示例#1
0
static void get_viewport_size()
{
    viewport_height = vid_get_viewport_height()-camera_screen.edge_hmargin*2; //don't trace bottom lines
    viewport_width = vid_get_viewport_width();
    viewport_byte_width = vid_get_viewport_byte_width();
    viewport_yscale = vid_get_viewport_yscale();

	viewport_xoffset = vid_get_viewport_display_xoffset();
	viewport_yoffset = vid_get_viewport_display_yoffset();

    slice_height = viewport_height / EDGE_SLICES;
}
示例#2
0
void histogram_process()
{
    static unsigned char *img;
    static int viewport_size, viewport_width, viewport_row_offset;

    register int x, i, hi;
    int y, v, u, c;
    float (*histogram_transform)(float);
    unsigned int histo_fill[5];
    int histo_main;

    long exposition_thresh = camera_screen.size / 500;

    // Select transform function
    switch (conf.histo_mode)
    {
        case HISTO_MODE_LOG: 
            histogram_transform = logarithmic; 
            break;
        case HISTO_MODE_LINEAR: 
        default:
            histogram_transform = identity; 
            break;
    }

    // Select which calculated histogram channel determines magnification / scaling
    if (conf.histo_layout == OSD_HISTO_LAYOUT_Y || conf.histo_layout == OSD_HISTO_LAYOUT_Y_argb)
        histo_main = HISTO_Y;
    else
        histo_main = HISTO_RGB;

    histogram_alloc();

    // This function is called in the main spytask loop roughly every 20msec
    // To avoid hogging all the CPU it performs it's work in stages controlled by histogram-stage
    // Stage  Function
    //   0      Initialize global variables used in next stages
    //   1,2,3  Count number of values for a third of the viewport image at each stage
    //   4      Calculate max values, over and under exposure setting
    //   5      Calculate the histogram display values
    switch (histogram_stage)
    {
        case 0:
            img=vid_get_viewport_active_buffer();
            if (!img) return;

            img += vid_get_viewport_image_offset();		// offset into viewport for when image size != viewport size (e.g. 16:9 image on 4:3 LCD)
            viewport_size = vid_get_viewport_height() * vid_get_viewport_byte_width() * vid_get_viewport_yscale();
            viewport_width = vid_get_viewport_width();
            viewport_row_offset = vid_get_viewport_row_offset();
            for (c=0; c<5; ++c) {
                memset(histogram_proc[c],0,256*sizeof(unsigned short));
                histo_max[c] = histo_max_center[c] = 0;
            }

            histogram_stage=1;
            break;

        case 1:
        case 2:
        case 3:
            x = 0;  // count how many blocks we have done on the current row (to skip unused buffer space at end of each row)
            for (i=(histogram_stage-1)*6; i<viewport_size; i+=HISTO_STEP_SIZE*6) {
                y = img[i+1];
                u = *(signed char*)(&img[i]);
                //if (u&0x00000080) u|=0xFFFFFF00;  // Compiler should handle the unsigned -> signed conversion
                v = *(signed char*)(&img[i+2]);
                //if (v&0x00000080) v|=0xFFFFFF00;  // Compiler should handle the unsigned -> signed conversion

                ++histogram_proc[HISTO_Y][y];                       // Y
                hi = clip(((y<<12)          + v*5743 + 2048)>>12);  // R
                ++histogram_proc[HISTO_R][hi];
                hi = clip(((y<<12) - u*1411 - v*2925 + 2048)>>12);  // G
                ++histogram_proc[HISTO_G][hi];
                hi = clip(((y<<12) + u*7258          + 2048)>>12);  // B
                ++histogram_proc[HISTO_B][hi];

                // Handle case where viewport memory buffer is wider than the actual buffer.
                x += HISTO_STEP_SIZE * 2;	// viewport width is measured in blocks of three bytes each even though the data is stored in six byte chunks !
                if (x == viewport_width)
                {
                    i += viewport_row_offset;
                    x = 0;
                }
            }

