/*! * \brief An example of an super resolution algorithm. * \ingroup group_example */ int example_super_resolution(int argc, char *argv[]) { vx_status status = VX_SUCCESS; vx_uint32 image_index = 0, max_num_images = 4; vx_uint32 width = 640; vx_uint32 i = 0; vx_uint32 winSize = 32; vx_uint32 height = 480; vx_int32 sens_thresh = 20; vx_float32 alpha = 0.2f; vx_float32 tau = 0.5f; vx_enum criteria = VX_TERM_CRITERIA_BOTH; // lk params vx_float32 epsilon = 0.01; vx_int32 num_iterations = 10; vx_bool use_initial_estimate = vx_true_e; vx_int32 min_distance = 5; // harris params vx_float32 sensitivity = 0.04; vx_int32 gradient_size = 3; vx_int32 block_size = 3; vx_context context = vxCreateContext(); vx_scalar alpha_s = vxCreateScalar(context, VX_TYPE_FLOAT32, &alpha); vx_scalar tau_s = vxCreateScalar(context, VX_TYPE_FLOAT32, &tau); vx_matrix matrix_forward = vxCreateMatrix(context, VX_TYPE_FLOAT32, 3, 3); vx_matrix matrix_backwords = vxCreateMatrix(context, VX_TYPE_FLOAT32, 3, 3); vx_array old_features = vxCreateArray(context, VX_TYPE_KEYPOINT, 1000); vx_array new_features = vxCreateArray(context, VX_TYPE_KEYPOINT, 1000); vx_scalar epsilon_s = vxCreateScalar(context, VX_TYPE_FLOAT32, &epsilon); vx_scalar num_iterations_s = vxCreateScalar(context, VX_TYPE_INT32, &num_iterations); vx_scalar use_initial_estimate_s = vxCreateScalar(context, VX_TYPE_BOOL, &use_initial_estimate); vx_scalar min_distance_s = vxCreateScalar(context, VX_TYPE_INT32, &min_distance); vx_scalar sensitivity_s = vxCreateScalar(context, VX_TYPE_FLOAT32, &sensitivity); vx_scalar sens_thresh_s = vxCreateScalar(context, VX_TYPE_INT32, &sens_thresh); vx_scalar num_corners = vxCreateScalar(context, VX_TYPE_SIZE, NULL); if (vxGetStatus((vx_reference)context) == VX_SUCCESS) { vx_image images[] = { vxCreateImage(context, width, height, VX_DF_IMAGE_UYVY), // index 0: vxCreateImage(context, width, height, VX_DF_IMAGE_U8), // index 1: Get Y channel vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 2: scale up to high res. vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 3: back wrap: transform to the original Image. vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 4: guassian blur vxCreateImage(context, width, height, VX_DF_IMAGE_U8), // index 5: scale down vxCreateImage(context, width, height, VX_DF_IMAGE_S16), // index 6: Subtract the transformed Image with original moved Image vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_S16), // index 7: Scale Up the delta image. vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_S16), // index 8: Guassian blur the delta Image vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_S16), // index 9: forward wrap: tranform the deltas back to the high res Image vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 10: accumulate sum? vxCreateImage(context, width, height, VX_DF_IMAGE_U8), // index 11: Get U channel vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 12: scale up to high res. vxCreateImage(context, width, height, VX_DF_IMAGE_U8), // index 13: Get V channel vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 14: scale up to high res. vxCreateImage(context, width, height, VX_DF_IMAGE_UYVY), // index 15: output image vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 16: original y image scaled vxCreateImage(context, width * 2, height * 2, VX_DF_IMAGE_U8), // index 17: difference image for last calculation }; vx_pyramid pyramid_new = vxCreatePyramid(context, 4, 2, width, height, VX_DF_IMAGE_U8); vx_pyramid pyramid_old = vxCreatePyramid(context, 4, 2, width, height, VX_DF_IMAGE_U8); vx_graph graphs[] = { vxCreateGraph(context), vxCreateGraph(context), vxCreateGraph(context), vxCreateGraph(context), }; vxLoadKernels(context, "openvx-debug"); if (vxGetStatus((vx_reference)graphs[0]) == VX_SUCCESS) { vxChannelExtractNode(graphs[0], images[0], VX_CHANNEL_Y, images[1]); // One