示例#1
0
static int __maybe_unused stmp3xxx_wdt_suspend(struct device *dev)
{
	struct watchdog_device *wdd = &stmp3xxx_wdd;

	if (watchdog_active(wdd))
		return wdt_stop(wdd);

	return 0;
}
示例#2
0
文件: trats.c 项目: Bing0/u-boot
int board_early_init_f(void)
{
	wdt_stop();
	pmic_reset();
	board_clock_init();
	board_uart_init();
	board_power_init();

	return 0;
}
示例#3
0
static int mid_wdt_probe(struct platform_device *pdev)
{
	struct watchdog_device *wdt_dev;
	struct intel_mid_wdt_pdata *pdata = pdev->dev.platform_data;
	int ret;

	if (!pdata) {
		dev_err(&pdev->dev, "missing platform data\n");
		return -EINVAL;
	}

	if (pdata->probe) {
		ret = pdata->probe(pdev);
		if (ret)
			return ret;
	}

	wdt_dev = devm_kzalloc(&pdev->dev, sizeof(*wdt_dev), GFP_KERNEL);
	if (!wdt_dev)
		return -ENOMEM;

	wdt_dev->info = &mid_wdt_info;
	wdt_dev->ops = &mid_wdt_ops;
	wdt_dev->min_timeout = MID_WDT_TIMEOUT_MIN;
	wdt_dev->max_timeout = MID_WDT_TIMEOUT_MAX;
	wdt_dev->timeout = MID_WDT_DEFAULT_TIMEOUT;
	wdt_dev->parent = &pdev->dev;

	watchdog_set_drvdata(wdt_dev, &pdev->dev);
	platform_set_drvdata(pdev, wdt_dev);

	ret = devm_request_irq(&pdev->dev, pdata->irq, mid_wdt_irq,
			       IRQF_SHARED | IRQF_NO_SUSPEND, "watchdog",
			       wdt_dev);
	if (ret) {
		dev_err(&pdev->dev, "error requesting warning irq %d\n",
			pdata->irq);
		return ret;
	}

	/* Make sure the watchdog is not running */
	wdt_stop(wdt_dev);

	ret = watchdog_register_device(wdt_dev);
	if (ret) {
		dev_err(&pdev->dev, "error registering watchdog device\n");
		return ret;
	}

	dev_info(&pdev->dev, "Intel MID watchdog device probed\n");

	return 0;
}
示例#4
0
static int wdt_release(struct inode *inode, struct file *file)
{
	/*
	 * Shut off the timer.
	 * Lock it in if it's a module and we set nowayout
	 */
	if (expect_close == 42) {
		wdt_stop();
		clear_bit(0, &timer_alive);
	} else {
		wdt_keepalive();
		pr_crit("unexpected close, not stopping watchdog!\n");
	}
	expect_close = 0;
	return 0;
}
示例#5
0
static int wdt_release(struct inode *inode, struct file *file)
{
	/*
	 * Shut off the timer.
	 * Lock it in if it's a module and we set nowayout
	 */
	if (expect_close == 42) {
		wdt_stop();
		clear_bit(0, &timer_alive);
	} else {
		wdt_keepalive();
//		printk(KERN_CRIT PFX
;
	}
	expect_close = 0;
	return 0;
}
示例#6
0
void wdt_start(unsigned int timeout)
{
    struct s5p_watchdog *wdt =
        samsung_get_base_watchdog();
    unsigned int wtcon;

    wdt_stop();

    wtcon = readl(&wdt->wtcon);
    wtcon |= (WTCON_EN | WTCON_CLK(WTCON_CLK_128));
    wtcon &= ~WTCON_INT;
    wtcon |= WTCON_RESET;
    wtcon |= WTCON_PRESCALER(PRESCALER_VAL);

    writel(timeout, &wdt->wtdat);
    writel(timeout, &wdt->wtcnt);
    writel(wtcon, &wdt->wtcon);
}
示例#7
0
int exynos_early_init_f(void)
{
	wdt_stop();

	return 0;
}
示例#8
0
static long wdt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	int status;
	int new_options, retval = -EINVAL;
	int new_timeout;
	union {
		struct watchdog_info __user *ident;
		int __user *i;
	} uarg;

	uarg.i = (int __user *)arg;

	switch (cmd) {
	case WDIOC_GETSUPPORT:
		return copy_to_user(uarg.ident, &ident,
						sizeof(ident)) ? -EFAULT : 0;

