void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_DATA, IN_LABELS, IN_LAMBDA, IN_END} ; enum {OUT_MODEL = 0} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; double biasMultiplier = 0 ; double lambda ; void * data ; void * preconditioner = NULL ; vl_size preconditionerDimension = 0 ; mxClassID dataClass ; vl_type dataType ; vl_size numSamples ; vl_size dimension ; vl_size numIterations = 0 ; vl_uindex startingIteration = 1 ; vl_uint32 * permutation = NULL ; vl_size permutationSize = 0 ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrInvalidArgument, "At least three arguments are required.") ; } else if (nout > 2) { vlmxError(vlmxErrInvalidArgument, "Too many output arguments."); } dataClass = mxGetClassID(IN(DATA)) ; if (! vlmxIsMatrix (IN(DATA), -1, -1) || ! vlmxIsReal (IN(DATA))) { vlmxError(vlmxErrInvalidArgument, "DATA must be a real matrix.") ; } data = mxGetData (IN(DATA)) ; dimension = mxGetM(IN(DATA)) ; numSamples = mxGetN(IN(DATA)) ; switch (dataClass) { case mxSINGLE_CLASS : dataType = VL_TYPE_FLOAT ; break ; case mxDOUBLE_CLASS : dataType = VL_TYPE_DOUBLE ; break ; default: vlmxError(vlmxErrInvalidArgument, "DATA must be either SINGLE or DOUBLE.") ; } if (mxGetClassID(IN(LABELS)) != mxINT8_CLASS) { vlmxError(vlmxErrInvalidArgument, "LABELS must be INT8.") ; } if (! vlmxIsVector(IN(LABELS), numSamples)) { vlmxError(vlmxErrInvalidArgument, "LABELS is not a vector of dimension compatible with DATA.") ; } if (! vlmxIsPlainScalar(IN(LAMBDA))) { vlmxError(vlmxErrInvalidArgument, "LAMBDA is not a plain scalar.") ; } lambda = *mxGetPr(IN(LAMBDA)) ; while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_bias_multiplier : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "BIASMULTIPLIER is not a plain scalar.") ; } biasMultiplier = *mxGetPr(optarg) ; break ; case opt_num_iterations : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "NUMITERATIONS is not a plain scalar.") ; } if (*mxGetPr(optarg) < 0) { vlmxError(vlmxErrInvalidArgument, "NUMITERATIONS is negative.") ; } numIterations = (vl_size) *mxGetPr(optarg) ; break ; case opt_starting_iteration : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "STARTINGITERATION is not a plain scalar.") ; } if (*mxGetPr(optarg) < 1) { vlmxError(vlmxErrInvalidArgument, "STARTINGITERATION is smaller than 1.") ; } startingIteration = (vl_size) *mxGetPr(optarg) ; break ; case opt_starting_model : if (!vlmxIsVector(optarg, -1) || mxIsComplex(optarg) || !mxIsNumeric(optarg)) { vlmxError(vlmxErrInvalidArgument, "STARTINGMODEL is not a real vector.") ; } OUT(MODEL) = mxDuplicateArray(optarg) ; break ; case opt_permutation : if (!vlmxIsVector(optarg, -1) || mxIsComplex(optarg) || mxGetClassID(optarg) != mxUINT32_CLASS) { vlmxError(vlmxErrInvalidArgument, "PERMUTATION is not a UINT32 vector.") ; } permutationSize = mxGetNumberOfElements(optarg) ; permutation = mxMalloc(sizeof(vl_uint32) * permutationSize) ; { /* adjust indexing */ vl_uint32 const * matlabPermutation = mxGetData(optarg) ; vl_uindex k ; for (k = 0 ; k < permutationSize ; ++k) { permutation[k] = matlabPermutation[k] - 1 ; if (permutation[k] >= numSamples) { vlmxError(vlmxErrInconsistentData, "Permutation indexes out of bounds: PERMUTATION(%d) = %d > %d = number of data samples.", k + 1, permutation[k] + 1, numSamples) ; } } } break ; case opt_preconditioner : if (!vlmxIsVector(optarg, -1) || mxIsComplex(optarg) || !mxIsNumeric(optarg)) { vlmxError(vlmxErrInvalidArgument, "PRECONDITIONER is not a real vector.") ; } if (mxGetClassID(optarg) != dataClass) { vlmxError(vlmxErrInvalidArgument, "PRECODNITIONER storage class does not match the data.") ; } preconditioner = mxGetData(optarg) ; preconditionerDimension = mxGetNumberOfElements(optarg) ; break ; case opt_verbose : ++ verbose ; break ; } } if (preconditioner && preconditionerDimension != (dimension + (biasMultiplier > 0))) { vlmxError(vlmxErrInvalidArgument, "PRECONDITIONER has incompatible dimension.") ; } if (numIterations == 0) { numIterations = (vl_size) 10 / (lambda + 1) ; } if (! OUT(MODEL)) { OUT(MODEL) = mxCreateNumericMatrix(dimension + (biasMultiplier > 0), 1, dataClass, mxREAL) ; } else { if (mxGetClassID(OUT(MODEL)) != dataClass) { vlmxError(vlmxErrInvalidArgument, "STARTINGMODEL is not of the same class of DATA.") ; } if (mxGetNumberOfElements(OUT(MODEL)) != dimension + (biasMultiplier > 0)) { vlmxError(vlmxErrInvalidArgument, "STARTINGMODEL has incompatible dimension.") ; } } if (verbose) { mexPrintf("vl_pegasos: Lambda = %g\n", lambda) ; mexPrintf("vl_pegasos: BiasMultiplier = %g\n", biasMultiplier) ; mexPrintf("vl_pegasos: NumIterations = %d\n", numIterations) ; mexPrintf("vl_pegasos: permutation size = %d\n", permutationSize) ; mexPrintf("vl_pegasos: using preconditioner = %s\n", VL_YESNO(preconditioner)) ; } switch (dataType) { case VL_TYPE_FLOAT : vl_pegasos_train_binary_svm_f((float *)mxGetData(OUT(MODEL)), (float const *)mxGetPr(IN(DATA)), dimension, numSamples, (vl_int8 const *)mxGetData(IN(LABELS)), lambda, biasMultiplier, startingIteration, numIterations, NULL, permutation, permutationSize, (float const*)preconditioner) ; break ; case VL_TYPE_DOUBLE: vl_pegasos_train_binary_svm_d((double *)mxGetData(OUT(MODEL)), (double const *)mxGetData(IN(DATA)), dimension, numSamples, (vl_int8 const *)mxGetData(IN(LABELS)), lambda, biasMultiplier, startingIteration, numIterations, NULL, permutation, permutationSize, (double const *)preconditioner) ; break ; } if (permutation) vl_free(permutation) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_FOREST = 0, IN_DATA, IN_QUERY, IN_END} ; enum {OUT_INDEX = 0, OUT_DISTANCE} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; mxArray const * forest_array = in[IN_FOREST] ; mxArray const * data_array = in[IN_DATA] ; mxArray const * query_array = in[IN_QUERY] ; mxArray * index_array ; mxArray * distance_array ; void * query ; vl_uint32 * index ; void * distance ; vl_size numNeighbors = 1 ; vl_size numQueries ; vl_uindex qi, ni; unsigned int numComparisons = 0 ; unsigned int maxNumComparisons = 0 ; VlKDForestNeighbor * neighbors ; mxClassID dataClass ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (nout > 2) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } forest = new_kdforest_from_array (forest_array, data_array) ; dataClass = mxGetClassID (data_array) ; if (mxGetClassID (query_array) != dataClass) { vlmxError(vlmxErrInvalidArgument, "QUERY must have the same storage class as DATA.") ; } if (! vlmxIsReal (query_array)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be real.") ; } if (! vlmxIsMatrix (query_array, forest->dimension, -1)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be a matrix with TREE.NUMDIMENSIONS rows.") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_num_neighs : if (! vlmxIsScalar(optarg) || (numNeighbors = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "NUMNEIGHBORS must be a scalar not smaller than one.") ; } break; case opt_max_num_comparisons : if (! vlmxIsScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "MAXNUMCOMPARISONS must be a scalar.") ; } maxNumComparisons = mxGetScalar(optarg) ; break; case opt_verbose : ++ verbose ; break ; } } vl_kdforest_set_max_num_comparisons (forest, maxNumComparisons) ; neighbors = vl_malloc (sizeof(VlKDForestNeighbor) * numNeighbors) ; query = mxGetData (query_array) ; numQueries = mxGetN (query_array) ; out[OUT_INDEX] = index_array = mxCreateNumericMatrix (numNeighbors, numQueries, mxUINT32_CLASS, mxREAL) ; out[OUT_DISTANCE] = distance_array = mxCreateNumericMatrix (numNeighbors, numQueries, dataClass, mxREAL) ; index = mxGetData (index_array) ; distance = mxGetData (distance_array) ; if (verbose) { VL_PRINTF ("vl_kdforestquery: number of queries: %d\n", numQueries) ; VL_PRINTF ("vl_kdforestquery: number of neighbors per query: %d\n", numNeighbors) ; VL_PRINTF ("vl_kdforestquery: max num of comparisons per query: %d\n", vl_kdforest_get_max_num_comparisons (forest)) ; } for (qi = 0 ; qi < numQueries ; ++ qi) { numComparisons += vl_kdforest_query (forest, neighbors, numNeighbors, query) ; switch (dataClass) { case mxSINGLE_CLASS: { float * distance_ = (float*) distance ; for (ni = 0 ; ni < numNeighbors ; ++ni) { *index++ = neighbors[ni].index + 1 ; *distance_++ = neighbors[ni].distance ; } query = (float*)query + vl_kdforest_get_data_dimension (forest) ; distance = distance_ ; break ; } case mxDOUBLE_CLASS: { double * distance_ = (double*) distance ; for (ni = 0 ; ni < numNeighbors ; ++ni) { *index++ = neighbors[ni].index + 1 ; *distance_++ = neighbors[ni].distance ; } query = (double*)query + vl_kdforest_get_data_dimension (forest) ; distance = distance_ ; break ; } default: abort() ; } } if (verbose) { VL_PRINTF ("vl_kdforestquery: number of comparisons per query: %.3f\n", ((double) numComparisons) / numQueries) ; VL_PRINTF ("vl_kdforestquery: number of comparisons per neighbor: %.3f\n", ((double) numComparisons) / (numQueries * numNeighbors)) ; } vl_kdforest_delete (forest) ; vl_free (neighbors) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_DATA = 0, IN_END} ; enum {OUT_TREE = 0} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; void * data ; vl_size numData ; vl_size dimension ; mxClassID dataClass ; vl_type dataType ; int thresholdingMethod = VL_KDTREE_MEDIAN ; vl_size numTrees = 1 ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 1) { vlmxError(vlmxErrInvalidArgument, "At least one argument required") ; } else if (nout > 2) { vlmxError(vlmxErrInvalidArgument, "Too many output arguments"); } dataClass = mxGetClassID(IN(DATA)) ; if (! vlmxIsMatrix (IN(DATA), -1, -1) || ! vlmxIsReal (IN(DATA))) { vlmxError(vlmxErrInvalidArgument, "DATA must be a real matrix ") ; } switch (dataClass) { case mxSINGLE_CLASS : dataType = VL_TYPE_FLOAT ; break ; case mxDOUBLE_CLASS : dataType = VL_TYPE_DOUBLE ; break ; default: vlmxError(vlmxErrInvalidArgument, "DATA must be either SINGLE or DOUBLE") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { char buffer [1024] ; switch (opt) { case opt_threshold_method : mxGetString (optarg, buffer, sizeof(buffer)/sizeof(buffer[0])) ; if (! vlmxIsString(optarg, -1)) { vlmxError(vlmxErrInvalidOption, "THRESHOLDMETHOD must be a string") ; } if (vl_string_casei_cmp(buffer, "median") == 0) { thresholdingMethod = VL_KDTREE_MEDIAN ; } else if (vl_string_casei_cmp(buffer, "mean") == 0) { thresholdingMethod = VL_KDTREE_MEAN ; } else { vlmxError(vlmxErrInvalidOption, "Unknown thresholding method %s", buffer) ; } break ; case opt_num_trees : if (! vlmxIsScalar(optarg) || (numTrees = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidOption, "NUMTREES must be not smaller than one") ; } break ; case opt_verbose : ++ verbose ; break ; } } data = mxGetData (IN(DATA)) ; numData = mxGetN (IN(DATA)) ; dimension = mxGetM (IN(DATA)) ; forest = vl_kdforest_new (dataType, dimension, numTrees) ; vl_kdforest_set_thresholding_method (forest, thresholdingMethod) ; if (verbose) { char const * str = 0 ; mexPrintf("vl_kdforestbuild: data %s [%d x %d]\n", vl_get_type_name (dataType), dimension, numData) ; switch (vl_kdforest_get_thresholding_method(forest)) { case VL_KDTREE_MEAN : str = "mean" ; break ; case VL_KDTREE_MEDIAN : str = "median" ; break ; default: abort() ; } mexPrintf("vl_kdforestbuild: threshold selection method: %s\n", str) ; mexPrintf("vl_kdforestbuild: number of trees: %d\n", vl_kdforest_get_num_trees(forest)) ; } /* ----------------------------------------------------------------- * Do job * -------------------------------------------------------------- */ vl_kdforest_build (forest, numData, data) ; if (verbose) { vl_uindex ti ; for (ti = 0 ; ti < vl_kdforest_get_num_trees(forest) ; ++ ti) { mexPrintf("vl_kdforestbuild: tree %d: depth %d, num nodes %d\n", ti, vl_kdforest_get_depth_of_tree(forest, ti), vl_kdforest_get_num_nodes_of_tree(forest, ti)) ; } } out[OUT_TREE] = new_array_from_kdforest (forest) ; vl_kdforest_delete (forest) ; }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_DATA, IN_LABELS, IN_LAMBDA, IN_END} ; enum {OUT_MODEL = 0, OUT_BIAS, OUT_INFO} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; mxArray *inputModel = NULL; VlSvmPegasos* svm = NULL ; vl_bool freeModel = VL_TRUE ; vl_size dataDimension ; vl_uint32* matlabPermutation ; void * data ; mxClassID dataClass ; vl_type dataType ; vl_size numSamples ; vl_uint32 * permutation = NULL ; vl_size permutationSize = 0 ; DiagnosticsDispatcher* disp ; VlSvmDatasetInnerProduct innerProduct = NULL ; VlSvmDatasetAccumulator accumulator = NULL ; /* maps */ VlSvmDatasetFeatureMap mapFunc = NULL ; /* Homkermap */ VlHomogeneousKernelType kernelType = VlHomogeneousKernelChi2 ; VlHomogeneousKernelMapWindowType windowType = VlHomogeneousKernelMapWindowRectangular ; double gamma = 1.0 ; int n = 0 ; double period = -1 ; VlSvmDataset* dataset ; vl_bool homkermap = VL_FALSE ; void * map = NULL ; VL_USE_MATLAB_ENV ; disp = (DiagnosticsDispatcher*) vl_malloc(sizeof(DiagnosticsDispatcher)) ; disp->diagnosticsHandle = NULL ; disp->callerRef = NULL ; disp->verbose = 0 ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrInvalidArgument, "At least three arguments are required.") ; } else if (nout > 3) { vlmxError(vlmxErrInvalidArgument, "Too many output arguments."); } dataClass = mxGetClassID(IN(DATA)) ; if (! vlmxIsMatrix (IN(DATA), -1, -1) || ! vlmxIsReal (IN(DATA))) { vlmxError(vlmxErrInvalidArgument, "DATA must be a real matrix.") ; } data = mxGetData (IN(DATA)) ; dataDimension = mxGetM(IN(DATA)) ; numSamples = mxGetN(IN(DATA)) ; /* Get order of the HOMKERMAP, if used. */ while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { if (opt == opt_homkermap) { homkermap = VL_TRUE ; if (! vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "N is not a scalar.") ; } n = *mxGetPr(optarg) ; if (n < 0) { vlmxError(vlmxErrInvalidArgument, "N is negative.") ; } } } next = IN_END ; if (! vlmxIsVector(IN(LABELS), numSamples)) { vlmxError(vlmxErrInvalidArgument, "LABELS is not a vector of dimension compatible with DATA.") ; } switch (dataClass) { case mxSINGLE_CLASS : dataType = VL_TYPE_FLOAT ; break ; case mxDOUBLE_CLASS : dataType = VL_TYPE_DOUBLE ; break ; default: vlmxError(vlmxErrInvalidArgument, "DATA must be either SINGLE or DOUBLE.") ; } if (mxGetClassID(IN(LABELS)) != mxINT8_CLASS) { vlmxError(vlmxErrInvalidArgument, "LABELS must be INT8.") ; } if (! vlmxIsPlainScalar(IN(LAMBDA))) { vlmxError(vlmxErrInvalidArgument, "LAMBDA is not a plain scalar.") ; } svm = vl_svmpegasos_new ((2*n + 1)*dataDimension,*mxGetPr(IN(LAMBDA))) ; while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_bias_multiplier : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "BIASMULTIPLIER is not a plain scalar.") ; } vl_svmpegasos_set_bias_multiplier(svm, *mxGetPr(optarg)) ; break ; case opt_max_iterations : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "MAXITERATIONS is not a plain scalar.") ; } if (*mxGetPr(optarg) < 0) { vlmxError(vlmxErrInvalidArgument, "MAXITERATIONS is negative.") ; } vl_svmpegasos_set_maxiterations(svm, (vl_size) *mxGetPr(optarg)) ; break ; case opt_epsilon : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "EPSILON is not a plain scalar.") ; } if (*mxGetPr(optarg) < 0) { vlmxError(vlmxErrInvalidArgument, "EPSILON is negative.") ; } vl_svmpegasos_set_epsilon(svm, (double) *mxGetPr(optarg)) ; break ; case opt_starting_iteration : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "STARTINGITERATION is not a plain scalar.") ; } if (*mxGetPr(optarg) < 1) { vlmxError(vlmxErrInvalidArgument, "STARTINGITERATION is smaller than 1.") ; } vl_svmpegasos_set_iterations(svm, (vl_size) *mxGetPr(optarg) - 1) ; break ; case opt_starting_model : if (!vlmxIsVector(optarg, -1) || mxIsComplex(optarg) || mxGetClassID(optarg) != mxDOUBLE_CLASS) { vlmxError(vlmxErrInvalidArgument, "STARTINGMODEL is not a real vector.") ; } inputModel = mxDuplicateArray(optarg) ; vl_svmpegasos_set_model(svm,(double*) mxGetData(inputModel)) ; freeModel = VL_FALSE ; break ; case opt_starting_bias : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "STARTINGBIAS is not a plain scalar.") ; } vl_svmpegasos_set_bias(svm, (double) *mxGetPr(optarg)) ; break ; case opt_permutation : if (!vlmxIsVector(optarg, -1) || mxIsComplex(optarg) || mxGetClassID(optarg) != mxUINT32_CLASS) { vlmxError(vlmxErrInvalidArgument, "PERMUTATION is not a UINT32 vector.") ; } permutationSize = mxGetNumberOfElements(optarg) ; permutation = mxMalloc(sizeof(vl_uint32) * permutationSize) ; matlabPermutation = mxGetData(optarg) ; { /* adjust indexing */ vl_uindex k ; for (k = 0 ; k < permutationSize ; ++k) { permutation[k] = matlabPermutation[k] - 1 ; if (permutation[k] >= numSamples) { vlmxError(vlmxErrInconsistentData, "Permutation indexes out of bounds: PERMUTATION(%d) = %d > %d = number of data samples.", k + 1, permutation[k] + 1, numSamples) ; } } } vl_svmpegasos_set_permutation(svm,permutation,permutationSize) ; break ; case opt_bias_learningrate : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "BIASLEARNINGRATE is not a plain scalar.") ; } if (mxGetClassID(optarg) != mxDOUBLE_CLASS) { vlmxError(vlmxErrInvalidArgument, "BIASLEARNINGRATE must be double.") ; } vl_svmpegasos_set_bias_learningrate(svm, (double)*mxGetPr(optarg)) ; break ; case opt_diagnostic : if( !mxIsClass( optarg , "function_handle")) { mexErrMsgTxt("DIAGNOSTICSFUNCTION must be a function handle."); } disp->diagnosticsHandle = (mxArray*)(optarg) ; break ; case opt_diagnostic_caller_ref : disp->callerRef = (mxArray*)(optarg) ; break ; case opt_energy_freq : if (!vlmxIsPlainScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "ENERGYFREQ is not a plain scalar.") ; } vl_svmpegasos_set_energy_frequency (svm, (vl_size)*mxGetPr(optarg)) ; break ; case opt_verbose : ++ verbose ; disp->verbose = 1 ; break ; case opt_KINTERS: case opt_KL1: kernelType = VlHomogeneousKernelIntersection ; break ; case opt_KCHI2: kernelType = VlHomogeneousKernelChi2 ; break ; case opt_KJS: kernelType = VlHomogeneousKernelJS ; break ; case opt_period: if (! vlmxIsPlainScalar(optarg)){ vlmxError(vlmxErrInvalidArgument, "PERIOD is not a scalar.") ; } period = *mxGetPr(optarg) ; if (period <= 0) { vlmxError(vlmxErrInvalidArgument, "PERIOD is not positive.") ; } break ; case opt_gamma: if (! vlmxIsPlainScalar(optarg)){ vlmxError(vlmxErrInvalidArgument, "GAMMA is not a scalar.") ; } gamma = *mxGetPr(optarg) ; if (gamma <= 0) { vlmxError(vlmxErrInvalidArgument, "GAMMA is not positive.") ; } break ; case opt_window: if (! vlmxIsString(optarg,-1)){ vlmxError(vlmxErrInvalidArgument, "WINDOW is not a string.") ; } else { char buffer [1024] ; mxGetString(optarg, buffer, sizeof(buffer) / sizeof(char)) ; if (vl_string_casei_cmp("uniform", buffer) == 0) { windowType = VlHomogeneousKernelMapWindowUniform ; } else if (vl_string_casei_cmp("rectangular", buffer) == 0) { windowType = VlHomogeneousKernelMapWindowRectangular ; } else { vlmxError(vlmxErrInvalidArgument, "WINDOW=%s is not recognized.", buffer) ; } } break ; } } if (verbose) { mexPrintf("vl_pegasos: Lambda = %g\n", svm->lambda) ; mexPrintf("vl_pegasos: BiasMultiplier = %g\n", svm->biasMultiplier) ; mexPrintf("vl_pegasos: MaxIterations = %d\n", svm->maxIterations) ; mexPrintf("vl_pegasos: permutation size = %d\n", permutationSize) ; } switch (dataType) { case VL_TYPE_FLOAT : innerProduct = (VlSvmDatasetInnerProduct)&vl_svmdataset_innerproduct_f ; accumulator = (VlSvmDatasetAccumulator)&vl_svmdataset_accumulator_f ; break ; case VL_TYPE_DOUBLE: innerProduct = (VlSvmDatasetInnerProduct)&vl_svmdataset_innerproduct_d ; accumulator = (VlSvmDatasetAccumulator)&vl_svmdataset_accumulator_d ; break ; } dataset = vl_svmdataset_new(data,dataDimension) ; if (homkermap) { map = vl_homogeneouskernelmap_new (kernelType, gamma, n, period, windowType) ; mapFunc = (VlSvmDatasetFeatureMap)&vl_homogeneouskernelmap_evaluate_d ; vl_svmdataset_set_map(dataset,map,mapFunc,2*n + 1) ; } /* ----------------------------------------------------------------- * Do job * -------------------------------------------------------------- */ if (disp->diagnosticsHandle) { vl_svmpegasos_set_diagnostic (svm, (VlSvmDiagnostics)&diagnosticDispatcher, disp) ; } vl_svmpegasos_train (svm,dataset, numSamples,innerProduct, accumulator, (vl_int8 const *)mxGetData(IN(LABELS))) ; /* ----------------------------------------------------------------- * Output * -------------------------------------------------------------- */ if (nout >= 1) { double * tempBuffer ; mwSize dims[2] ; dims[0] = svm->dimension ; dims[1] = 1 ; out[OUT_MODEL] = mxCreateNumericArray(2, dims, mxDOUBLE_CLASS, mxREAL) ; tempBuffer = (double*) mxGetData(out[OUT_MODEL]) ; memcpy(tempBuffer,svm->model,svm->dimension * sizeof(double)) ; } if (nout >= 2) { double * tempBuffer ; mwSize dims[2] ; dims[0] = 1 ; dims[1] = 1 ; out[OUT_BIAS] = mxCreateNumericArray(2, dims, mxDOUBLE_CLASS, mxREAL) ; tempBuffer = (double*) mxGetData(out[OUT_BIAS]) ; *tempBuffer = svm->bias ; } if (nout == 3) { out[OUT_INFO] = createInfoStruct(svm) ; } if (homkermap) { vl_homogeneouskernelmap_delete(map); } vl_svmdataset_delete(dataset) ; vl_svmpegasos_delete(svm,freeModel) ; vl_free(disp) ; }
/* driver */ void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { typedef int unsigned data_t ; vl_bool autoComparison = VL_TRUE ; VlVectorComparisonType comparisonType = VlDistanceL2 ; enum {IN_X = 0, IN_Y} ; enum {OUT_D = 0} ; mwSize numDataX = 0 ; mwSize numDataY = 0 ; mwSize dimension ; mxClassID classId ; /* for option parsing */ int opt ; int next ; mxArray const *optarg ; VL_USE_MATLAB_ENV ; if (nout > 1) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } if (nin < 1) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (! (vlmxIsMatrix (in[IN_X],-1,-1) && vlmxIsReal(in[IN_X]))) { vlmxError(vlmxErrInvalidArgument, "X must be a real matrix.") ; } next = 1 ; classId = mxGetClassID(in[IN_X]) ; dimension = mxGetM(in[IN_X]) ; numDataX = mxGetN(in[IN_X]) ; if (nin > 1 && vlmxIsMatrix (in[IN_Y],-1,-1) && vlmxIsReal(in[IN_Y])) { next = 2 ; autoComparison = VL_FALSE ; numDataY = mxGetN(in[IN_Y]) ; if (mxGetClassID(in[IN_Y]) != classId) { vlmxError(vlmxErrInvalidArgument, "X and Y must have the same class.") ; } if (dimension != mxGetM(in[IN_Y])) { vlmxError(vlmxErrInvalidArgument, "X and Y must have the same number of rows.") ; } } if (classId != mxSINGLE_CLASS && classId != mxDOUBLE_CLASS) { vlmxError(vlmxErrInvalidArgument, "X must be either of class SINGLE or DOUBLE."); } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_L2 : comparisonType = VlDistanceL2 ; break ; case opt_L1 : comparisonType = VlDistanceL1 ; break ; case opt_CHI2 : comparisonType = VlDistanceChi2 ; break ; case opt_HELL : comparisonType = VlDistanceHellinger ; break ; case opt_JS : comparisonType = VlDistanceJS ; break ; case opt_KL2 : comparisonType = VlKernelL2 ; break ; case opt_KL1 : comparisonType = VlKernelL1 ; break ; case opt_KCHI2 : comparisonType = VlKernelChi2 ; break ; case opt_KHELL : comparisonType = VlKernelHellinger ; break ; case opt_KJS : comparisonType = VlKernelJS ; break ; default: abort() ; } } /* allocate output */ { mwSize dims [2] ; dims[0] = numDataX ; dims[1] = autoComparison ? numDataX : numDataY ; out[OUT_D] = mxCreateNumericArray (2, dims, classId, mxREAL) ; } /* If either numDataX or numDataY are null, their data pointers are null as well. This may confuse vl_eval_vector_comparison_on_all_pairs_*, so we intercept this as a special case. The same is true if dimension is null. */ if (numDataX == 0 || (! autoComparison && numDataY == 0)) { return ; } if (dimension == 0) { return ; } /* make calculation */ switch (classId) { case mxSINGLE_CLASS: { VlFloatVectorComparisonFunction f = vl_get_vector_comparison_function_f (comparisonType) ; if (autoComparison) { vl_eval_vector_comparison_on_all_pairs_f ((float*)mxGetData(out[OUT_D]), dimension, (float*)mxGetData(in[IN_X]), numDataX, 0, 0, f) ; } else { vl_eval_vector_comparison_on_all_pairs_f ((float*)mxGetData(out[OUT_D]), dimension, (float*)mxGetData(in[IN_X]), numDataX, (float*)mxGetData(in[IN_Y]), numDataY, f) ; } } break ; case mxDOUBLE_CLASS: { VlDoubleVectorComparisonFunction f = vl_get_vector_comparison_function_d (comparisonType) ; if (autoComparison) { vl_eval_vector_comparison_on_all_pairs_d ((double*)mxGetData(out[OUT_D]), dimension, (double*)mxGetData(in[IN_X]), numDataX, 0, 0, f) ; } else { vl_eval_vector_comparison_on_all_pairs_d ((double*)mxGetData(out[OUT_D]), dimension, (double*)mxGetData(in[IN_X]), numDataX, (double*)mxGetData(in[IN_Y]), numDataY, f) ; } } break ; default: abort() ; } }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { float * image ; vl_size width, height ; vl_size cellSize = 16 ; enum {IN_I = 0, IN_CELLSIZE} ; enum {OUT_FEATURES = 0} ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin > 2) { vlmxError(vlmxErrTooManyInputArguments, NULL) ; } if (nin < 2) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (nout > 1) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } if (! mxIsNumeric(IN(I)) || ! vlmxIsReal(IN(I)) || ! vlmxIsMatrix(IN(I), -1, -1)) { vlmxError(vlmxErrInvalidArgument, "I is not a numeric matrix.") ; } if (mxGetClassID(IN(I)) != mxSINGLE_CLASS) { vlmxError(vlmxErrInvalidArgument, "I is not of class SINGLE.") ; } if (! vlmxIsPlainScalar(IN(CELLSIZE))) { vlmxError(vlmxErrInvalidArgument, "CELLSIZE is not a plain scalar.") ; } if (mxGetScalar(IN(CELLSIZE)) < 1.0) { vlmxError(vlmxErrInvalidArgument, "CELLSIZE is less than 1.") ; } cellSize = (vl_size) mxGetScalar(IN(CELLSIZE)) ; image = mxGetData(IN(I)) ; width = mxGetN(IN(I)) ; height = mxGetM(IN(I)) ; /* do job */ { /* recall that MATLAB images are transposed */ mwSize dimensions [3] ; /* get LBP object */ VlLbp * lbp = vl_lbp_new (VlLbpUniform, VL_TRUE) ; if (lbp == NULL) { vlmxError(vlmxErrAlloc, NULL) ; } /* get output buffer */ dimensions[0] = height / cellSize ; dimensions[1] = width / cellSize ; dimensions[2] = vl_lbp_get_dimension(lbp) ; OUT(FEATURES) = mxCreateNumericArray(3, dimensions, mxSINGLE_CLASS, mxREAL) ; vl_lbp_process(lbp, mxGetData(OUT(FEATURES)), image, height, width, cellSize) ; vl_lbp_delete(lbp) ; } }
void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { enum {IN_FOREST = 0, IN_DATA, IN_QUERY, IN_END} ; enum {OUT_INDEX = 0, OUT_DISTANCE} ; int verbose = 0 ; int opt ; int next = IN_END ; mxArray const *optarg ; VlKDForest * forest ; mxArray const * forest_array = in[IN_FOREST] ; mxArray const * data_array = in[IN_DATA] ; mxArray const * query_array = in[IN_QUERY] ; void * query ; vl_uint32 * index ; void * distance ; vl_size numNeighbors = 1 ; vl_size numQueries ; unsigned int numComparisons = 0 ; unsigned int maxNumComparisons = 0 ; mxClassID dataClass ; vl_index i ; VL_USE_MATLAB_ENV ; /* ----------------------------------------------------------------- * Check the arguments * -------------------------------------------------------------- */ if (nin < 3) { vlmxError(vlmxErrNotEnoughInputArguments, NULL) ; } if (nout > 2) { vlmxError(vlmxErrTooManyOutputArguments, NULL) ; } forest = new_kdforest_from_array (forest_array, data_array) ; dataClass = mxGetClassID (data_array) ; if (mxGetClassID (query_array) != dataClass) { vlmxError(vlmxErrInvalidArgument, "QUERY must have the same storage class as DATA.") ; } if (! vlmxIsReal (query_array)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be real.") ; } if (! vlmxIsMatrix (query_array, forest->dimension, -1)) { vlmxError(vlmxErrInvalidArgument, "QUERY must be a matrix with TREE.NUMDIMENSIONS rows.") ; } while ((opt = vlmxNextOption (in, nin, options, &next, &optarg)) >= 0) { switch (opt) { case opt_num_neighs : if (! vlmxIsScalar(optarg) || (numNeighbors = mxGetScalar(optarg)) < 1) { vlmxError(vlmxErrInvalidArgument, "NUMNEIGHBORS must be a scalar not smaller than one.") ; } break; case opt_max_num_comparisons : if (! vlmxIsScalar(optarg)) { vlmxError(vlmxErrInvalidArgument, "MAXNUMCOMPARISONS must be a scalar.") ; } maxNumComparisons = mxGetScalar(optarg) ; break; case opt_verbose : ++ verbose ; break ; } } vl_kdforest_set_max_num_comparisons (forest, maxNumComparisons) ; query = mxGetData (query_array) ; numQueries = mxGetN (query_array) ; out[OUT_INDEX] = mxCreateNumericMatrix (numNeighbors, numQueries, mxUINT32_CLASS, mxREAL) ; out[OUT_DISTANCE] = mxCreateNumericMatrix (numNeighbors, numQueries, dataClass, mxREAL) ; index = mxGetData (out[OUT_INDEX]) ; distance = mxGetData (out[OUT_DISTANCE]) ; if (verbose) { VL_PRINTF ("vl_kdforestquery: number of queries: %d\n", numQueries) ; VL_PRINTF ("vl_kdforestquery: number of neighbors per query: %d\n", numNeighbors) ; VL_PRINTF ("vl_kdforestquery: max num of comparisons per query: %d\n", vl_kdforest_get_max_num_comparisons (forest)) ; } numComparisons = vl_kdforest_query_with_array (forest, index, numNeighbors, numQueries, distance, query) ; vl_kdforest_delete(forest) ; /* adjust for MATLAB indexing */ for (i = 0 ; i < (signed) (numNeighbors * numQueries) ; ++i) { index[i] ++ ; } if (verbose) { VL_PRINTF ("vl_kdforestquery: number of comparisons per query: %.3f\n", ((double) numComparisons) / numQueries) ; VL_PRINTF ("vl_kdforestquery: number of comparisons per neighbor: %.3f\n", ((double) numComparisons) / (numQueries * numNeighbors)) ; } }