示例#1
0
static vx_status map_vx_image(vx_image vxImg, uint32_t *width, uint32_t *height, mem_info_t *mem_info, vx_enum usage)
{
	vx_size vxImgSize;
	vx_status status = VX_SUCCESS;
	vx_rectangle_t rect;
	vx_imagepatch_addressing_t vxImg_addr;
	void *vxImg_base = NULL;
	
	status = vxGetValidRegionImage(vxImg, &rect);
	if(status != VX_SUCCESS) return status;
	
	status = vxAccessImagePatch(vxImg, &rect, 0, &vxImg_addr, (void **)&vxImg_base, usage);
	if(status != VX_SUCCESS) return status;
	
    *width  = vxImg_addr.dim_x;
    *height = vxImg_addr.dim_y;
	
	status = get_vx_image_size(vxImg, &vxImgSize);
	if(status != VX_SUCCESS) return status;
	
	mem_info->len = vxImgSize;
	mem_info->ptr = vxImg_base;
	mem_info->vxImg_addr = vxImg_addr;
	
	return status;
}
示例#2
0
// generic bitwise op
static vx_status vxBinaryU8Op(vx_image in1, vx_image in2, vx_image output, bitwiseOp op)
{
    vx_uint32 y, x, width = 0, height = 0;
    void *dst_base   = NULL;
    void *src_base[2] = {NULL, NULL};
    vx_imagepatch_addressing_t dst_addr, src_addr[2];
    vx_rectangle_t rect;
    vx_status status = VX_SUCCESS;

    status = vxGetValidRegionImage(in1, &rect);
    status |= vxAccessImagePatch(in1, &rect, 0, &src_addr[0], (void **)&src_base[0], VX_READ_ONLY);
    status |= vxAccessImagePatch(in2, &rect, 0, &src_addr[1], (void **)&src_base[1], VX_READ_ONLY);
    status |= vxAccessImagePatch(output, &rect, 0, &dst_addr, (void **)&dst_base, VX_WRITE_ONLY);
    width = src_addr[0].dim_x;
    height = src_addr[0].dim_y;
    for (y = 0; y < height; y++)
    {
        for (x = 0; x < width; x++)
        {
            vx_uint8 *src[2] = {
                vxFormatImagePatchAddress2d(src_base[0], x, y, &src_addr[0]),
                vxFormatImagePatchAddress2d(src_base[1], x, y, &src_addr[1]),
            };
            vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);

            *dst = op(*src[0], *src[1]);
        }
    }
    status |= vxCommitImagePatch(in1, NULL, 0, &src_addr[0], src_base[0]);
    status |= vxCommitImagePatch(in2, NULL, 0, &src_addr[1], src_base[1]);
    status |= vxCommitImagePatch(output, &rect, 0, &dst_addr, dst_base);

    return status;
}
示例#3
0
// nodeless version of the Not kernel
vx_status vxNot(vx_image input, vx_image output)
{
    vx_uint32 y, x, width = 0, height = 0;
    void *dst_base = NULL;
    void *src_base = NULL;
    vx_imagepatch_addressing_t dst_addr, src_addr;
    vx_rectangle_t rect;
    vx_status status = VX_SUCCESS;

    status = vxGetValidRegionImage(input, &rect);
    status |= vxAccessImagePatch(input, &rect, 0, &src_addr, (void **)&src_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(output, &rect, 0, &dst_addr, (void **)&dst_base, VX_WRITE_ONLY);
    height = src_addr.dim_y;
    width = src_addr.dim_x;
    for (y = 0; y < height; y++)
    {
        for (x = 0; x < width; x++)
        {
            vx_uint8 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
            vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);

            *dst = ~*src;
        }
    }
    status |= vxCommitImagePatch(input, NULL, 0, &src_addr, src_base);
    status |= vxCommitImagePatch(output, &rect, 0, &dst_addr, dst_base);

    return status;
}
示例#4
0
static vx_status vxMagnitudeKernel(vx_node node, vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_FAILURE;
    if (num == 3)
    {
        vx_image grad_x = (vx_image)parameters[0];
        vx_image grad_y = (vx_image)parameters[1];
        vx_image output = (vx_image)parameters[2];
        vx_uint32 y, x;
        vx_fourcc format = 0;
        vx_uint8 *dst_base   = NULL;
        vx_int16 *src_base_x = NULL;
        vx_int16 *src_base_y = NULL;
        vx_imagepatch_addressing_t dst_addr, src_addr_x, src_addr_y;
        vx_rectangle rect;
        vx_uint32 value;

        if (grad_x == 0 || grad_y == 0)
            return VX_ERROR_INVALID_PARAMETERS;
        vxQueryImage(output, VX_IMAGE_ATTRIBUTE_FORMAT, &format, sizeof(format));
        rect = vxGetValidRegionImage(grad_x);
        status = VX_SUCCESS;
        status |= vxAccessImagePatch(grad_x, rect, 0, &src_addr_x, (void **)&src_base_x);
        status |= vxAccessImagePatch(grad_y, rect, 0, &src_addr_y, (void **)&src_base_y);
        status |= vxAccessImagePatch(output, rect, 0, &dst_addr, (void **)&dst_base);
        for (y = 0; y < src_addr_x.dim_y; y++)
        {
            for (x = 0; x < src_addr_x.dim_x; x++)
            {
                vx_int16 *in_x = vxFormatImagePatchAddress2d(src_base_x, x, y, &src_addr_x);
                vx_int16 *in_y = vxFormatImagePatchAddress2d(src_base_y, x, y, &src_addr_y);
                if (format == FOURCC_U8)
                {
                    vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                    vx_int32 grad[2] = {in_x[0]*in_x[0], in_y[0]*in_y[0]};
                    vx_float64 sum = grad[0] + grad[1];
                    value = ((vx_int32)sqrt(sum))/4;
                    *dst = (vx_uint8)(value > UINT8_MAX ? UINT8_MAX : value);
                }
                else if (format == FOURCC_S16)
                {
                    vx_int16 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                    vx_int32 grad[2] = {in_x[0]*in_x[0], in_y[0]*in_y[0]};
                    vx_float64 sum = grad[0] + grad[1];
                    value = (vx_int32)sqrt(sum);
                    *dst = (vx_int16)(value > INT16_MAX ? INT16_MAX : value);
                }
            }
        }
        status |= vxCommitImagePatch(grad_x, 0, 0, &src_addr_x, src_base_x);
        status |= vxCommitImagePatch(grad_y, 0, 0, &src_addr_y, src_base_y);
        status |= vxCommitImagePatch(output, rect, 0, &dst_addr, dst_base);
        vxReleaseRectangle(&rect);
    }
    return status;
}
示例#5
0
static vx_status vxPhaseKernel(vx_node node, vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_FAILURE;
    if (num == 3)
    {
        vx_image grad_x = (vx_image)parameters[0];
        vx_image grad_y = (vx_image)parameters[1];
        vx_image output = (vx_image)parameters[2];
        vx_uint32 y, x;
        vx_uint8 *dst_base   = NULL;
        vx_int16 *src_base_x = NULL;
        vx_int16 *src_base_y = NULL;
        vx_imagepatch_addressing_t dst_addr, src_addr_x, src_addr_y;
        vx_rectangle rect;
        if (grad_x == 0 && grad_y == 0)
            return VX_ERROR_INVALID_PARAMETERS;