	case WDIOC_GETSTATUS:
		wdt_get_status(&status);
		return put_user(status, uarg.i);

	case WDIOC_GETBOOTSTATUS:
		return put_user(0, uarg.i);

	case WDIOC_SETOPTIONS:
		if (get_user(new_options, uarg.i))
			return -EFAULT;

		if (new_options & WDIOS_DISABLECARD) {
			wdt_stop();
			retval = 0;
		}

		if (new_options & WDIOS_ENABLECARD) {
			wdt_start();
			retval = 0;
		}

		return retval;

	case WDIOC_KEEPALIVE:
		wdt_keepalive();
		return 0;

	case WDIOC_SETTIMEOUT:
		if (get_user(new_timeout, uarg.i))
			return -EFAULT;

		if (wdt_set_timeout(new_timeout))
			return -EINVAL;

		wdt_keepalive();
		/* Fall */

	case WDIOC_GETTIMEOUT:
		return put_user(timeout, uarg.i);

	default:
		return -ENOTTY;

	}
}
示例#9
0
void arch_preboot_os(void)
{
#ifdef CONFIG_WATCHDOG
	wdt_stop(gd->watchdog_dev);
#endif
}
示例#10
0
static long wdt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	int __user *p = argp;
	int new_heartbeat;
	int status;

	static struct watchdog_info ident = {
		.options =		WDIOF_SETTIMEOUT|
					WDIOF_MAGICCLOSE|
					WDIOF_KEEPALIVEPING,
		.firmware_version =	1,
		.identity =		"WDT500/501",
	};

	/* Add options according to the card we have */
	ident.options |= (WDIOF_EXTERN1|WDIOF_EXTERN2);
#ifdef CONFIG_WDT_501
	ident.options |= (WDIOF_OVERHEAT|WDIOF_POWERUNDER|WDIOF_POWEROVER);
	if (tachometer)
		ident.options |= WDIOF_FANFAULT;
#endif /* CONFIG_WDT_501 */

	switch (cmd) {
	case WDIOC_GETSUPPORT:
		return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
	case WDIOC_GETSTATUS:
		wdt_get_status(&status);
		return put_user(status, p);
	case WDIOC_GETBOOTSTATUS:
		return put_user(0, p);
	case WDIOC_KEEPALIVE:
		wdt_ping();
		return 0;
	case WDIOC_SETTIMEOUT:
		if (get_user(new_heartbeat, p))
			return -EFAULT;
		if (wdt_set_heartbeat(new_heartbeat))
			return -EINVAL;
		wdt_ping();
		/* Fall */
	case WDIOC_GETTIMEOUT:
		return put_user(heartbeat, p);
	default:
		return -ENOTTY;
	}
}

/**
 *	wdt_open:
 *	@inode: inode of device
 *	@file: file handle to device
 *
 *	The watchdog device has been opened. The watchdog device is single
 *	open and on opening we load the counters. Counter zero is a 100Hz
 *	cascade, into counter 1 which downcounts to reboot. When the counter
 *	triggers counter 2 downcounts the length of the reset pulse which
 *	set set to be as long as possible.
 */

static int wdt_open(struct inode *inode, struct file *file)
{
	if (test_and_set_bit(0, &wdt_is_open))
		return -EBUSY;
	/*
	 *	Activate
	 */
	wdt_start();
	return nonseekable_open(inode, file);
}

/**
 *	wdt_release:
 *	@inode: inode to board
 *	@file: file handle to board
 *
 *	The watchdog has a configurable API. There is a religious dispute
 *	between people who want their watchdog to be able to shut down and
 *	those who want to be sure if the watchdog manager dies the machine
 *	reboots. In the former case we disable the counters, in the latter
 *	case you have to open it again very soon.
 */

static int wdt_release(struct inode *inode, struct file *file)
{
	if (expect_close == 42) {
		wdt_stop();
		clear_bit(0, &wdt_is_open);
	} else {
		printk(KERN_CRIT
		 "wdt: WDT device closed unexpectedly.  WDT will not stop!\n");
		wdt_ping();
	}
	expect_close = 0;
	return 0;
}