iteration of super resolution calculation vxScaleImageNode(graphs[0], images[1], images[2], VX_INTERPOLATION_TYPE_BILINEAR); vxWarpPerspectiveNode(graphs[0], images[2], matrix_forward, 0, images[3]); vxGaussian3x3Node(graphs[0], images[3], images[4]); vxScaleImageNode(graphs[0], images[4], images[5], VX_INTERPOLATION_TYPE_BILINEAR); vxSubtractNode(graphs[0], images[5], images[16], VX_CONVERT_POLICY_SATURATE, images[6]); vxScaleImageNode(graphs[0], images[6], images[7], VX_INTERPOLATION_TYPE_BILINEAR); vxGaussian3x3Node(graphs[0], images[7], images[8]); vxWarpPerspectiveNode(graphs[0], images[8], matrix_backwords, 0, images[9]); vxAccumulateWeightedImageNode(graphs[0], images[9], alpha_s, images[10]); } if (vxGetStatus((vx_reference)graphs[1]) == VX_SUCCESS) { vxChannelExtractNode(graphs[1], images[0], VX_CHANNEL_Y, images[1]); // One iteration of super resolution calculation vxGaussianPyramidNode(graphs[1], images[1], pyramid_new); vxOpticalFlowPyrLKNode(graphs[1], pyramid_old, pyramid_new, old_features, old_features, new_features, criteria, epsilon_s, num_iterations_s, use_initial_estimate_s, winSize); } if (vxGetStatus((vx_reference)graphs[2]) == VX_SUCCESS) { vxChannelExtractNode(graphs[2], images[0], VX_CHANNEL_Y, images[1]); // One iteration of super resolution calculation vxHarrisCornersNode(graphs[2], images[1], sens_thresh_s, min_distance_s, sensitivity_s, gradient_size, block_size, old_features, num_corners); vxGaussianPyramidNode(graphs[2], images[1], pyramid_old); vxScaleImageNode(graphs[2], images[1], images[16], VX_INTERPOLATION_TYPE_BILINEAR); } if (vxGetStatus((vx_reference)graphs[3]) == VX_SUCCESS) { vxSubtractNode(graphs[3], images[10], images[16], VX_CONVERT_POLICY_SATURATE, images[17]); vxAccumulateWeightedImageNode(graphs[3], images[17], tau_s, images[16]); vxChannelExtractNode(graphs[3], images[16], VX_CHANNEL_U, images[11]); vxScaleImageNode(graphs[3], images[11], images[12], VX_INTERPOLATION_TYPE_BILINEAR); // upscale the u channel vxChannelExtractNode(graphs[3], images[0], VX_CHANNEL_V, images[13]); vxScaleImageNode(graphs[3], images[13], images[14], VX_INTERPOLATION_TYPE_BILINEAR); // upscale the v channel vxChannelCombineNode(graphs[3], images[10], images[12], images[14], 0, images[15]); // recombine the channels } status = VX_SUCCESS; status |= vxVerifyGraph(graphs[0]); status |= vxVerifyGraph(graphs[1]); status |= vxVerifyGraph(graphs[2]); status |= vxVerifyGraph(graphs[3]); if (status == VX_SUCCESS) { /* read the initial image in */ status |= vxuFReadImage(context, "c:\\work\\super_res\\superres_1_UYVY.yuv", images[0]); /* compute the "old" pyramid */ status |= vxProcessGraph(graphs[2]); /* for each input image, read it in and run graphs[1] and [0]. */ for (image_index = 1; image_index < max_num_images; image_index++) { char filename[256]; sprintf(filename, "c:\\work\\super_res\\superres_%d_UYVY.yuv", image_index + 1); status |= vxuFReadImage(context, filename, images[0]); status |= vxProcessGraph(graphs[1]); userCalculatePerspectiveTransformFromLK(matrix_forward, matrix_backwords, old_features, new_features); status |= vxProcessGraph(graphs[0]); } /* run the final graph */ status |= vxProcessGraph(graphs[3]); /* save the output */ status |= vxuFWriteImage(context, images[15], "superres_UYVY.yuv"); } vxReleaseGraph(&graphs[0]); vxReleaseGraph(&graphs[1]); vxReleaseGraph(&graphs[2]); vxReleaseGraph(&graphs[3]); for (i = 0; i < dimof(images); i++) { vxReleaseImage(&images[i]); } vxReleasePyramid(&pyramid_new); vxReleasePyramid(&pyramid_old); } vxReleaseMatrix(&matrix_forward); vxReleaseMatrix(&matrix_backwords); vxReleaseScalar(&alpha_s); vxReleaseScalar(&tau_s); /* Release the context last */ vxReleaseContext(&context); return status; }
void fReadImage(vx_context c, const std::string& path, vx_image img) { IVX_CHECK_STATUS( vxuFReadImage(c, (vx_char*)path.c_str(), img) ); }