        rect = vxGetValidRegionImage(grad_x);
        status = VX_SUCCESS;
        status |= vxAccessImagePatch(grad_x, rect, 0, &src_addr_x, (void **)&src_base_x);
        status |= vxAccessImagePatch(grad_y, rect, 0, &src_addr_y, (void **)&src_base_y);
        status |= vxAccessImagePatch(output, rect, 0, &dst_addr, (void **)&dst_base);
        for (y = 0; y < dst_addr.dim_y; y++)
        {
            for (x = 0; x < dst_addr.dim_x; x++)
            {
                vx_int16 *in_x = vxFormatImagePatchAddress2d(src_base_x, x, y, &src_addr_x);
                vx_int16 *in_y = vxFormatImagePatchAddress2d(src_base_y, x, y, &src_addr_y);
                vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                /* -M_PI to M_PI */
                double arct = atan2((double)in_y[0],(double)in_x[0]);
                /* 0.0 - 1.0 */
                double norm = arct;
                if (arct < 0.0)
                {
                    norm = VX_TAU + arct;
                }
                /* 0 - 255 */
                *dst = (vx_uint8)((vx_uint32)(norm * 255u) & 0xFFu);
                if (in_y[0] != 0 || in_x[0] != 0)
                {
                    VX_PRINT(VX_ZONE_INFO, "atan2(%d,%d) = %lf [norm=%lf] dst=%02x\n", in_y[0], in_x[0], arct, norm, *dst);
                }
            }
        }
        status |= vxCommitImagePatch(grad_x, 0, 0, &src_addr_x, src_base_x);
        status |= vxCommitImagePatch(grad_y, 0, 0, &src_addr_y, src_base_y);
        status |= vxCommitImagePatch(output, rect, 0, &dst_addr, dst_base);
        vxReleaseRectangle(&rect);
    }
    return status;
}
示例#6
0
vx_status vxConvolution3x3(vx_image src, vx_image dst, vx_int16 conv[3][3], const vx_border_mode_t *borders)
{
    vx_uint32 y, x;
    void *src_base = NULL;
    void *dst_base = NULL;
    vx_imagepatch_addressing_t src_addr, dst_addr;
    vx_rectangle_t rect;
    vx_enum dst_format = VX_DF_IMAGE_VIRT;
    vx_status status = VX_SUCCESS;
    vx_uint32 low_x = 0, low_y = 0, high_x, high_y;

    status = vxGetValidRegionImage(src, &rect);
    status |= vxAccessImagePatch(src, &rect, 0, &src_addr, &src_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(dst, &rect, 0, &dst_addr, &dst_base, VX_WRITE_ONLY);
    status |= vxQueryImage(dst, VX_IMAGE_ATTRIBUTE_FORMAT, &dst_format, sizeof(dst_format));

    high_x = src_addr.dim_x;
    high_y = src_addr.dim_y;

    if (borders->mode == VX_BORDER_MODE_UNDEFINED)
    {
        ++low_x; --high_x;
        ++low_y; --high_y;
        vxAlterRectangle(&rect, 1, 1, -1, -1);
    }
    //printf("%s Rectangle = {%u,%u x %u,%u}\n",__FUNCTION__, rect.start_x, rect.start_y, rect.end_x, rect.end_y);

    for (y = low_y; y < high_y; y++)
    {
        for (x = low_x; x < high_x; x++)
        {
            vx_int32 value = vx_convolve8with16(src_base, x, y, &src_addr, conv, borders);

            if (dst_format == VX_DF_IMAGE_U8)
            {
                vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = vx_clamp_u8_i32(value);
            }
            else
            {
                vx_int16 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = vx_clamp_s16_i32(value);
            }
        }
    }

    status |= vxCommitImagePatch(src, NULL, 0, &src_addr, src_base);
    status |= vxCommitImagePatch(dst, &rect, 0, &dst_addr, dst_base);
    return status;
}
示例#7
0
vx_status unmap_vx_image(vx_image vxImg, mem_info_t *mem_info)
{
	vx_status status = VX_SUCCESS;
	vx_rectangle_t rect;
	
	if (!mem_info->ptr) 
		return VX_ERROR_INVALID_VALUE;
	
	status = vxGetValidRegionImage(vxImg, &rect);
	if(status != VX_SUCCESS) return status;
	
	vxCommitImagePatch(vxImg, &rect, 0, &mem_info->vxImg_addr, mem_info->ptr);
	
	VX_PRINT(VX_ZONE_INFO, "unmap_vx_image len:%d ptr:%x\n", mem_info->len, mem_info->ptr);
}
示例#8
0
static vx_status get_vx_image_size(vx_image vxImg, vx_size *vxImgSize)
{
	vx_status status = VX_SUCCESS;
	vx_rectangle_t rect;
	vx_size n_plane, vxImgPlanes = 0ul;

	status = vxGetValidRegionImage(vxImg, &rect);
	if(status != VX_SUCCESS) return status;
	
	status = vxQueryImage(vxImg, VX_IMAGE_PLANES, &vxImgPlanes, sizeof(vxImgPlanes));
	if(status != VX_SUCCESS) return status;
	
	*vxImgSize = 0ul;
	for(n_plane=0; n_plane<vxImgPlanes; n_plane++)
		(*vxImgSize) += vxComputeImagePatchSize(vxImg, &rect, n_plane);
	if(*vxImgSize == 0)	return VX_ERROR_INVALID_VALUE;
	
	VX_PRINT(VX_ZONE_TAR_HEXAGON, "vxImgSize %d\n", *vxImgSize);
	return status;
}
示例#9
0
/*! \brief Calls an OpenCL kernel from OpenVX Graph.
 * Steps:
 * \arg Find the target
 * \arg Get the vxcl context
 * \arg Find the kernel (to get cl kernel information)
 * \arg for each input parameter that is an object, enqueue write
 * \arg wait for finish
 * \arg for each parameter, SetKernelArg
 * \arg call kernel
 * \arg wait for finish
 * \arg for each output parameter that is an object, enqueue read
 * \arg wait for finish
 * \note This implementation will attempt to use the External API as much as possible,
 * but will cast to internal representation when needed (due to lack of API or
 * need for secret information). This is not an optimal OpenCL invocation.
 */
vx_status vxclCallOpenCLKernel(vx_node node, const vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_FAILURE;
    vx_context context = node->base.context;
    vx_target target = (vx_target_t *)&node->base.context->targets[node->affinity];
    vx_cl_kernel_description_t *vxclk = vxclFindKernel(node->kernel->enumeration);
    vx_uint32 pidx, pln, didx, plidx, argidx;
    cl_int err = 0;
    size_t off_dim[3] = {0,0,0};
    size_t work_dim[3];
    //size_t local_dim[3];
    cl_event writeEvents[VX_INT_MAX_PARAMS];
    cl_event readEvents[VX_INT_MAX_PARAMS];
    cl_int we = 0, re = 0;

    vxSemWait(&target->base.lock);

    // determine which platform to use
    plidx = 0;

    // determine which device to use
    didx = 0;

    /* for each input/bi data object, enqueue it and set the kernel parameters */
    for (argidx = 0, pidx = 0; pidx < num; pidx++)
    {
        vx_reference ref = node->parameters[pidx];
        vx_enum dir = node->kernel->signature.directions[pidx];
        vx_enum type = node->kernel->signature.types[pidx];
        vx_memory_t *memory = NULL;

        switch (type)
        {
            case VX_TYPE_ARRAY:
                memory = &((vx_array)ref)->memory;
                break;
            case VX_TYPE_CONVOLUTION:
                memory = &((vx_convolution)ref)->base.memory;
                break;
            case VX_TYPE_DISTRIBUTION:
                memory = &((vx_distribution)ref)->memory;
                break;
            case VX_TYPE_IMAGE:
                memory = &((vx_image)ref)->memory;
                break;
            case VX_TYPE_LUT:
                memory = &((vx_lut_t*)ref)->memory;
                break;
            case VX_TYPE_MATRIX:
                memory = &((vx_matrix)ref)->memory;
                break;
            //case VX_TYPE_PYRAMID:
            //    break;
            case VX_TYPE_REMAP:
                memory = &((vx_remap)ref)->memory;
                break;
            //case VX_TYPE_SCALAR:
            //case VX_TYPE_THRESHOLD:
            //    break;
        }
        if (memory) {
            for (pln = 0; pln < memory->nptrs; pln++) {
                if (memory->cl_type == CL_MEM_OBJECT_BUFFER) {
                    if (type == VX_TYPE_IMAGE) {