#ifdef CONFIG_WDT_501
/**
 *	wdt_temp_read:
 *	@file: file handle to the watchdog board
 *	@buf: buffer to write 1 byte into
 *	@count: length of buffer
 *	@ptr: offset (no seek allowed)
 *
 *	Temp_read reports the temperature in degrees Fahrenheit. The API is in
 *	farenheit. It was designed by an imperial measurement luddite.
 */

static ssize_t wdt_temp_read(struct file *file, char __user *buf,
						size_t count, loff_t *ptr)
{
	int temperature;

	if (wdt_get_temperature(&temperature))
		return -EFAULT;

	if (copy_to_user(buf, &temperature, 1))
		return -EFAULT;

	return 1;
}
示例#11
0
/*! \fn     main(void)
*   \brief  Main function
*/
int main(void)
{
    uint16_t current_bootkey_val = eeprom_read_word((uint16_t*)EEP_BOOTKEY_ADDR);
    RET_TYPE flash_init_result;
    RET_TYPE touch_init_result;
    RET_TYPE card_detect_ret;
    uint8_t fuse_ok = TRUE;
    
    // Disable JTAG to gain access to pins, set prescaler to 1 (fuses not set)
    #ifndef PRODUCTION_KICKSTARTER_SETUP
        disableJTAG();
        CPU_PRESCALE(0);
    #endif
        
    // Check fuse settings: boot reset vector, 2k words, SPIEN, BOD 2.6V, programming & ver disabled
    if ((boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS) != 0xFF) || (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) != 0xD8) || (boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS) != 0xFB) || (boot_lock_fuse_bits_get(GET_LOCK_BITS) != 0xFC))
    {
        fuse_ok = FALSE;
    }
    
    // Check if PB5 is low to start electrical test
    DDRB &= ~(1 << 5); PORTB |= (1 << 5);
    smallForLoopBasedDelay();
    if (!(PINB & (1 << 5)))
    {
        // Test result, true by default
        uint8_t test_result = TRUE;
        // Leave flash nS off
        DDR_FLASH_nS |= (1 << PORTID_FLASH_nS);
        PORT_FLASH_nS |= (1 << PORTID_FLASH_nS);
        // Set PORTD as output, leave PORTID_OLED_SS high
        DDRD |= 0xFF; PORTD |= 0xFF;
        // All other pins are input by default, run our test
        for (uint8_t i = 0; i < 4; i++)
        {
            PORTD |= 0xFF;
            smallForLoopBasedDelay();
            if (!(PINF & (0xC3)) || !(PINC & (1 << 6)) || !(PINE & (1 << 6)) || !(PINB & (1 << 4)))
            {
                test_result = FALSE;
            }
            PORTD &= (1 << PORTID_OLED_SS);
            smallForLoopBasedDelay();
            if ((PINF & (0xC3)) || (PINC & (1 << 6)) || (PINE & (1 << 6)) || (PINB & (1 << 4)))
            {
                test_result = FALSE;
            }
        }               
        // PB6 as test result output
        DDRB |= (1 << 6);
        // If test successful, light green LED
        if ((test_result == TRUE) && (fuse_ok == TRUE))
        {
            PORTB |= (1 << 6);
        } 
        else
        {
            PORTB &= ~(1 << 6);
        }
        while(1);
    }
    
    // This code will only be used for developers and beta testers
    #if !defined(PRODUCTION_SETUP) && !defined(PRODUCTION_KICKSTARTER_SETUP)
        // Check if we were reset and want to go to the bootloader
        if (current_bootkey_val == BOOTLOADER_BOOTKEY)
        {
            // Disable WDT
            wdt_reset();
            wdt_clear_flag();
            wdt_change_enable();
            wdt_stop();
            // Store correct bootkey
            eeprom_write_word((uint16_t*)EEP_BOOTKEY_ADDR, CORRECT_BOOTKEY);
            // Jump to bootloader
            start_bootloader();
        }
        // Check if there was a change in the mooltipass setting storage to reset the parameters to their correct values
        if (getMooltipassParameterInEeprom(USER_PARAM_INIT_KEY_PARAM) != USER_PARAM_CORRECT_INIT_KEY)
        {
            mooltipassParametersInit();
            setMooltipassParameterInEeprom(USER_PARAM_INIT_KEY_PARAM, USER_PARAM_CORRECT_INIT_KEY);
        }
    #endif

