normal[0], normal[1], normal[2]); if (gstate.areNormalsReversed()) vertex.normal = -vertex.normal; } if (vertTypeIsSkinningEnabled(gstate.vertType) && !gstate.isModeThrough()) { float W[8] = { 1.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }; vreader.ReadWeights(W); Vec3<float> tmppos(0.f, 0.f, 0.f); Vec3<float> tmpnrm(0.f, 0.f, 0.f); for (int i = 0; i < vertTypeGetNumBoneWeights(gstate.vertType); ++i) { Mat3x3<float> bone(&gstate.boneMatrix[12*i]); tmppos += (bone * ModelCoords(pos[0], pos[1], pos[2]) * W[i] + Vec3<float>(gstate.boneMatrix[12*i+9], gstate.boneMatrix[12*i+10], gstate.boneMatrix[12*i+11])); if (vreader.hasNormal()) tmpnrm += (bone * vertex.normal) * W[i]; } pos[0] = tmppos.x; pos[1] = tmppos.y; pos[2] = tmppos.z; if (vreader.hasNormal()) vertex.normal = tmpnrm; } if (vreader.hasColor0()) { float col[4]; vreader.ReadColor0(col); vertex.color0 = Vec4<int>(col[0]*255, col[1]*255, col[2]*255, col[3]*255); } else { vertex.color0 = Vec4<int>(gstate.getMaterialAmbientR(), gstate.getMaterialAmbientG(), gstate.getMaterialAmbientB(), gstate.getMaterialAmbientA()); } if (vreader.hasColor1()) { float col[3]; vreader.ReadColor1(col); vertex.color1 = Vec3<int>(col[0]*255, col[1]*255, col[2]*255); } else { vertex.color1 = Vec3<int>(0, 0, 0); } if (!gstate.isModeThrough()) { vertex.modelpos = ModelCoords(pos[0], pos[1], pos[2]); vertex.worldpos = WorldCoords(TransformUnit::ModelToWorld(vertex.modelpos)); vertex.clippos = ClipCoords(TransformUnit::ViewToClip(TransformUnit::WorldToView(vertex.worldpos))); vertex.screenpos = ClipToScreenInternal(vertex.clippos); if (vreader.hasNormal()) { vertex.worldnormal = TransformUnit::ModelToWorldNormal(vertex.normal); // TODO: Isn't there a flag that controls whether to normalize the normal? vertex.worldnormal /= vertex.worldnormal.Length(); } Lighting::Process(vertex); } else { vertex.screenpos.x = (u32)pos[0] * 16 + gstate.getOffsetX16(); vertex.screenpos.y = (u32)pos[1] * 16 + gstate.getOffsetY16(); vertex.screenpos.z = pos[2]; vertex.clippos.w = 1.f; } return vertex; }
void SoftwareTransform( int prim, int vertexCount, u32 vertType, u16 *&inds, int indexType, const DecVtxFormat &decVtxFormat, int &maxIndex, TransformedVertex *&drawBuffer, int &numTrans, bool &drawIndexed, const SoftwareTransformParams *params, SoftwareTransformResult *result) { u8 *decoded = params->decoded; FramebufferManagerCommon *fbman = params->fbman; TextureCacheCommon *texCache = params->texCache; TransformedVertex *transformed = params->transformed; TransformedVertex *transformedExpanded = params->transformedExpanded; float ySign = 1.0f; bool throughmode = (vertType & GE_VTYPE_THROUGH_MASK) != 0; bool lmode = gstate.isUsingSecondaryColor() && gstate.isLightingEnabled(); // TODO: Split up into multiple draw calls for GLES 2.0 where you can't guarantee support for more than 0x10000 verts. #if defined(MOBILE_DEVICE) if (vertexCount > 0x10000/3) vertexCount = 0x10000/3; #endif float uscale = 1.0f; float vscale = 1.0f; if (throughmode) { uscale /= gstate_c.curTextureWidth; vscale /= gstate_c.curTextureHeight; } bool skinningEnabled = vertTypeIsSkinningEnabled(vertType); const int w = gstate.getTextureWidth(0); const int h = gstate.getTextureHeight(0); float widthFactor = (float) w / (float) gstate_c.curTextureWidth; float heightFactor = (float) h / (float) gstate_c.curTextureHeight; Lighter lighter(vertType); float fog_end = getFloat24(gstate.fog1); float fog_slope = getFloat24(gstate.fog2); // Same fixup as in ShaderManager.cpp if (my_isinf(fog_slope)) { // not really sure what a sensible value might be. fog_slope = fog_slope < 0.0f ? -10000.0f : 10000.0f; } if (my_isnan(fog_slope)) { // Workaround for https://github.com/hrydgard/ppsspp/issues/5384#issuecomment-38365988 // Just put the fog far away at a large finite distance. // Infinities and NaNs are rather unpredictable in shaders on many GPUs // so it's best to just make it a sane calculation. fog_end = 100000.0f; fog_slope = 1.0f; } VertexReader