                        /* set the work dimensions */
                        work_dim[0] = memory->dims[pln][VX_DIM_X];
                        work_dim[1] = memory->dims[pln][VX_DIM_Y];

                        // width, height, stride_x, stride_y
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_int32), &memory->dims[pln][VX_DIM_X]);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_int32), &memory->dims[pln][VX_DIM_Y]);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_int32), &memory->strides[pln][VX_DIM_X]);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_int32), &memory->strides[pln][VX_DIM_Y]);
                        VX_PRINT(VX_ZONE_INFO, "Setting vx_image as Buffer with 4 parameters\n");
                    } else if (type == VX_TYPE_ARRAY || type == VX_TYPE_LUT) {
                        vx_array arr = (vx_array)ref;
                        // sizeof item, active count, capacity
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&arr->item_size);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&arr->num_items); // this is output?
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&arr->capacity);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_int32), &arr->memory.strides[VX_DIM_X]);
                        VX_PRINT(VX_ZONE_INFO, "Setting vx_buffer as Buffer with 4 parameters\n");
                    } else if (type == VX_TYPE_MATRIX) {
                        vx_matrix mat = (vx_matrix)ref;
                        // columns, rows
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&mat->columns);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&mat->rows);
                        VX_PRINT(VX_ZONE_INFO, "Setting vx_matrix as Buffer with 2 parameters\n");
                    } else if (type == VX_TYPE_DISTRIBUTION) {
                        vx_distribution dist = (vx_distribution)ref;
                        // num, range, offset, winsize
                        vx_uint32 range = dist->memory.dims[0][VX_DIM_X] * dist->window_x;
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&dist->memory.dims[VX_DIM_X]);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&range);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&dist->offset_x);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&dist->window_x);
                    } else if (type == VX_TYPE_CONVOLUTION) {
                        vx_convolution conv = (vx_convolution)ref;
                        // columns, rows, scale
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&conv->base.columns);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&conv->base.rows);
                        err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint32), (vx_uint32 *)&conv->scale);
                    }
                    err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(cl_mem), &memory->hdls[pln]);
                    CL_ERROR_MSG(err, "clSetKernelArg");
                    if (dir == VX_INPUT || dir == VX_BIDIRECTIONAL)
                    {
                        err = clEnqueueWriteBuffer(context->queues[plidx][didx],
                                                   memory->hdls[pln],
                                                   CL_TRUE,
                                                   0,
                                                   vxComputeMemorySize(memory, pln),
                                                   memory->ptrs[pln],
                                                   0,
                                                   NULL,
                                                   &ref->event);
                    }
                } else if (memory->cl_type == CL_MEM_OBJECT_IMAGE2D) {
                    vx_rectangle_t rect = {0};
                    vx_image image = (vx_image)ref;
                    vxGetValidRegionImage(image, &rect);
                    size_t origin[3] = {rect.start_x, rect.start_y, 0};
                    size_t region[3] = {rect.end_x-rect.start_x, rect.end_y-rect.start_y, 1};
                    /* set the work dimensions */
                    work_dim[0] = rect.end_x-rect.start_x;
                    work_dim[1] = rect.end_y-rect.start_y;
                    VX_PRINT(VX_ZONE_INFO, "Setting vx_image as image2d_t wd={%zu,%zu} arg:%u\n",work_dim[0], work_dim[1], argidx);
                    err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(cl_mem), &memory->hdls[pln]);
                    CL_ERROR_MSG(err, "clSetKernelArg");
                    if (err != CL_SUCCESS) {
                        VX_PRINT(VX_ZONE_ERROR, "Error Calling Kernel %s, parameter %u\n", node->kernel->name, pidx);
                    }
                    if (dir == VX_INPUT || dir == VX_BIDIRECTIONAL)
                    {
                        err = clEnqueueWriteImage(context->queues[plidx][didx],
                                                  memory->hdls[pln],
                                                  CL_TRUE,
                                                  origin, region,
                                                  memory->strides[pln][VX_DIM_Y],
                                                  0,
                                                  memory->ptrs[pln],
                                                  0, NULL,
                                                  &ref->event);
                        CL_ERROR_MSG(err, "clEnqueueWriteImage");
                    }
                }
            }
        } else {
            if (type == VX_TYPE_SCALAR) {
                vx_value_t value; // largest platform atomic
                vx_size size = 0ul;
                vx_scalar sc = (vx_scalar)ref;
                vx_enum stype = VX_TYPE_INVALID;
                vxReadScalarValue(sc, &value);
                vxQueryScalar(sc, VX_SCALAR_ATTRIBUTE_TYPE, &stype, sizeof(stype));
                size = vxSizeOfType(stype);
                err = clSetKernelArg(vxclk->kernels[plidx], argidx++, size, &value);
            }
            else if (type == VX_TYPE_THRESHOLD) {
                vx_enum ttype = 0;
                vx_threshold th = (vx_threshold)ref;
                vxQueryThreshold(th, VX_THRESHOLD_ATTRIBUTE_TYPE, &ttype, sizeof(ttype));
                if (ttype == VX_THRESHOLD_TYPE_BINARY) {
                    err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint8), &th->value);
                } else if (ttype == VX_THRESHOLD_TYPE_RANGE) {
                    err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint8), &th->lower);
                    err = clSetKernelArg(vxclk->kernels[plidx], argidx++, sizeof(vx_uint8), &th->upper);
                }
            }
        }
    }
    we = 0;
    for (pidx = 0; pidx < num; pidx++) {
        vx_reference ref = node->parameters[pidx];
        vx_enum dir = node->kernel->signature.directions[pidx];
        if (dir == VX_INPUT || dir == VX_BIDIRECTIONAL) {
            memcpy(&writeEvents[we++],&ref->event, sizeof(cl_event));
        }
    }
    //local_dim[0] = 1;
    //local_dim[1] = 1;
    err = clEnqueueNDRangeKernel(context->queues[plidx][didx],
                                 vxclk->kernels[plidx],
                                 2,
                                 off_dim,
                                 work_dim,
                                 NULL,
                                 we, writeEvents, &node->base.event);

    CL_ERROR_MSG(err, "clEnqueueNDRangeKernel");
    /* enqueue a read on all output data */
    for (pidx = 0; pidx < num; pidx++)
    {
        vx_reference ref = node->parameters[pidx];
        vx_enum dir = node->kernel->signature.directions[pidx];
        vx_enum type = node->kernel->signature.types[pidx];

        if (dir == VX_OUTPUT || dir == VX_BIDIRECTIONAL)
        {
            vx_memory_t *memory = NULL;