            ++histogram_stage;
            break;

        case 4:
            for (i=0, c=0; i<HISTO_WIDTH; ++i, c+=2) { // G
                // Merge each pair of values into a single value (for width = 128)
                // Warning: this is optimised for HISTO_WIDTH = 128, don't change the width unless you re-write this code as well.
                histogram_proc[HISTO_Y][i] = histogram_proc[HISTO_Y][c] + histogram_proc[HISTO_Y][c+1];
                histogram_proc[HISTO_R][i] = histogram_proc[HISTO_R][c] + histogram_proc[HISTO_R][c+1];
                histogram_proc[HISTO_G][i] = histogram_proc[HISTO_G][c] + histogram_proc[HISTO_G][c+1];
                histogram_proc[HISTO_B][i] = histogram_proc[HISTO_B][c] + histogram_proc[HISTO_B][c+1];
                // Calc combined RGB totals
                histogram_proc[HISTO_RGB][i] = histogram_proc[HISTO_R][i] + histogram_proc[HISTO_G][i] + histogram_proc[HISTO_B][i];
            }

            // calculate maximums
            for (c=0; c<5; ++c) {
                for (i=0; i<HISTO_WIDTH; ++i) {
                    if (histo_max[c]<histogram_proc[c][i])
                        histo_max[c]=histogram_proc[c][i];
                    if (histo_max_center[c]<histogram_proc[c][i] && i>=conf.histo_ignore_boundary && i<HISTO_WIDTH-conf.histo_ignore_boundary)
                        histo_max_center[c]=histogram_proc[c][i];
                }

                if (histo_max_center[c] > 0) {
                    histo_max_center_invw[c] = ((float)HISTO_HEIGHT)/histogram_transform((float)histo_max_center[c]);
                } else if (histo_max[c] > 0) {
                    histo_max_center_invw[c] = ((float)HISTO_HEIGHT)/histogram_transform((float)histo_max[c]);
                } else {
                    histo_max_center_invw[c] = 0.0f;
                }
            }

            if (histo_max[HISTO_RGB] > 0) { // over- / under- expos
                under_exposed = (histogram_proc[HISTO_RGB][0]*8
                                +histogram_proc[HISTO_RGB][1]*4
                                +histogram_proc[HISTO_RGB][2]) > exposition_thresh;

                over_exposed  = (histogram_proc[HISTO_RGB][HISTO_WIDTH-3]
                                +histogram_proc[HISTO_RGB][HISTO_WIDTH-2]*4
                                +histogram_proc[HISTO_RGB][HISTO_WIDTH-1]*8) > exposition_thresh;
            } else {
                over_exposed = 0;
                under_exposed = 1;
            }

            histogram_stage=5;
            break;

        case 5:
            for (c=0; c<5; ++c) {
                histo_fill[c]=0;
                for (i=0; i<HISTO_WIDTH; ++i) {
                    histogram[c][i] = (histogram_transform((float)histogram_proc[c][i]))*histo_max_center_invw[c];
                    if (histogram[c][i] > HISTO_HEIGHT)
                        histogram[c][i] = HISTO_HEIGHT;
                    histo_fill[c]+=histogram[c][i];
                }
            }

            histo_magnification = 0;
            if (conf.histo_auto_ajust) {
                if (histo_fill[histo_main] < (HISTO_HEIGHT*HISTO_WIDTH)/5) { // try to ajust if average level is less than 20%
                    histo_magnification = (20*HISTO_HEIGHT*HISTO_WIDTH) / histo_fill[histo_main];
                    for (c=0; c<5; ++c) {
                        for (i=0;i<HISTO_WIDTH;i++) {
                            histogram[c][i] = histogram[c][i] * histo_magnification / 100;
                            if (histogram[c][i] > HISTO_HEIGHT)
                                histogram[c][i] = HISTO_HEIGHT;
                        }
                    }
                }
            }

            histogram_stage=0;
            break;
    }

}
示例#3
0
static int md_detect_motion(void)
{
    int idx, tick, rv;
    int val, cy, cv, cu;

    register int col, row, x, y;

    if(!md_running())
    {
        return 0;
    }

    tick = get_tick_count();
    rv = 1;

#ifdef OPT_MD_DEBUG
    if(motion_detector.comp_calls_cnt < MD_REC_CALLS_CNT)
    {
        motion_detector.comp_calls[motion_detector.comp_calls_cnt]=tick;
    }
    motion_detector.comp_calls_cnt++;
#endif

    if(motion_detector.start_time + motion_detector.timeout < tick )
    {
        md_save_calls_history();
        motion_detector.running = 0;
        return 0;
    }

    if(motion_detector.last_measure_time + motion_detector.measure_interval > tick)
    {
        // wait for the next time
        return 1;
    }

    motion_detector.last_measure_time = tick;

    unsigned char* img = vid_get_viewport_live_fb();
    if(img==NULL)
    {
        img = vid_get_viewport_fb();
    }