reader(decoded, decVtxFormat, vertType); if (throughmode) { for (int index = 0; index < maxIndex; index++) { // Do not touch the coordinates or the colors. No lighting. reader.Goto(index); // TODO: Write to a flexible buffer, we don't always need all four components. TransformedVertex &vert = transformed[index]; reader.ReadPos(vert.pos); if (reader.hasColor0()) { reader.ReadColor0_8888(vert.color0); } else { vert.color0_32 = gstate.getMaterialAmbientRGBA(); } if (reader.hasUV()) { reader.ReadUV(vert.uv); vert.u *= uscale; vert.v *= vscale; } else { vert.u = 0.0f; vert.v = 0.0f; } // Ignore color1 and fog, never used in throughmode anyway. // The w of uv is also never used (hardcoded to 1.0.) } } else { // Okay, need to actually perform the full transform. for (int index = 0; index < maxIndex; index++) { reader.Goto(index); float v[3] = {0, 0, 0}; Vec4f c0 = Vec4f(1, 1, 1, 1); Vec4f c1 = Vec4f(0, 0, 0, 0); float uv[3] = {0, 0, 1}; float fogCoef = 1.0f; // We do software T&L for now float out[3]; float pos[3]; Vec3f normal(0, 0, 1); Vec3f worldnormal(0, 0, 1); reader.ReadPos(pos); if (!skinningEnabled) { Vec3ByMatrix43(out, pos, gstate.worldMatrix); if (reader.hasNormal()) { reader.ReadNrm(normal.AsArray()); if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } else { float weights[8]; reader.ReadWeights(weights); if (reader.hasNormal()) reader.ReadNrm(normal.AsArray()); // Skinning Vec3f psum(0, 0, 0); Vec3f nsum(0, 0, 0); for (int i = 0; i < vertTypeGetNumBoneWeights(vertType); i++) { if (weights[i] != 0.0f) { Vec3ByMatrix43(out, pos, gstate.boneMatrix+i*12); Vec3f tpos(out); psum += tpos * weights[i]; if (reader.hasNormal()) { Vec3f norm; Norm3ByMatrix43(norm.AsArray(), normal.AsArray(), gstate.boneMatrix+i*12); nsum += norm * weights[i]; } } } // Yes, we really must multiply by the world matrix too. Vec3ByMatrix43(out, psum.AsArray(), gstate.worldMatrix); if (reader.hasNormal()) { normal = nsum; if (gstate.areNormalsReversed()) { normal = -normal; } Norm3ByMatrix43(worldnormal.AsArray(), normal.AsArray(), gstate.worldMatrix); worldnormal = worldnormal.Normalized(); } } // Perform lighting here if enabled. don't need to check through, it's checked above. Vec4f unlitColor = Vec4f(1, 1, 1, 1); if (reader.hasColor0()) { reader.ReadColor0(&unlitColor.x); } else { unlitColor = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (gstate.isLightingEnabled()) { float litColor0[4]; float litColor1[4]; lighter.Light(litColor0, litColor1, unlitColor.AsArray(), out, worldnormal); // Don't ignore gstate.lmode - we should send two colors in that case for (int j = 0; j < 4; j++) { c0[j] = litColor0[j]; } if (lmode) { // Separate colors for (int j = 0; j < 4; j++) { c1[j] = litColor1[j]; } } else { // Summed color into c0 (will clamp in ToRGBA().) for (int j = 0; j < 4; j++) { c0[j] += litColor1[j]; } } } else { if (reader.hasColor0()) { for (int j = 0; j < 4; j++) { c0[j] = unlitColor[j]; } } else { c0 = Vec4f::FromRGBA(gstate.getMaterialAmbientRGBA()); } if (lmode) { // c1 is already 0. } } float ruv[2] = {0.0f, 0.0f}; if (reader.hasUV()) reader.ReadUV(ruv); // Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights. switch (gstate.getUVGenMode()) { case GE_TEXMAP_TEXTURE_COORDS: // UV mapping case GE_TEXMAP_UNKNOWN: // Seen in Riviera. Unsure of meaning, but this works. // We always prescale in the vertex decoder now. uv[0] = ruv[0]; uv[1] = ruv[1]; uv[2] = 1.0f; break; case GE_TEXMAP_TEXTURE_MATRIX: { // Projection mapping Vec3f source; switch (gstate.getUVProjMode()) { case GE_PROJMAP_POSITION: // Use model space XYZ as source source = pos; break; case GE_PROJMAP_UV: // Use unscaled UV as source source = Vec3f(ruv[0], ruv[1], 0.0f); break; case GE_PROJMAP_NORMALIZED_NORMAL: // Use normalized normal as source source = normal.Normalized(); if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; case GE_PROJMAP_NORMAL: // Use non-normalized normal as source! source = normal; if (!reader.hasNormal()) { ERROR_LOG_REPORT(G3D, "Normal projection mapping