            switch (type)
            {
                case VX_TYPE_ARRAY:
                    memory = &((vx_array)ref)->memory;
                    break;
                case VX_TYPE_CONVOLUTION:
                    memory = &((vx_convolution)ref)->base.memory;
                    break;
                case VX_TYPE_DISTRIBUTION:
                    memory = &((vx_distribution)ref)->memory;
                    break;
                case VX_TYPE_IMAGE:
                    memory = &((vx_image)ref)->memory;
                    break;
                case VX_TYPE_LUT:
                    memory = &((vx_lut_t*)ref)->memory;
                    break;
                case VX_TYPE_MATRIX:
                    memory = &((vx_matrix)ref)->memory;
                    break;
                //case VX_TYPE_PYRAMID:
                //    break;
                case VX_TYPE_REMAP:
                    memory = &((vx_remap)ref)->memory;
                    break;
                //case VX_TYPE_SCALAR:
                //case VX_TYPE_THRESHOLD:
                //    break;
            }
            if (memory) {
                for (pln = 0; pln < memory->nptrs; pln++) {
                    if (memory->cl_type == CL_MEM_OBJECT_BUFFER) {
                        err = clEnqueueReadBuffer(context->queues[plidx][didx],
                            memory->hdls[pln],
                            CL_TRUE, 0, vxComputeMemorySize(memory, pln),
                            memory->ptrs[pln],
                            1, &node->base.event, &ref->event);
                        CL_ERROR_MSG(err, "clEnqueueReadBuffer");
                    } else if (memory->cl_type == CL_MEM_OBJECT_IMAGE2D) {
                        vx_rectangle_t rect = {0};
                        vx_image image = (vx_image)ref;
                        vxGetValidRegionImage(image, &rect);
                        size_t origin[3] = {rect.start_x, rect.start_y, 0};
                        size_t region[3] = {rect.end_x-rect.start_x, rect.end_y-rect.start_y, 1};
                        /* set the work dimensions */
                        work_dim[0] = rect.end_x-rect.start_x;
                        work_dim[1] = rect.end_y-rect.start_y;
                        err = clEnqueueReadImage(context->queues[plidx][didx],
                                                  memory->hdls[pln],
                                                  CL_TRUE,
                                                  origin, region,
                                                  memory->strides[pln][VX_DIM_Y],
                                                  0,
                                                  memory->ptrs[pln],
                                                  1, &node->base.event,
                                                  &ref->event);
                        CL_ERROR_MSG(err, "clEnqueueReadImage");
                        VX_PRINT(VX_ZONE_INFO, "Reading Image wd={%zu,%zu}\n", work_dim[0], work_dim[1]);
                    }
                }
            }
        }
    }
    re = 0;
    for (pidx = 0; pidx < num; pidx++) {
        vx_reference ref = node->parameters[pidx];
        vx_enum dir = node->kernel->signature.directions[pidx];
        if (dir == VX_OUTPUT || dir == VX_BIDIRECTIONAL) {
            memcpy(&readEvents[re++],&ref->event, sizeof(cl_event));
        }
    }
    err = clFlush(context->queues[plidx][didx]);
    CL_ERROR_MSG(err, "Flush");
    VX_PRINT(VX_ZONE_TARGET, "Waiting for read events!\n");
    clWaitForEvents(re, readEvents);
    if (err == CL_SUCCESS)
        status = VX_SUCCESS;
//exit:
    VX_PRINT(VX_ZONE_API, "%s exiting %d\n", __FUNCTION__, status);
    vxSemPost(&target->base.lock);
    return status;
}
示例#10
0
static vx_status vxCheckImageKernel(vx_node node, vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_SUCCESS;
    if (num == 3)
    {
        vx_image image = (vx_image)parameters[0];
        vx_scalar fill = (vx_scalar)parameters[1];
        vx_scalar errs = (vx_scalar)parameters[2];
        packed_value_u value;
        vx_uint32 planes = 0u, count = 0u, errors = 0u;
        vx_uint32 x = 0u, y = 0u, p = 0u;
        vx_int32 i = 0;
        vx_imagepatch_addressing_t addr;
        vx_rectangle rect;

        value.dword[0] = 0xDEADBEEF;
        vxAccessScalarValue(fill, &value.dword[0]);
        vxQueryImage(image, VX_IMAGE_ATTRIBUTE_PLANES, &planes, sizeof(planes));
        rect = vxGetValidRegionImage(image);
        for (p = 0u; (p < planes) && (rect); p++)
        {
            void *ptr = NULL;
            status = vxAccessImagePatch(image, rect, p, &addr, &ptr);
            if ((status == VX_SUCCESS) && (ptr))
            {
                for (y = 0; y < addr.dim_y; y+=addr.step_y)
                {
                    for (x = 0; x < addr.dim_x; x+=addr.step_x)
                    {
                        vx_uint8 *pixel = vxFormatImagePatchAddress2d(ptr, x, y, &addr);
                        for (i = 0; i < addr.stride_x; i++)
                        {
                            count++;
                            if (pixel[i] != value.bytes[i])
                            {
                                errors++;
                            }
                        }
                    }
                }
                if (errors > 0)
                {
                    vxAddLogEntry(vxGetContext(node), VX_FAILURE, "Checked %p of %u sub-pixels with 0x%08x with %u errors\n", ptr, count, value.dword, errors);
                }
                vxCommitScalarValue(errs, &errors);
                status = vxCommitImagePatch(image, 0, p, &addr, ptr);
                if (status != VX_SUCCESS)
                {
                    vxAddLogEntry(vxGetContext(node), VX_FAILURE, "Failed to set image patch for "VX_FMT_REF"\n", image);
                }
            }
            else
            {
                vxAddLogEntry(vxGetContext(node), VX_FAILURE, "Failed to get image patch for "VX_FMT_REF"\n", image);
            }
        }
        vxReleaseRectangle(&rect);
        if (errors > 0)
        {
            status = VX_FAILURE;
        }
    }
    return status;
}
示例#11
0
static vx_status vxEdgeTrace(vx_image norm, vx_threshold threshold, vx_image output)
{
    vx_rectangle_t rect;
    vx_imagepatch_addressing_t norm_addr, output_addr;
    void *norm_base = NULL, *output_base = NULL;
    vx_uint32 y = 0, x = 0;
    vx_int32 lower = 0, upper = 0;
    vx_status status = VX_SUCCESS;
    vxQueryThreshold(threshold, VX_THRESHOLD_ATTRIBUTE_THRESHOLD_LOWER, &lower, sizeof(lower));
    vxQueryThreshold(threshold, VX_THRESHOLD_ATTRIBUTE_THRESHOLD_UPPER, &upper, sizeof(upper));
    vxGetValidRegionImage(norm, &rect);

    status |= vxAccessImagePatch(norm, &rect, 0, &norm_addr, &norm_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(output, &rect, 0, &output_addr, &output_base, VX_WRITE_ONLY);
    if (status == VX_SUCCESS) {
        const vx_uint8 NO = 0, MAYBE = 127, YES = 255;

        /* Initially we add all YES pixels to the stack. Later we only add MAYBE
           pixels to it, and we reset their state to YES afterwards; so we can never
           add the same pixel more than once. That means that the stack size is bounded
           by the image size. */
        vx_uint32 (*tracing_stack)[2] = malloc(output_addr.dim_y * output_addr.dim_x * sizeof *tracing_stack);
        vx_uint32 (*stack_top)[2] = tracing_stack;

        for (y = 0; y < norm_addr.dim_y; y++)
            for (x = 0; x < norm_addr.dim_x; x++)
            {
                vx_uint16 *norm_ptr = vxFormatImagePatchAddress2d(norm_base, x, y, &norm_addr);
                vx_uint8 *output_ptr = vxFormatImagePatchAddress2d(output_base, x, y, &output_addr);

                if (*norm_ptr > upper)
                {
                    *output_ptr = YES;
                    (*stack_top)[0] = x;
                    (*stack_top)[1] = y;
                    ++stack_top;
                }
                else if (*norm_ptr <= lower)
                {
                    *output_ptr = NO;
                }
                else
                {
                    *output_ptr = MAYBE;
                }
            }


        while (stack_top != tracing_stack) {
            int i;
            --stack_top;
            x = (*stack_top)[0];
            y = (*stack_top)[1];

            for (i = 0; i < dimof(dir_offsets); ++i) {
                const struct offset_t offset = dir_offsets[i];
                vx_uint32 new_x, new_y;
                vx_uint8 *output_ptr;

                if (x == 0 && offset.x < 0) continue;
                if (x == output_addr.dim_x - 1 && offset.x > 0) continue;
                if (y == 0 && offset.y < 0) continue;
                if (y == output_addr.dim_y - 1 && offset.y > 0) continue;

                new_x = x + offset.x;
                new_y = y + offset.y;

                output_ptr = vxFormatImagePatchAddress2d(output_base, new_x, new_y, &output_addr);
                if (*output_ptr != MAYBE) continue;