    // First time initializations for Eeprom (first boot at production or flash layout changes for beta testers)
    if (current_bootkey_val != CORRECT_BOOTKEY)
    {
        // Erase Mooltipass parameters
        mooltipassParametersInit();
        // Set bootloader password bool to FALSE
        eeprom_write_byte((uint8_t*)EEP_BOOT_PWD_SET, FALSE);
    }

    /* Check if a card is inserted in the Mooltipass to go to the bootloader */
    #ifdef AVR_BOOTLOADER_PROGRAMMING
        /* Disable JTAG to get access to the pins */
        disableJTAG();
        /* Init SMC port */
        initPortSMC();
        /* Delay for detection */
        smallForLoopBasedDelay();
        #if defined(HARDWARE_V1)
        if (PIN_SC_DET & (1 << PORTID_SC_DET))
        #elif defined(HARDWARE_OLIVIER_V1)
        if (!(PIN_SC_DET & (1 << PORTID_SC_DET)))
        #endif
        {
            uint16_t tempuint16;
            /* What follows is a copy from firstDetectFunctionSMC() */
            /* Enable power to the card */
            PORT_SC_POW &= ~(1 << PORTID_SC_POW);
            /* Default state: PGM to 0 and RST to 1 */
            PORT_SC_PGM &= ~(1 << PORTID_SC_PGM);
            DDR_SC_PGM |= (1 << PORTID_SC_PGM);
            PORT_SC_RST |= (1 << PORTID_SC_RST);
            DDR_SC_RST |= (1 << PORTID_SC_RST);
            /* Activate SPI port */
            PORT_SPI_NATIVE &= ~((1 << SCK_SPI_NATIVE) | (1 << MOSI_SPI_NATIVE));
            DDRB |= (1 << SCK_SPI_NATIVE) | (1 << MOSI_SPI_NATIVE);
            setSPIModeSMC();
            /* Let the card come online */
            smallForLoopBasedDelay();
            /* Check smart card FZ */
            readFabricationZone((uint8_t*)&tempuint16);
            if ((swap16(tempuint16)) != SMARTCARD_FABRICATION_ZONE)
            {
                removeFunctionSMC();
                start_bootloader();
            }
            else
            {
                removeFunctionSMC();
            }
        }
    #endif

    initPortSMC();                      // Initialize smart card port
    initPwm();                          // Initialize PWM controller
    initIRQ();                          // Initialize interrupts
    powerSettlingDelay();               // Let the power settle   
    initUsb();                          // Initialize USB controller
    powerSettlingDelay();               // Let the USB 3.3V LDO rise
    initI2cPort();                      // Initialize I2C interface
    rngInit();                          // Initialize avrentropy library
    oledInitIOs();                      // Initialize OLED input/outputs
    spiUsartBegin(SPI_RATE_8_MHZ);      // Start USART SPI at 8MHz

    // If offline mode isn't enabled, wait for device to be enumerated
    if (getMooltipassParameterInEeprom(OFFLINE_MODE_PARAM) == FALSE)
    {
        while(!isUsbConfigured());      // Wait for host to set configuration
    }    
    
    // Set correct timeout_enabled val
    mp_timeout_enabled = getMooltipassParameterInEeprom(LOCK_TIMEOUT_ENABLE_PARAM);

    // Launch the before flash initialization tests
    #ifdef TESTS_ENABLED
        beforeFlashInitTests();
    #endif
    
    // Check if we can initialize the Flash memory
    flash_init_result = initFlash();
    
    // Launch the after flash initialization tests
    #ifdef TESTS_ENABLED
        afterFlashInitTests();
    #endif
    
    // Set up OLED now that USB is receiving full 500mA.
    oledBegin(FONT_DEFAULT);
    
    // First time initializations for Flash (first time power up at production)
    if (current_bootkey_val != CORRECT_BOOTKEY)
    {
        // Erase everything non graphic in flash
        eraseFlashUsersContents();
        // Erase # of cards and # of users
        firstTimeUserHandlingInit();
    }
    
    // Check if we can initialize the touch sensing element
    touch_init_result = initTouchSensing();

    // Enable proximity detection
    #ifndef HARDWARE_V1
        activateProxDetection();
    #endif
    
    // Launch the after touch initialization tests
    #ifdef TESTS_ENABLED
        afterTouchInitTests();
    #endif
    
