示例#1
0
文件: process.c 项目: rrk22/course_os
void setup_process_vas(pcb* pcb_p)
{

	//		assert(1==15);
	for (int i = 0; i < 20; i++)
	{
		uint32_t *v = (uint32_t*) (pcb_p->start + (i * BLOCK_SIZE));
		int x = vm_allocate_page(pcb_p->stored_vas, (void*) v, VM_PERM_USER_RW);
		assert(x == 0);
		vm_map_shared_memory(KERNEL_VAS, (void*) v, pcb_p->stored_vas,
				(void*) v, VM_PERM_USER_RW);
	}

	uint32_t *copyIn = (uint32_t *) pcb_p->start;
	int counter = 0;
	uint32_t * v = (uint32_t*) pcb_p->start;
	//*v = *copyIn;
	while (counter < pcb_p->len)
	{
		*v = *copyIn;
		copyIn += 1;
		v += 1;
		counter += 4;
	}

	for (int i = 0; i < 20; i++)
	{
		uint32_t *v = (uint32_t *) (pcb_p->start + (i * BLOCK_SIZE));
		vm_free_mapping(KERNEL_VAS, (void*) v);

	}

}
void vm_map_page(struct vm_translation_map *map, unsigned int va, unsigned int pa)
{
    int vpindex = va / PAGE_SIZE;
    int pgdindex = vpindex / 1024;
    int pgtindex = vpindex % 1024;
    unsigned int *pgdir;
    unsigned int *pgtbl;
    struct list_node *other_map;
    unsigned int new_pgt;
    int old_flags;

    if (va >= KERNEL_BASE)
    {
        // Map into kernel space
        old_flags = acquire_spinlock_int(&kernel_space_lock);

        // The page tables for kernel space are shared by all page directories.
        // Check the first page directory to see if this is present. If not,
        // allocate a new one and stick it into all page directories.
        pgdir = (unsigned int*) PA_TO_VA(kernel_map.page_dir);
        if ((pgdir[pgdindex] & PAGE_PRESENT) == 0)
        {
            new_pgt = page_to_pa(vm_allocate_page()) | PAGE_PRESENT;
            list_for_each(&map_list, other_map, struct list_node)
            {
                pgdir = (unsigned int*) PA_TO_VA(((struct vm_translation_map*)other_map)->page_dir);
                pgdir[pgdindex] = new_pgt;
            }
        }
示例#3
0
文件: process.c 项目: rrk22/course_os
/*
 Allocated memory for the process stack
 Moves arguments for argc, argv, envp, and auxp
 into stack_top

 Points stack pointer to location where stack_top would begin
 @param pointer to process control block
 @param pcb* pcb_p

 */
void init_proc_stack(pcb * pcb_p)
{
	int retval = 0;
	for (int i = 0; i < (STACK_SIZE / BLOCK_SIZE); i++)
	{
		retval = vm_allocate_page(pcb_p->stored_vas,
				(void*) (STACK_BASE + (i * BLOCK_SIZE)), VM_PERM_USER_RW);
		if (retval)
		{
			os_printf("vm_allocate_page error code: %d\n", retval);
			break;
		}
		else
		{
			os_printf(
					"A page have been allocated for process stack at vptr: 0x%x\n",
					(STACK_BASE + (i * BLOCK_SIZE)));
		}
		vm_map_shared_memory(KERNEL_VAS,
				(void*) (STACK_BASE + (i * BLOCK_SIZE)), pcb_p->stored_vas,
				(void*) (STACK_BASE + (i * BLOCK_SIZE)), VM_PERM_USER_RW);

	}

	// Stick a NULL at STACK_TOP-sizeof(int*)
	uint32_t *stack_top = (uint32_t*) STACK_TOP;
	stack_top[-1] = 0;
	stack_top[-2] = 0;
	stack_top[-3] = 0;
	stack_top[-4] = 0;
	stack_top[-5] = STACK_BASE;
	stack_top[-6] = 1;

	os_strcpy((char*) STACK_BASE, pcb_p->name);