without normal?"); } break; } float uvw[3]; Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix); uv[0] = uvw[0]; uv[1] = uvw[1]; uv[2] = uvw[2]; } break; case GE_TEXMAP_ENVIRONMENT_MAP: // Shade mapping - use two light sources to generate U and V. { Vec3f lightpos0 = Vec3f(&lighter.lpos[gstate.getUVLS0() * 3]).Normalized(); Vec3f lightpos1 = Vec3f(&lighter.lpos[gstate.getUVLS1() * 3]).Normalized(); uv[0] = (1.0f + Dot(lightpos0, worldnormal))/2.0f; uv[1] = (1.0f + Dot(lightpos1, worldnormal))/2.0f; uv[2] = 1.0f; } break; default: // Illegal ERROR_LOG_REPORT(G3D, "Impossible UV gen mode? %d", gstate.getUVGenMode()); break; } uv[0] = uv[0] * widthFactor; uv[1] = uv[1] * heightFactor; // Transform the coord by the view matrix. Vec3ByMatrix43(v, out, gstate.viewMatrix); fogCoef = (v[2] + fog_end) * fog_slope; // TODO: Write to a flexible buffer, we don't always need all four components. memcpy(&transformed[index].x, v, 3 * sizeof(float)); transformed[index].fog = fogCoef; memcpy(&transformed[index].u, uv, 3 * sizeof(float)); transformed[index].color0_32 = c0.ToRGBA(); transformed[index].color1_32 = c1.ToRGBA(); // The multiplication by the projection matrix is still performed in the vertex shader. // So is vertex depth rounding, to simulate the 16-bit depth buffer. } } // Here's the best opportunity to try to detect rectangles used to clear the screen, and // replace them with real clears. This can provide a speedup on certain mobile chips. // // An alternative option is to simply ditch all the verts except the first and last to create a single // rectangle out of many. Quite a small optimization though. // Experiment: Disable on PowerVR (see issue #6290) // TODO: This bleeds outside the play area in non-buffered mode. Big deal? Probably not. bool reallyAClear = false; if (maxIndex > 1 && prim == GE_PRIM_RECTANGLES && gstate.isModeClear()) { int scissorX2 = gstate.getScissorX2() + 1; int scissorY2 = gstate.getScissorY2() + 1; reallyAClear = IsReallyAClear(transformed, maxIndex, scissorX2, scissorY2); } if (reallyAClear && gl_extensions.gpuVendor != GPU_VENDOR_POWERVR) { // && g_Config.iRenderingMode != FB_NON_BUFFERED_MODE) { // If alpha is not allowed to be separate, it must match for both depth/stencil and color. Vulkan requires this. bool alphaMatchesColor = gstate.isClearModeColorMask() == gstate.isClearModeAlphaMask(); bool depthMatchesStencil = gstate.isClearModeAlphaMask() == gstate.isClearModeDepthMask(); if (params->allowSeparateAlphaClear || (alphaMatchesColor && depthMatchesStencil)) { result->color = transformed[1].color0_32; // Need to rescale from a [0, 1] float. This is the final transformed value. result->depth = ToScaledDepth((s16)(int)(transformed[1].z * 65535.0f)); result->action = SW_CLEAR; return; } } // This means we're using a framebuffer (and one that isn't big enough.) if (gstate_c.curTextureHeight < (u32)h && maxIndex >= 2) { // Even if not rectangles, this will detect if either of the first two are outside the framebuffer. // HACK: Adding one pixel margin to this detection fixes issues in Assassin's Creed : Bloodlines, // while still keeping BOF working (see below). const float invTexH = 1.0f / gstate_c.curTextureHeight; // size of one texel. bool tlOutside; bool tlAlmostOutside; bool brOutside; // If we're outside heightFactor, then v must be wrapping or clamping. Avoid this workaround. // If we're <= 1.0f, we're inside the framebuffer (workaround not needed.) // We buffer that 1.0f a little more with a texel to avoid some false positives. tlOutside = transformed[0].v <= heightFactor && transformed[0].v > 1.0f + invTexH; brOutside = transformed[1].v <= heightFactor && transformed[1].v > 1.0f + invTexH; // Careful: if br is outside, but tl is well inside, this workaround still doesn't make sense. // We go with halfway, since we overestimate framebuffer heights sometimes but not by much. tlAlmostOutside = transformed[0].v <= heightFactor && transformed[0].v >= 0.5f; if (tlOutside || (brOutside && tlAlmostOutside)) { // Okay, so we're texturing from outside the framebuffer, but inside the texture height. // Breath of Fire 3 does this to access a render surface at an offset. const u32 bpp = fbman->GetTargetFormat() == GE_FORMAT_8888 ? 