    // Test procedure to check that all HW is working
    #if defined(PRODUCTION_SETUP) || defined(PRODUCTION_KICKSTARTER_SETUP)
        if (current_bootkey_val != CORRECT_BOOTKEY)
        {
            RET_TYPE temp_rettype;        
            // Wait for USB host to upload bundle, which then sets USER_PARAM_INIT_KEY_PARAM
            //#ifdef PRODUCTION_KICKSTARTER_SETUP
            while(getMooltipassParameterInEeprom(USER_PARAM_INIT_KEY_PARAM) != 0xF1)
            {
                usbProcessIncoming(USB_CALLER_MAIN);
            }
            //#endif
            // Bundle uploaded, start the screen
            oledBegin(FONT_DEFAULT);
            oledWriteActiveBuffer();
            oledSetXY(0,0);
            // LEDs ON, to check
            setPwmDc(MAX_PWM_VAL);
            switchOnButtonWheelLeds();
            guiDisplayRawString(ID_STRING_TEST_LEDS_CH);
            // Check flash init
            if (flash_init_result != RETURN_OK)
            {
                 guiDisplayRawString(ID_STRING_TEST_FLASH_PB);
            }
            // Check touch init
            if (touch_init_result != RETURN_OK)
            {
                guiDisplayRawString(ID_STRING_TEST_TOUCH_PB);
            }
            // Touch instructions
            guiDisplayRawString(ID_STRING_TEST_INST_TCH);
            // Check prox
            while(!(touchDetectionRoutine(0) & RETURN_PROX_DETECTION));
            guiDisplayRawString(ID_STRING_TEST_DET);
            activateGuardKey();
            // Check left
            while(!(touchDetectionRoutine(0) & RETURN_LEFT_PRESSED));
            guiDisplayRawString(ID_STRING_TEST_LEFT);
            // Check wheel
            while(!(touchDetectionRoutine(0) & RETURN_WHEEL_PRESSED));
            guiDisplayRawString(ID_STRING_TEST_WHEEL);
            // Check right
            while(!(touchDetectionRoutine(0) & RETURN_RIGHT_PRESSED));
            guiDisplayRawString(ID_STRING_TEST_RIGHT);
            // Insert card
            guiDisplayRawString(ID_STRING_TEST_CARD_INS);
            while(isCardPlugged() != RETURN_JDETECT);
            temp_rettype = cardDetectedRoutine();
            // Check card
            if (!((temp_rettype == RETURN_MOOLTIPASS_BLANK) || (temp_rettype == RETURN_MOOLTIPASS_USER)))
            {
                guiDisplayRawString(ID_STRING_TEST_CARD_PB);
            }
            // Display result
            uint8_t script_return = RETURN_OK;
            if ((flash_init_result == RETURN_OK) && (touch_init_result == RETURN_OK) && ((temp_rettype == RETURN_MOOLTIPASS_BLANK) || (temp_rettype == RETURN_MOOLTIPASS_USER)))
            {
                // Inform script of success
                usbSendMessage(CMD_FUNCTIONAL_TEST_RES, 1, &script_return);
                // Wait for password to be set
                while(eeprom_read_byte((uint8_t*)EEP_BOOT_PWD_SET) != BOOTLOADER_PWDOK_KEY)
                {
                    usbProcessIncoming(USB_CALLER_MAIN);
                }
                // Display test result
                guiDisplayRawString(ID_STRING_TEST_OK);
                timerBasedDelayMs(3000);
            }
            else
            {
                // Set correct bool
                script_return = RETURN_NOK;
                // Display test result
                guiDisplayRawString(ID_STRING_TEST_NOK);
                // Inform script of failure
                usbSendMessage(CMD_FUNCTIONAL_TEST_RES, 1, &script_return);
                while(1)
                {
                    usbProcessIncoming(USB_CALLER_MAIN);
                }
            }
        }
    #endif
    
    // Stop the Mooltipass if we can't communicate with the flash or the touch interface
    #if defined(HARDWARE_OLIVIER_V1)
        #ifdef PRODUCTION_KICKSTARTER_SETUP
            while ((flash_init_result != RETURN_OK) || (touch_init_result != RETURN_OK) || (fuse_ok != TRUE));
        #else
            while ((flash_init_result != RETURN_OK) || (touch_init_result != RETURN_OK));
        #endif
    #endif
    