	// We need to set sp (r13) to stack_top - 12
	pcb_p->R13 = STACK_TOP - 4 * 6;
	print_process_state(pcb_p->PID);

	for (int i = 0; i < (STACK_SIZE / BLOCK_SIZE); i++)
	{
		vm_free_mapping(KERNEL_VAS, (void*) (STACK_BASE + (i * BLOCK_SIZE)));

	}
}
struct vm_translation_map *create_translation_map(void)
{
    struct vm_translation_map *map;
    int old_flags;

    map = slab_alloc(&translation_map_slab);
    map->page_dir = page_to_pa(vm_allocate_page());

    old_flags = acquire_spinlock_int(&kernel_space_lock);
    // Copy kernel page tables into new page directory
    memcpy((unsigned int*) PA_TO_VA(map->page_dir) + 768,
           (unsigned int*) PA_TO_VA(kernel_map.page_dir) + 768,
           256 * sizeof(unsigned int));

    map->asid = next_asid++;
    map->lock = 0;

    list_add_tail(&map_list, (struct list_node*) map);
    release_spinlock_int(&kernel_space_lock, old_flags);

    return map;
}
示例#5
0
void __process_elf_init(pcb* pcb_p, const char* name) {
  int fd = kopen(name, 'r');
  uint32_t start = PROC_LOCATION;
  uint32_t len = 0;
  
  struct stats fstats;
  get_stats(name, &fstats);
  len = fstats.size;
  os_printf("LOADING PROCESS <<%s>>, start address %X\n",
            name, start, len);

  for (int i = 0; i < (len / BLOCK_SIZE) + 1; i++)
  {
    uint32_t *v = (uint32_t*) (start + (i * BLOCK_SIZE));
    int x = vm_allocate_page(pcb_p->stored_vas, (void*) v, VM_PERM_USER_RW);
    assert(x == 0);
    vm_map_shared_memory(KERNEL_VAS, (void*) v,
                         pcb_p->stored_vas,(void*) v,
                         VM_PERM_USER_RW);
  }

  int* location = (int*) start;
  int counter = 0;
  while (counter < len)
  {
    kread(fd, location, 4);
    location += 1;
    counter += 4;
  }

  Elf_Ehdr* success = (Elf_Ehdr*) load_file(pcb_p, (uint32_t*) start);
  pcb_p->R15 = success->e_entry;
  for (int i = 0; i < (len / BLOCK_SIZE) + 1; i++)
  {
    uint32_t *v = (uint32_t *) (start + (i * BLOCK_SIZE));
    vm_free_mapping(KERNEL_VAS, (void*) v);
  }
}
示例#6
0
//
// This is always called with the address space lock held, so the area is
// guaranteed not to change. Returns 1 if it sucessfully satisfied the fault, 0
// if it failed for some reason.
//
static int soft_fault(struct vm_address_space *space, const struct vm_area *area,
                      unsigned int address, int is_store)
{
    int got;
    unsigned int page_flags;
    struct vm_page *source_page;
    struct vm_page *dummy_page = 0;
    unsigned int cache_offset;
    struct vm_cache *cache;
    int old_flags;
    int is_cow_page = 0;
    int size_to_read;

    VM_DEBUG("soft fault va %08x %s\n", address, is_store ? "store" : "load");

    // XXX check area protections and fail if this shouldn't be allowed
    if (is_store && (area->flags & AREA_WRITABLE) == 0)
    {
        kprintf("store to read only area %s @%08x\n", area->name, address);
        return 0;
    }

    cache_offset = PAGE_ALIGN(address - area->low_address + area->cache_offset);
    old_flags = disable_interrupts();
    lock_vm_cache();
    assert(area->cache);

    for (cache = area->cache; cache; cache = cache->source)
    {
        VM_DEBUG("searching in cache %p\n", cache);
        source_page = lookup_cache_page(cache, cache_offset);
        if (source_page)
            break;

        if (cache->file && address - area->low_address < area->cache_length)
        {
            VM_DEBUG("reading page from file\n");

            // Read the page from this cache.
            source_page = vm_allocate_page();