                *output_ptr = YES;

                (*stack_top)[0] = new_x;
                (*stack_top)[1] = new_y;
                ++stack_top;
            }
        }

        free(tracing_stack);

        for (y = 0; y < output_addr.dim_y; y++)
            for (x = 0; x < output_addr.dim_x; x++)
            {
                vx_uint8 *output_ptr = vxFormatImagePatchAddress2d(output_base, x, y, &output_addr);
                if (*output_ptr == MAYBE) *output_ptr = NO;
            }

        status |= vxCommitImagePatch(norm, 0, 0, &norm_addr, norm_base);
        status |= vxCommitImagePatch(output, &rect, 0, &output_addr, output_base);
    }
    return status;
}
// nodeless version of NonLinearFilter kernel
vx_status vxNonLinearFilter(vx_scalar function, vx_image src, vx_matrix mask, vx_image dst, vx_border_t *border)
{
    vx_uint32 y, x;
    void *src_base = NULL;
    void *dst_base = NULL;
    vx_imagepatch_addressing_t src_addr, dst_addr;
    vx_rectangle_t rect;
    vx_uint32 low_x = 0, low_y = 0, high_x, high_y;

    vx_uint8 m[C_MAX_NONLINEAR_DIM * C_MAX_NONLINEAR_DIM];
    vx_uint8 v[C_MAX_NONLINEAR_DIM * C_MAX_NONLINEAR_DIM];

    vx_status status = vxGetValidRegionImage(src, &rect);
    status |= vxAccessImagePatch(src, &rect, 0, &src_addr, &src_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(dst, &rect, 0, &dst_addr, &dst_base, VX_WRITE_ONLY);

    vx_enum func = 0;
    status |= vxCopyScalar(function, &func, VX_READ_ONLY, VX_MEMORY_TYPE_HOST);

    vx_size mrows, mcols;
    vx_enum mtype = 0;
    status |= vxQueryMatrix(mask, VX_MATRIX_ROWS, &mrows, sizeof(mrows));
    status |= vxQueryMatrix(mask, VX_MATRIX_COLUMNS, &mcols, sizeof(mcols));
    status |= vxQueryMatrix(mask, VX_MATRIX_TYPE, &mtype, sizeof(mtype));

    vx_coordinates2d_t origin;
    status |= vxQueryMatrix(mask, VX_MATRIX_ORIGIN, &origin, sizeof(origin));

    if ((mtype != VX_TYPE_UINT8) || (sizeof(m) < mrows * mcols))
        status = VX_ERROR_INVALID_PARAMETERS;

    status |= vxCopyMatrix(mask, m, VX_READ_ONLY, VX_MEMORY_TYPE_HOST);

    if (status == VX_SUCCESS)
    {
        vx_size rx0 = origin.x;
        vx_size ry0 = origin.y;
        vx_size rx1 = mcols - origin.x - 1;
        vx_size ry1 = mrows - origin.y - 1;

        high_x = src_addr.dim_x;
        high_y = src_addr.dim_y;

        if (border->mode == VX_BORDER_UNDEFINED)
        {
            low_x += rx0;
            low_y += ry0;
            high_x -= rx1;
            high_y -= ry1;
            vxAlterRectangle(&rect, (vx_int32)rx0, (vx_int32)ry0, -(vx_int32)rx1, -(vx_int32)ry1);
        }

        for (y = low_y; y < high_y; y++)
        {
            for (x = low_x; x < high_x; x++)
            {
                vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                vx_int32 count = readMaskedRectangle_U8(src_base, &src_addr, border, VX_DF_IMAGE_U8, x, y, rx0, ry0, rx1, ry1, m, v);

                qsort(v, count, sizeof(vx_uint8), vx_uint8_compare);

                switch (func)
                {
                case VX_NONLINEAR_FILTER_MIN: *dst = v[0]; break; /* minimal value */
                case VX_NONLINEAR_FILTER_MAX: *dst = v[count - 1]; break; /* maximum value */
                case VX_NONLINEAR_FILTER_MEDIAN: *dst = v[count / 2]; break; /* pick the middle value */
                }
            }
        }
    }

    status |= vxCommitImagePatch(src, NULL, 0, &src_addr, src_base);
    status |= vxCommitImagePatch(dst, &rect, 0, &dst_addr, dst_base);

    return status;
}
示例#13
0
// nodeless version of the ConvertDepth kernel
vx_status vxConvertDepth(vx_image input, vx_image output, vx_scalar spol, vx_scalar sshf)
{
    vx_uint32 y, x;
    void *dst_base = NULL;
    void *src_base = NULL;
    vx_imagepatch_addressing_t dst_addr, src_addr;
    vx_rectangle_t rect;
    vx_enum format[2];
    vx_enum policy = 0;
    vx_int32 shift = 0;

    vx_status status = VX_SUCCESS;
    status |= vxReadScalarValue(spol, &policy);
    status |= vxReadScalarValue(sshf, &shift);
    status |= vxQueryImage(input, VX_IMAGE_ATTRIBUTE_FORMAT, &format[0], sizeof(format[0]));
    status |= vxQueryImage(output, VX_IMAGE_ATTRIBUTE_FORMAT, &format[1], sizeof(format[1]));
    status |= vxGetValidRegionImage(input, &rect);
    status |= vxAccessImagePatch(input, &rect, 0, &src_addr, &src_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(output, &rect, 0, &dst_addr, &dst_base, VX_WRITE_ONLY);
    for (y = 0; y < src_addr.dim_y; y++)
    {
        for (x = 0; x < src_addr.dim_x; x++)
        {
            if ((format[0] == VX_DF_IMAGE_U8) && (format[1] == VX_DF_IMAGE_U16))
            {
                vx_uint8 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_uint16 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = ((vx_uint16)(*src)) << shift;
            }
            else if ((format[0] == VX_DF_IMAGE_U8) && (format[1] == VX_DF_IMAGE_S16))
            {
                vx_uint8 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_int16 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = ((vx_int16)(*src)) << shift;
            }
            else if ((format[0] == VX_DF_IMAGE_U8) && (format[1] == VX_DF_IMAGE_U32))
            {
                vx_uint8 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_uint32 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = ((vx_uint32)(*src)) << shift;
            }
            else if ((format[0] == VX_DF_IMAGE_U16) && (format[1] == VX_DF_IMAGE_U32))
            {
                vx_uint16 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_uint32 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = ((vx_uint32)(*src)) << shift;
            }
            else if ((format[0] == VX_DF_IMAGE_S16) && (format[1] == VX_DF_IMAGE_S32))
            {
                vx_int16 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_int32 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                *dst = ((vx_int32)(*src)) << shift;
            }
            else if ((format[0] == VX_DF_IMAGE_U16) && (format[1] == VX_DF_IMAGE_U8))
            {
                vx_uint16 *src = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                vx_uint8 *dst = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                if (policy == VX_CONVERT_POLICY_WRAP)
                {
                    *dst = (vx_uint8)((*src) >> shift);
                }
                else if (policy == VX_CONVERT_POLICY_SATURATE)
                {
                    vx_uint16 value = (*src) >> shift;
                    value = (value > UINT8_MAX ? UINT8_MAX : value);
                    *dst = (vx_uint8)value;
                }
示例#14
0
// nodeless version of the Fast9Corners kernel
vx_status vxFast9Corners(vx_image src, vx_scalar sens, vx_scalar nonm, vx_array points,
                         vx_scalar s_num_corners, vx_border_mode_t *bordermode)
{
    vx_float32 b = 0.0f;
    vx_imagepatch_addressing_t src_addr;
    void *src_base = NULL;
    vx_rectangle_t rect;
    vx_uint8 tolerance = 0;
    vx_bool do_nonmax;
    vx_uint32 num_corners = 0;
    vx_size dst_capacity = 0;
    vx_keypoint_t kp;