    // First time initializations done.... write correct value in eeprom
    if (current_bootkey_val != CORRECT_BOOTKEY)
    {
        // Store correct bootkey
        eeprom_write_word((uint16_t*)EEP_BOOTKEY_ADDR, CORRECT_BOOTKEY);
    }

    // Write inactive buffer & go to startup screen
    oledWriteInactiveBuffer();
    guiSetCurrentScreen(SCREEN_DEFAULT_NINSERTED);
    guiGetBackToCurrentScreen();
        
    // Launch the after HaD logo display tests
    #ifdef TESTS_ENABLED
        afterHadLogoDisplayTests();  
    #endif
    
    // Let's fade in the LEDs
    for (uint16_t i = 0; i < MAX_PWM_VAL; i++)
    {
        setPwmDc(i);
        timerBasedDelayMs(0);
    }
    activityDetectedRoutine();
    launchCalibrationCycle();
    touchClearCurrentDetections();
    
    // Inhibit touch inputs for the first 3 seconds
    activateTimer(TIMER_TOUCH_INHIBIT, 3000);
    while (1)
    {
        // Process possible incoming USB packets
        usbProcessIncoming(USB_CALLER_MAIN);
        
        // Call GUI routine once the touch input inhibit timer is finished
        if (hasTimerExpired(TIMER_TOUCH_INHIBIT, FALSE) == TIMER_EXPIRED)
        {
            guiMainLoop();
        }
        
        // Check if a card just got inserted / removed
        card_detect_ret = isCardPlugged();
        
        // Do appropriate actions on smartcard insertion / removal
        if (card_detect_ret == RETURN_JDETECT)
        {
            // Light up the Mooltipass and call the dedicated function
            activityDetectedRoutine();
            handleSmartcardInserted();
        }
        else if (card_detect_ret == RETURN_JRELEASED)
        {
            // Light up the Mooltipass and call the dedicated function
            activityDetectedRoutine();
            handleSmartcardRemoved();
            
            // Set correct screen
            guiDisplayInformationOnScreen(ID_STRING_CARD_REMOVED);
            guiSetCurrentScreen(SCREEN_DEFAULT_NINSERTED);
            userViewDelay();
            guiGetBackToCurrentScreen();
        }
        
        // Two quick caps lock presses wakes up the device        
        if ((hasTimerExpired(TIMER_CAPS, FALSE) == TIMER_EXPIRED) && (getKeyboardLeds() & HID_CAPS_MASK) && (wasCapsLockTimerArmed == FALSE))
        {
            wasCapsLockTimerArmed = TRUE;
            activateTimer(TIMER_CAPS, CAPS_LOCK_DEL);
        }
        else if ((hasTimerExpired(TIMER_CAPS, FALSE) == TIMER_RUNNING) && !(getKeyboardLeds() & HID_CAPS_MASK))
        {
            activityDetectedRoutine();
        }
        else if ((hasTimerExpired(TIMER_CAPS, FALSE) == TIMER_EXPIRED) && !(getKeyboardLeds() & HID_CAPS_MASK))
        {
            wasCapsLockTimerArmed = FALSE;            
        }
        
        // If we have a timeout lock
        if ((mp_timeout_enabled == TRUE) && (hasTimerExpired(SLOW_TIMER_LOCKOUT, TRUE) == TIMER_EXPIRED))
        {
            guiSetCurrentScreen(SCREEN_DEFAULT_INSERTED_LCK);
            guiGetBackToCurrentScreen();
            handleSmartcardRemoved();
        }
    }
}
示例#12
0
/*! \fn     main(void)
*   \brief  Main function
*   \note   For our security chain to be valid, EEP_BOOT_PWD_SET in eeprom needs to be set to BOOTLOADER_PWDOK_KEY
*/
int main(void)
{
    /* Fetch bootkey in eeprom */
    uint16_t current_bootkey_val = eeprom_read_word((uint16_t*)EEP_BOOTKEY_ADDR);                                       // Bootkey in EEPROM
    uint8_t new_aes_key[AES_KEY_LENGTH/8];                                                                              // New AES encryption key
    uint8_t cur_aes_key[AES_KEY_LENGTH/8];                                                                              // AES encryption key
    uint8_t firmware_data[SPM_PAGESIZE];                                                                                // One page of firmware data
    aes256_context temp_aes_context;                                                                                    // AES context
    uint8_t cur_cbc_mac[16];                                                                                            // Current CBCMAC val
    uint8_t temp_data[16];                                                                                              // Temporary 16 bytes array
    RET_TYPE flash_init_result;                                                                                         // Flash initialization result
    uint16_t firmware_start_address = UINT16_MAX - MAX_FIRMWARE_SIZE - sizeof(cur_cbc_mac) - sizeof(cur_aes_key) + 1;   // Start address of firmware in external memory
    uint16_t firmware_end_address = UINT16_MAX - sizeof(cur_cbc_mac) - sizeof(cur_aes_key) + 1;                         // End address of firmware in external memory