4 : 2; const u32 prevH = texCache->AttachedDrawingHeight(); const u32 fb_size = bpp * fbman->GetTargetStride() * prevH; const u32 prevYOffset = gstate_c.curTextureYOffset; if (texCache->SetOffsetTexture(fb_size)) { const float oldWidthFactor = widthFactor; const float oldHeightFactor = heightFactor; widthFactor = (float) w / (float) gstate_c.curTextureWidth; heightFactor = (float) h / (float) gstate_c.curTextureHeight; // We've already baked in the old gstate_c.curTextureYOffset, so correct. const float yDiff = (float) (prevH + prevYOffset - gstate_c.curTextureYOffset) / (float) h; for (int index = 0; index < maxIndex; ++index) { transformed[index].u *= widthFactor / oldWidthFactor; // Inverse it back to scale to the new FBO, and add 1.0f to account for old FBO. transformed[index].v = (transformed[index].v / oldHeightFactor - yDiff) * heightFactor; } } } } // Step 2: expand rectangles. drawBuffer = transformed; numTrans = 0; drawIndexed = false; if (prim != GE_PRIM_RECTANGLES) { // We can simply draw the unexpanded buffer. numTrans = vertexCount; drawIndexed = true; } else { bool useBufferedRendering = g_Config.iRenderingMode != FB_NON_BUFFERED_MODE; if (useBufferedRendering) ySign = -ySign; float flippedMatrix[16]; if (!throughmode) { memcpy(&flippedMatrix, gstate.projMatrix, 16 * sizeof(float)); const bool invertedY = useBufferedRendering ? (gstate_c.vpHeight < 0) : (gstate_c.vpHeight > 0); if (invertedY) { flippedMatrix[1] = -flippedMatrix[1]; flippedMatrix[5] = -flippedMatrix[5]; flippedMatrix[9] = -flippedMatrix[9]; flippedMatrix[13] = -flippedMatrix[13]; } const bool invertedX = gstate_c.vpWidth < 0; if (invertedX) { flippedMatrix[0] = -flippedMatrix[0]; flippedMatrix[4] = -flippedMatrix[4]; flippedMatrix[8] = -flippedMatrix[8]; flippedMatrix[12] = -flippedMatrix[12]; } } //rectangles always need 2 vertices, disregard the last one if there's an odd number vertexCount = vertexCount & ~1; numTrans = 0; drawBuffer = transformedExpanded; TransformedVertex *trans = &transformedExpanded[0]; const u16 *indsIn = (const u16 *)inds; u16 *newInds = inds + vertexCount; u16 *indsOut = newInds; maxIndex = 4 * vertexCount; for (int i = 0; i < vertexCount; i += 2) { const TransformedVertex &transVtxTL = transformed[indsIn[i + 0]]; const TransformedVertex &transVtxBR = transformed[indsIn[i + 1]]; // We have to turn the rectangle into two triangles, so 6 points. // This is 4 verts + 6 indices. // bottom right trans[0] = transVtxBR; // top right trans[1] = transVtxBR; trans[1].y = transVtxTL.y; trans[1].v = transVtxTL.v; // top left trans[2] = transVtxBR; trans[2].x = transVtxTL.x; trans[2].y = transVtxTL.y; trans[2].u = transVtxTL.u; trans[2].v = transVtxTL.v; // bottom left trans[3] = transVtxBR; trans[3].x = transVtxTL.x; trans[3].u = transVtxTL.u; // That's the four corners. Now process UV rotation. if (throughmode) RotateUVThrough(trans); else RotateUV(trans, flippedMatrix, ySign); // Triangle: BR-TR-TL indsOut[0] = i * 2 + 0; indsOut[1] = i * 2 + 1; indsOut[2] = i * 2 + 2; // Triangle: BL-BR-TL indsOut[3] = i * 2 + 3; indsOut[4] = i * 2 + 0; indsOut[5] = i * 2 + 2; trans += 4; indsOut += 6; numTrans += 6; } inds = newInds; drawIndexed = true; // We don't know the color until here, so we have to do it now, instead of in StateMapping. // Might want to reconsider the order of things later... if (gstate.isModeClear() && gstate.isClearModeAlphaMask()) { result->setStencil = true; if (vertexCount > 1) { // Take the bottom right alpha value of the first rect as the stencil value. // Technically, each rect could individually fill its stencil, but most of the // time they use the same one. result->stencilValue = transformed[indsIn[1]].color0[3]; } else { result->stencilValue = 0; } } } result->action = SW_DRAW_PRIMITIVES; }