    vx_status status = vxGetValidRegionImage(src, &rect);
    status |= vxReadScalarValue(sens, &b);
    status |= vxReadScalarValue(nonm, &do_nonmax);
    /* remove any pre-existing points */
    status |= vxTruncateArray(points, 0);
    status |= vxAccessImagePatch(src, &rect, 0, &src_addr, &src_base, VX_READ_ONLY);
    tolerance = (vx_uint8)b;
    status |= vxQueryArray(points, VX_ARRAY_ATTRIBUTE_CAPACITY, &dst_capacity, sizeof(dst_capacity));

    memset(&kp, 0, sizeof(kp));

    if (status == VX_SUCCESS)
    {
        /*! \todo implement other Fast9 Corners border modes */
        if (bordermode->mode == VX_BORDER_MODE_UNDEFINED)
        {
            vx_int32 y, x;
            for (y = APERTURE; y < (vx_int32)(src_addr.dim_y - APERTURE); y++)
            {
                for (x = APERTURE; x < (vx_int32)(src_addr.dim_x - APERTURE); x++)
                {
                    vx_uint8 strength = vxGetFastCornerStrength(x, y, src_base, &src_addr, tolerance);
                    if (strength > 0)
                    {
                        if (do_nonmax)
                        {
                            if (strength >= vxGetFastCornerStrength(x-1, y-1, src_base, &src_addr, tolerance) &&
                                strength >= vxGetFastCornerStrength(x, y-1, src_base, &src_addr, tolerance) &&
                                strength >= vxGetFastCornerStrength(x+1, y-1, src_base, &src_addr, tolerance) &&
                                strength >= vxGetFastCornerStrength(x-1, y, src_base, &src_addr, tolerance) &&
                                strength >  vxGetFastCornerStrength(x+1, y, src_base, &src_addr, tolerance) &&
                                strength >  vxGetFastCornerStrength(x-1, y+1, src_base, &src_addr, tolerance) &&
                                strength >  vxGetFastCornerStrength(x, y+1, src_base, &src_addr, tolerance) &&
                                strength >  vxGetFastCornerStrength(x+1, y+1, src_base, &src_addr, tolerance))
                                ;
                            else
                                continue;
                        }
                        if (num_corners < dst_capacity)
                        {
                            kp.x = x;
                            kp.y = y;
                            kp.strength = strength;
                            status |= vxAddArrayItems(points, 1, &kp, 0);
                        }
                        num_corners++;
                    }
                }
            }
        }
        else
        {
            status = VX_ERROR_NOT_IMPLEMENTED;
        }
        if (s_num_corners)
            status |= vxWriteScalarValue(s_num_corners, &num_corners);
        status |= vxCommitImagePatch(src, NULL, 0, &src_addr, src_base);
    }

    return status;
}
示例#15
0
static vx_status vxHistogramKernel(vx_node node, vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_FAILURE;
    if (num == 2)
    {
        vx_image src_image = (vx_image)parameters[0];
        vx_distribution dist = (vx_scalar)parameters[1];
        vx_rectangle src_rect;
        vx_imagepatch_addressing_t src_addr;
        void *src_base = NULL, *dist_ptr = NULL;
        vx_fourcc format = 0;
        vx_uint32 y = 0, x = 0;
        vx_uint32 offset = 0, range = 0, numBins = 0, window_size = 0;

        vxQueryImage(src_image, VX_IMAGE_ATTRIBUTE_FORMAT, &format, sizeof(format));
        vxQueryDistribution(dist, VX_DISTRIBUTION_ATTRIBUTE_BINS, &numBins, sizeof(numBins));
        vxQueryDistribution(dist, VX_DISTRIBUTION_ATTRIBUTE_RANGE, &range, sizeof(range));
        vxQueryDistribution(dist, VX_DISTRIBUTION_ATTRIBUTE_OFFSET, &offset, sizeof(offset));
        vxQueryDistribution(dist, VX_DISTRIBUTION_ATTRIBUTE_WINDOW, &window_size, sizeof(window_size));
        src_rect = vxGetValidRegionImage(src_image);
        status = VX_SUCCESS;
        status |= vxAccessImagePatch(src_image, src_rect, 0, &src_addr, &src_base);
        status |= vxAccessDistribution(dist, &dist_ptr);
        printf("distribution:%p bins:%u off:%u ws:%u range:%u\n", dist_ptr, numBins, offset, window_size, range);
        if (status == VX_SUCCESS)
        {
            vx_int32 *dist_tmp = dist_ptr;

            /* clear the distribution */
            for (x = 0; x < numBins; x++)
            {
                dist_tmp[x] = 0;
            }

            for (y = 0; y < src_addr.dim_y; y++)
            {
                for (x = 0; x < src_addr.dim_x; x++)
                {
                    if (format == FOURCC_U8)
                    {
                        vx_uint8 *src_ptr = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                        vx_uint8 pixel = *src_ptr;
                        if ((offset <= (vx_size)pixel) && ((vx_size)pixel < (offset+range)))
                        {
                            vx_size index = (pixel - (vx_uint16)offset) / window_size;
                            dist_tmp[index]++;
                        }
                    }
                    else if (format == FOURCC_U16)
                    {
                        vx_uint16 *src_ptr = vxFormatImagePatchAddress2d(src_base, x, y, &src_addr);
                        vx_uint16 pixel = *src_ptr;
                        if ((offset <= (vx_size)pixel) && ((vx_size)pixel < (offset+range)))
                        {
                            vx_size index = (pixel - (vx_uint16)offset) / window_size;
                            dist_tmp[index]++;
                        }
                    }
                }
            }
        }
        status |= vxCommitDistribution(dist, dist_ptr);
        status |= vxCommitImagePatch(src_image, 0, 0, &src_addr, src_base);
        vxReleaseParameter(&src_rect);
    }
    return status;
}
示例#16
0
static vx_status vxChannelCombineKernel(vx_node node, vx_reference *parameters, vx_uint32 num)
{
    vx_status status = VX_FAILURE;
    if (num == 5)
    {
        vx_image inputs[4] = {
            (vx_image)parameters[0],
            (vx_image)parameters[1],
            (vx_image)parameters[2],
            (vx_image)parameters[3],
        };
        vx_image output = (vx_image)parameters[4];
        vx_fourcc format = 0;
        vx_rectangle rect;
        vxQueryImage(output, VX_IMAGE_ATTRIBUTE_FORMAT, &format, sizeof(format));
        rect = vxGetValidRegionImage(inputs[0]);
        if ((format == FOURCC_RGB) || (format == FOURCC_RGBX))
        {
            /* write all the channels back out in interleaved format */
            vx_imagepatch_addressing_t src_addrs[4];
            vx_imagepatch_addressing_t dst_addr;
            void *base_src_ptrs[4] = {NULL, NULL, NULL, NULL};
            void *base_dst_ptr = NULL;
            uint32_t x, y, p;
            uint32_t numplanes = 3;

            if (format == FOURCC_RGBX)
            {
                numplanes = 4;
            }