            // Insert the page first so, if a collided fault occurs, it will not
            // load a different page (the vm cache lock protects the busy bit)
            source_page->busy = 1;
            insert_cache_page(cache, cache_offset, source_page);
            unlock_vm_cache();
            restore_interrupts(old_flags);

            if (area->cache_length - cache_offset < PAGE_SIZE)
                size_to_read = area->cache_length - cache_offset;
            else
                size_to_read = PAGE_SIZE;

            got = read_file(cache->file, cache_offset,
                            (void*) PA_TO_VA(page_to_pa(source_page)), size_to_read);
            if (got < 0)
            {
                kprintf("failed to read from file\n");
                dec_page_ref(source_page);
                if (dummy_page != 0)
                {
                    disable_interrupts();
                    lock_vm_cache();
                    remove_cache_page(dummy_page);
                    unlock_vm_cache();
                    restore_interrupts(old_flags);
                    dec_page_ref(dummy_page);
                }

                return 0;
            }

            // For BSS, clear out data past the end of the file
            if (size_to_read < PAGE_SIZE)
            {
                memset((char*) PA_TO_VA(page_to_pa(source_page)) + size_to_read, 0,
                       PAGE_SIZE - size_to_read);
            }

            disable_interrupts();
            lock_vm_cache();
            source_page->busy = 0;
            break;
        }

        // Otherwise scan the next cache
        is_cow_page = 1;

        if (cache == area->cache)
        {
            // Insert a dummy page in the top level cache to catch collided faults.
            dummy_page = vm_allocate_page();
            dummy_page->busy = 1;
            insert_cache_page(cache, cache_offset, dummy_page);
        }
    }

    if (source_page == 0)
    {
        assert(dummy_page != 0);

        VM_DEBUG("source page was not found, use empty page\n");

        // No page found, just use the dummy page
        dummy_page->busy = 0;
        source_page = dummy_page;
    }
    else if (is_cow_page)
    {
        // is_cow_page means source_page belongs to another cache.
        assert(dummy_page != 0);
        if (is_store)
        {
            // The dummy page have the contents of the source page copied into it,
            // and will be inserted into the top cache (it's not really a dummy page
            // any more).
            memcpy((void*) PA_TO_VA(page_to_pa(dummy_page)),
                (void*) PA_TO_VA(page_to_pa(source_page)),
                PAGE_SIZE);
            VM_DEBUG("write copy page va %08x dest pa %08x source pa %08x\n",
                address, page_to_pa(dummy_page), page_to_pa(source_page));
            source_page = dummy_page;
            dummy_page->busy = 0;
        }
        else
        {
            // We will map in the read-only page from the source cache.
            // Remove the dummy page from this cache (we do not insert
            // the page into this cache, because we don't own it page).
            remove_cache_page(dummy_page);
            dec_page_ref(dummy_page);

            VM_DEBUG("mapping read-only source page va %08x pa %08x\n", address,
                page_to_pa(source_page));
        }
    }

    assert(source_page != 0);

    // Grab a ref because we are going to map this page
    inc_page_ref(source_page);

    unlock_vm_cache();
    restore_interrupts(old_flags);

    // XXX busy wait for page to finish loading
    while (source_page->busy)
        reschedule();

    if (is_store)
        source_page->dirty = 1; // XXX Locking?

    // It's possible two threads will fault on the same VA and end up mapping
    // the page twice. This is fine, because the code above ensures it will
    // be the same page.
    page_flags = PAGE_PRESENT;

    // If the page is clean, we will mark it not writable. This will fault
    // on the next write, allowing us to update the dirty flag.
    if ((area->flags & AREA_WRITABLE) != 0 && (source_page->dirty || is_store))
        page_flags |= PAGE_WRITABLE;

    if (area->flags & AREA_EXECUTABLE)
        page_flags |= PAGE_EXECUTABLE;

    if (space == &kernel_address_space)
        page_flags |= PAGE_SUPERVISOR | PAGE_GLOBAL;

    vm_map_page(space->translation_map, address, page_to_pa(source_page)
        | page_flags);

    return 1;
}