#ifdef OPT_MD_DEBUG
    if(motion_detector.comp_calls_cnt==50 && (motion_detector.parameters & MD_MAKE_RAM_DUMP_FILE) != 0 )
    {
        mx_dump_memory((char*)img);
    }
#endif

	img += vid_get_viewport_image_offset();		// offset into viewport for when image size != viewport size (e.g. 16:9 image on 4:3 LCD)

	int vp_h = vid_get_viewport_height();
    int vp_w = vid_get_viewport_width();
	int vp_bw = vid_get_viewport_byte_width() * vid_get_viewport_yscale();

	int x_step = motion_detector.pixels_step * 3;
	int y_step = motion_detector.pixels_step * vp_bw;

    for (idx=0, row=0; row < motion_detector.rows; row++)
    {
        // Calc img y start and end offsets (use same height for all cells so 'points' is consistent)
        int y_start = ((row * vp_h) / motion_detector.rows) * vp_bw;
        int y_end = y_start + ((vp_h / motion_detector.rows) * vp_bw);

        for (col=0; col < motion_detector.columns; col++, idx++)
        {
            int in_clipping_region=0;

            if (col+1 >= motion_detector.clipping_region_column1 &&
                col+1 <= motion_detector.clipping_region_column2 &&
                row+1 >= motion_detector.clipping_region_row1 &&
                row+1 <= motion_detector.clipping_region_row2)
            {
                in_clipping_region=1;
            }

            int curr = 0;
            int diff = 0;

            if (
                (motion_detector.clipping_region_mode==MD_REGION_NONE) ||
                (motion_detector.clipping_region_mode==MD_REGION_EXCLUDE && in_clipping_region==0) ||
                (motion_detector.clipping_region_mode==MD_REGION_INCLUDE && in_clipping_region==1)
               )
            {
                // Calc img x start and end offsets (use same width for all cells so 'points' is consistent)
                int x_start = ((col * vp_w) / motion_detector.columns) * 3;
                int x_end = x_start + ((vp_w / motion_detector.columns) * 3);

                int points = 0;

                for (y=y_start; y<y_end; y+=y_step)
                {
                    for (x=x_start; x<x_end; x+=x_step)
                    {
                        // ARRAY of UYVYYY values
                        // 6 bytes - 4 pixels

                        if (motion_detector.pixel_measure_mode == MD_MEASURE_MODE_Y)
                        {
                            val = img[y + x + 1];				                        //Y
                        }
                        else
                        {
                            // Calc offset to UYV component
                            int uvx = x;
                            if (uvx & 1) uvx -= 3;

                            switch(motion_detector.pixel_measure_mode)
                            {
                            case MD_MEASURE_MODE_U:
                                val = (signed char)img[y + uvx];		                //U
                                break;

                            case MD_MEASURE_MODE_V:
                                val = (signed char)img[y + uvx + 2];	                //V
                                break;

                            case MD_MEASURE_MODE_R:
                                cy = img[y + x + 1];
                                cv = (signed char)img[y + uvx + 2];
                                val = clip(((cy<<12)           + cv*5743 + 2048)>>12); // R
                                break;

                            case MD_MEASURE_MODE_G:
                                cy = img[y + x + 1];
                                cu = (signed char)img[y + uvx];
                                cv = (signed char)img[y + uvx + 2];
                                val = clip(((cy<<12) - cu*1411 - cv*2925 + 2048)>>12); // G
                                break;

                            case MD_MEASURE_MODE_B:
                                cy = img[y + x + 1];
                                cu = (signed char)img[y + uvx];
                                val = clip(((cy<<12) + cu*7258           + 2048)>>12); // B
                                break;

                            default:
                                val = 0;    // Stop compiler warning
                                break;
                            }
                        }

                        curr += val;
                        points++;
                    }
                }
                motion_detector.points = points ;
                diff = (curr - motion_detector.prev[idx]) / points;
                if (diff < 0) diff = -diff;
                if ((diff > motion_detector.threshold) &&
                    (motion_detector.start_time+motion_detector.msecs_before_trigger < tick))
                {
                    motion_detector.detected_cells++;
                }
            }

            motion_detector.diff[idx] = diff;
            motion_detector.prev[idx] = curr;
	}
    }