            // get the planes
            for (p = 0; p < numplanes; p++)
            {
                vxAccessImagePatch(inputs[p], rect, 0, &src_addrs[p], &base_src_ptrs[p]);
            }
            vxAccessImagePatch(output, rect, 0, &dst_addr, &base_dst_ptr);
            for (y = 0; y < dst_addr.dim_y; y+=dst_addr.step_y)
            {
                for (x = 0; x < dst_addr.dim_x; x+=dst_addr.step_x)
                {
                    uint8_t *planes[4] = {
                        vxFormatImagePatchAddress2d(base_src_ptrs[0], x, y, &src_addrs[0]),
                        vxFormatImagePatchAddress2d(base_src_ptrs[1], x, y, &src_addrs[1]),
                        vxFormatImagePatchAddress2d(base_src_ptrs[2], x, y, &src_addrs[2]),
                        NULL,
                    };
                    uint8_t *dst = vxFormatImagePatchAddress2d(base_dst_ptr, x, y, &dst_addr);
                    dst[0] = planes[0][0];
                    dst[1] = planes[1][0];
                    dst[2] = planes[2][0];
                    if (format == FOURCC_RGBX)
                    {
                        planes[3] = vxFormatImagePatchAddress2d(base_src_ptrs[3], x, y, &src_addrs[3]);
                        dst[3] = planes[3][0];
                    }
                }
            }
            // write the data back
            vxCommitImagePatch(output, rect, 0, &dst_addr, base_dst_ptr);
            // release the planes
            for (p = 0; p < numplanes; p++)
            {
                vxCommitImagePatch(inputs[p], 0, 0, &src_addrs[p], &base_src_ptrs[p]);
            }
        }
        else if (format == FOURCC_YUV4)
        {
            /* write all the channels back out in the planar format */
            vx_imagepatch_addressing_t src_addrs[3];
            vx_imagepatch_addressing_t dst_addrs[3];
            void *base_src_ptrs[3] = {NULL, NULL, NULL};
            void *base_dst_ptrs[3] = {NULL, NULL, NULL};
            uint32_t x, y, p;

            // get the planes
            for (p = 0; p < 3; p++)
            {
                vxAccessImagePatch(inputs[p], rect, 0, &src_addrs[p], &base_src_ptrs[p]);
                vxAccessImagePatch(output, rect, 0, &dst_addrs[p], &base_dst_ptrs[p]);
            }

            for (y = 0; y < dst_addrs[0].dim_y; y+=dst_addrs[0].step_y)
            {
                for (x = 0; x < dst_addrs[0].dim_x; x+=dst_addrs[0].step_x)
                {
                    uint8_t *planes[3] = {
                        vxFormatImagePatchAddress2d(base_src_ptrs[0], x, y, &src_addrs[0]),
                        vxFormatImagePatchAddress2d(base_src_ptrs[1], x, y, &src_addrs[1]),
                        vxFormatImagePatchAddress2d(base_src_ptrs[2], x, y, &src_addrs[2]),
                    };
                    uint8_t *dsts[3] = {
                        vxFormatImagePatchAddress2d(base_dst_ptrs[0], x, y, &dst_addrs[0]),
                        vxFormatImagePatchAddress2d(base_dst_ptrs[0], x, y, &dst_addrs[0]),
                        vxFormatImagePatchAddress2d(base_dst_ptrs[0], x, y, &dst_addrs[0]),
                    };
                    dsts[0][0] = planes[0][0];
                    dsts[1][0] = planes[1][0];
                    dsts[2][0] = planes[2][0];
                }
            }
            // release the planes
            for (p = 0; p < 3; p++)
            {
                // write the data back
                vxCommitImagePatch(output, rect, 0, &dst_addrs[p], base_dst_ptrs[p]);
                // release the input
                vxCommitImagePatch(inputs[p], 0, 0, &src_addrs[p], &base_src_ptrs[p]);
            }
        }
        vxReleaseRectangle(&rect);
        status = VX_SUCCESS;
    }
    else
        status = VX_ERROR_INVALID_PARAMETERS;
    return status;
}
示例#17
0
// nodeless version of the Phase kernel
vx_status vxPhase(vx_image grad_x, vx_image grad_y, vx_image output)
{
    vx_uint32 x;
    vx_uint32 y;
    vx_df_image format = 0;
    vx_uint8* dst_base = NULL;
    void* src_base_x   = NULL;
    void* src_base_y   = NULL;
    vx_imagepatch_addressing_t src_addr_x;
    vx_imagepatch_addressing_t src_addr_y;
    vx_imagepatch_addressing_t dst_addr;
    vx_rectangle_t rect;
    vx_status status = VX_FAILURE;

    if (grad_x == 0 && grad_y == 0)
        return VX_ERROR_INVALID_PARAMETERS;

    status  = VX_SUCCESS;
    status |= vxQueryImage(grad_x, VX_IMAGE_FORMAT, &format, sizeof(format));
    status |= vxGetValidRegionImage(grad_x, &rect);
    status |= vxAccessImagePatch(grad_x, &rect, 0, &src_addr_x, &src_base_x, VX_READ_ONLY);
    status |= vxAccessImagePatch(grad_y, &rect, 0, &src_addr_y, &src_base_y, VX_READ_ONLY);
    status |= vxAccessImagePatch(output, &rect, 0, &dst_addr, (void **)&dst_base, VX_WRITE_ONLY);

    for (y = 0; y < dst_addr.dim_y; y++)
    {
        for (x = 0; x < dst_addr.dim_x; x++)
        {
            void*     in_x = vxFormatImagePatchAddress2d(src_base_x, x, y, &src_addr_x);
            void*     in_y = vxFormatImagePatchAddress2d(src_base_y, x, y, &src_addr_y);
            vx_uint8* dst  = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);

            /* -M_PI to M_PI */
            double val_x;
            double val_y;

            if (format == VX_DF_IMAGE_F32)
            {
                val_x = (double)(((vx_float32*)in_x)[0]);
                val_y = (double)(((vx_float32*)in_y)[0]);
            }
            else // VX_DF_IMAGE_S16
            {
                val_x = (double)(((vx_int16*)in_x)[0]);
                val_y = (double)(((vx_int16*)in_y)[0]);
            }

            double arct = atan2(val_y,val_x);
            /* 0 - TAU */
            double norm = arct;
            if (arct < 0.0f)
            {
                norm = VX_TAU + arct;
            }

            /* 0.0 - 1.0 */
            norm = norm / VX_TAU;

            /* 0 - 255 */
            *dst = (vx_uint8)((vx_uint32)(norm * 256u + 0.5) & 0xFFu);
            if (val_y != 0 || val_x != 0)
            {
                VX_PRINT(VX_ZONE_INFO, "atan2(%d,%d) = %lf [norm=%lf] dst=%02x\n", val_y, val_x, arct, norm, *dst);
            }
        }
    }

    status |= vxCommitImagePatch(grad_x, NULL, 0, &src_addr_x, src_base_x);
    status |= vxCommitImagePatch(grad_y, NULL, 0, &src_addr_y, src_base_y);
    status |= vxCommitImagePatch(output, &rect, 0, &dst_addr, dst_base);

    return status;
}
示例#18
0
// nodeless version of the Convolve kernel
vx_status vxConvolve(vx_image src, vx_convolution conv, vx_image dst, vx_border_mode_t *bordermode)
{
    vx_int32 y, x, i;
    void *src_base = NULL;
    void *dst_base = NULL;
    vx_imagepatch_addressing_t src_addr, dst_addr;
    vx_rectangle_t rect;
    vx_size conv_width, conv_height;
    vx_int32 conv_radius_x, conv_radius_y;
    vx_int16 conv_mat[C_MAX_CONVOLUTION_DIM * C_MAX_CONVOLUTION_DIM] = {0};
    vx_int32 sum = 0, value = 0;
    vx_uint32 scale = 1;
    vx_df_image src_format = 0;
    vx_df_image dst_format = 0;
    vx_status status  = VX_SUCCESS;
    vx_int32 low_x, low_y, high_x, high_y;

    status |= vxQueryImage(src, VX_IMAGE_ATTRIBUTE_FORMAT, &src_format, sizeof(src_format));
    status |= vxQueryImage(dst, VX_IMAGE_ATTRIBUTE_FORMAT, &dst_format, sizeof(dst_format));
    status |= vxQueryConvolution(conv, VX_CONVOLUTION_ATTRIBUTE_COLUMNS, &conv_width, sizeof(conv_width));
    status |= vxQueryConvolution(conv, VX_CONVOLUTION_ATTRIBUTE_ROWS, &conv_height, sizeof(conv_height));
    status |= vxQueryConvolution(conv, VX_CONVOLUTION_ATTRIBUTE_SCALE, &scale, sizeof(scale));
    conv_radius_x = (vx_int32)conv_width / 2;
    conv_radius_y = (vx_int32)conv_height / 2;
    status |= vxReadConvolutionCoefficients(conv, conv_mat);
    status |= vxGetValidRegionImage(src, &rect);
    status |= vxAccessImagePatch(src, &rect, 0, &src_addr, &src_base, VX_READ_ONLY);
    status |= vxAccessImagePatch(dst, &rect, 0, &dst_addr, &dst_base, VX_WRITE_ONLY);

    if (bordermode->mode == VX_BORDER_MODE_UNDEFINED)
    {
        low_x = conv_radius_x;
        high_x = ((src_addr.dim_x >= (vx_uint32)conv_radius_x) ? src_addr.dim_x - conv_radius_x : 0);
        low_y = conv_radius_y;
        high_y = ((src_addr.dim_y >= (vx_uint32)conv_radius_y) ? src_addr.dim_y - conv_radius_y : 0);
        vxAlterRectangle(&rect, conv_radius_x, conv_radius_y, -conv_radius_x, -conv_radius_y);
    }
    else
    {
        low_x = 0;
        high_x = src_addr.dim_x;
        low_y = 0;
        high_y = src_addr.dim_y;
    }

    for (y = low_y; y < high_y; ++y)
    {
        for (x = low_x; x < high_x; ++x)
        {
            sum = 0;

            if (src_format == VX_DF_IMAGE_U8)
            {
                vx_uint8 slice[C_MAX_CONVOLUTION_DIM * C_MAX_CONVOLUTION_DIM] = {0};

                vxReadRectangle(src_base, &src_addr, bordermode, src_format, x, y, conv_radius_x, conv_radius_y, slice);

                for (i = 0; i < conv_width * conv_height; ++i)
                    sum += conv_mat[conv_width * conv_height - 1 - i] * slice[i];
            }
            else if (src_format == VX_DF_IMAGE_S16)
            {
                vx_int16 slice[C_MAX_CONVOLUTION_DIM * C_MAX_CONVOLUTION_DIM] = {0};

                vxReadRectangle(src_base, &src_addr, bordermode, src_format, x, y, conv_radius_x, conv_radius_y, slice);

                for (i = 0; i < conv_width * conv_height; ++i)
                    sum += conv_mat[conv_width * conv_height - 1 - i] * slice[i];
            }

            value = sum / (vx_int32) scale;

            if (dst_format == VX_DF_IMAGE_U8)
            {
                vx_uint8 *dstp = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                if (value < 0) *dstp = 0;
                else if (value > UINT8_MAX) *dstp = UINT8_MAX;
                else *dstp = value;
            }
            else if (dst_format == VX_DF_IMAGE_S16)
            {
                vx_int16 *dstp = vxFormatImagePatchAddress2d(dst_base, x, y, &dst_addr);
                if (value < INT16_MIN) *dstp = INT16_MIN;
                else if (value > INT16_MAX) *dstp = INT16_MAX;
                else *dstp = value;
            }
        }
    }

    status |= vxCommitImagePatch(src, NULL, 0, &src_addr, src_base);
    status |= vxCommitImagePatch(dst, &rect, 0, &dst_addr, dst_base);

    return status;
}
示例#19
0
vx_status vxFWriteImage(vx_image input, vx_array file)
{
    vx_char *filename = NULL;
    vx_size filename_stride = 0;
    vx_uint8 *src[4] = {NULL, NULL, NULL, NULL};
    vx_uint32 p, y, sx, ex, sy, ey, width, height;
    vx_size planes;
    vx_imagepatch_addressing_t addr[4];
    vx_df_image format;
    FILE *fp = NULL;
    vx_char *ext = NULL;
    size_t wrote = 0ul;
    vx_rectangle_t rect;

    vx_status status = vxAccessArrayRange(file, 0, VX_MAX_FILE_NAME, &filename_stride, (void **)&filename, VX_READ_ONLY);
    if (status != VX_SUCCESS || filename_stride != sizeof(vx_char))
    {
        vxCommitArrayRange(file, 0, 0, filename);
        vxAddLogEntry((vx_reference)file, VX_FAILURE, "Incorrect array "VX_FMT_REF"\n", file);
        return VX_FAILURE;
    }
    //VX_PRINT(VX_ZONE_INFO, "filename=%s\n",filename);
    fp = fopen(filename, "wb+");
    if (fp == NULL) {
        vxCommitArrayRange(file, 0, 0, filename);
        vxAddLogEntry((vx_reference)file, VX_FAILURE, "Failed to open file %s\n",filename);
        return VX_FAILURE;
    }

    status |= vxQueryImage(input, VX_IMAGE_WIDTH,  &width,  sizeof(width));
    status |= vxQueryImage(input, VX_IMAGE_HEIGHT, &height, sizeof(height));
    status |= vxQueryImage(input, VX_IMAGE_PLANES, &planes, sizeof(planes));
    status |= vxQueryImage(input, VX_IMAGE_FORMAT, &format, sizeof(format));

    status |= vxGetValidRegionImage(input, &rect);

    sx = rect.start_x;
    sy = rect.start_y;
    ex = rect.end_x;
    ey = rect.end_y;

    ext = strrchr(filename, '.');
    if (ext && (strcmp(ext, ".pgm") == 0 || strcmp(ext, ".PGM") == 0))
    {
        fprintf(fp, "P5\n# %s\n",filename);
        fprintf(fp, "%u %u\n", width, height);
        if (format == VX_DF_IMAGE_U8)
            fprintf(fp, "255\n");
        else if (format == VX_DF_IMAGE_S16)
            fprintf(fp, "65535\n");
        else if (format == VX_DF_IMAGE_U16)
            fprintf(fp, "65535\n");
    }
    for (p = 0u; p < planes; p++)
    {
        status |= vxAccessImagePatch(input, &rect, p, &addr[p], (void **)&src[p], VX_READ_ONLY);
    }
    for (p = 0u; (p < planes) && (status == VX_SUCCESS); p++)
    {
        size_t len = addr[p].stride_x * (addr[p].dim_x * addr[p].scale_x)/VX_SCALE_UNITY;
        for (y = 0u; y < height; y+=addr[p].step_y)
        {
            vx_uint32 i = 0;
            vx_uint8 *ptr = NULL;
            uint8_t value = 0u;

            if (y < sy || y >= ey)
            {
                for (i = 0; i < width; ++i) {
                    wrote += fwrite(&value, sizeof(value), 1, fp);
                }
                continue;
            }

            for (i = 0; i < sx; ++i)
                wrote += fwrite(&value, sizeof(value), 1, fp);

            ptr = vxFormatImagePatchAddress2d(src[p], 0, y - sy, &addr[p]);
            wrote += fwrite(ptr, 1, len, fp);

            for (i = 0; i < width - ex; ++i)
                wrote += fwrite(&value, sizeof(value), 1, fp);
        }
        if (wrote == 0)
        {
            vxAddLogEntry((vx_reference)file, VX_FAILURE, "Failed to write to file!\n");
            status = VX_FAILURE;
            break;
        }
        if (status == VX_FAILURE)
        {
            vxAddLogEntry((vx_reference)file, VX_FAILURE, "Failed to write image to file correctly\n");
            break;
        }
    }
    for (p = 0u; p < planes; p++)
    {
        status |= vxCommitImagePatch(input, NULL, p, &addr[p], src[p]);
    }
    if (status != VX_SUCCESS)
    {
        vxAddLogEntry((vx_reference)file, VX_FAILURE, "Failed to write image to file correctly\n");
    }
    fflush(fp);
    fclose(fp);
    if (vxCommitArrayRange(file, 0, 0, filename) != VX_SUCCESS)
    {
        vxAddLogEntry((vx_reference)file, VX_FAILURE, "Failed to release handle to filename array!\n");
    }

    return status;
}