    /* Just in case we are going to disable the watch dog timer and disable interrupts */
    cli();
    wdt_reset();
    wdt_clear_flag();
    wdt_change_enable();
    wdt_stop();

    /* Check fuses: 2k words, SPIEN, BOD 4.3V, BOOTRST programming & ver disabled >> http://www.engbedded.com/fusecalc/ */
    if ((boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS) != 0xFF) || (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) != 0xD8) || (boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS) != 0xF8) || (boot_lock_fuse_bits_get(GET_LOCK_BITS) != 0xFC))
    {
        while(1);
    }

    /* If security isn't set in place yet, no point in launching the bootloader */
    if (eeprom_read_byte((uint8_t*)EEP_BOOT_PWD_SET) != BOOTLOADER_PWDOK_KEY)
    {
        start_firmware();
    }

    /* Check if the device is booting normally, if the bootloader was called, or unknown state */
    if (current_bootkey_val == CORRECT_BOOTKEY)
    {
        /* Security system set, correct bootkey for firmware */
        start_firmware();
    }
    else if (current_bootkey_val != BOOTLOADER_BOOTKEY)
    {
        /* Security system set, bootkey isn't the bootloader one nor the main fw one... */
        while(1);
    }

    /* By default, brick the device so it's an all or nothing update procedure */
    eeprom_write_word((uint16_t*)EEP_BOOTKEY_ADDR, BRICKED_BOOTKEY);

    /* Init IOs */
    UHWCON = 0x01;                          // Enable USB 3.3V LDO
    initFlashIOs();                         // Init EXT Flash IOs
    spiUsartBegin();                        // Init SPI Controller    
    DDR_ACC_SS |= (1 << PORTID_ACC_SS);     // Setup PORT for the Accelerometer SS
    PORT_ACC_SS |= (1 << PORTID_ACC_SS);    // Setup PORT for the Accelerometer SS    
    DDR_OLED_SS |= (1 << PORTID_OLED_SS);   // Setup PORT for the OLED SS
    PORT_OLED_SS |= (1 << PORTID_OLED_SS);  // Setup PORT for the OLED SS
    for (uint16_t i = 0; i < 20000; i++) asm volatile ("NOP");

    /* Disable I2C block of the Accelerometer */
    PORT_ACC_SS &= ~(1 << PORTID_ACC_SS);
    spiUsartTransfer(0x23);
    spiUsartTransfer(0x02);
    PORT_ACC_SS |= (1 << PORTID_ACC_SS);

    /* Check Flash */
    flash_init_result = checkFlashID();
    if (flash_init_result != RETURN_OK)
    {
        while(1);
    }

    for (uint8_t pass_number = 0; pass_number < 2; pass_number++)
    {
        /* Init CBCMAC encryption context*/
        eeprom_read_block((void*)cur_aes_key, (void*)EEP_BOOT_PWD, sizeof(cur_aes_key));
        memset((void*)cur_cbc_mac, 0x00, sizeof(cur_cbc_mac));
        memset((void*)temp_data, 0x00, sizeof(temp_data));
        aes256_init_ecb(&temp_aes_context, cur_aes_key);

        // Compute CBCMAC for between the start of the graphics zone until the max addressing space (65536) - the size of the CBCMAC
        for (uint16_t i = GRAPHIC_ZONE_START; i < (UINT16_MAX - sizeof(cur_cbc_mac) + 1); i += sizeof(cur_cbc_mac))
        {
            // Read data from external flash
            flashRawRead(temp_data, i, sizeof(temp_data));

            // If we got to the part containing to firmware
            if ((i >= firmware_start_address) && (i < firmware_end_address))
            {
                // Append firmware data to current buffer
                uint16_t firmware_data_address = i - firmware_start_address;
                memcpy(firmware_data + (firmware_data_address & SPM_PAGE_SIZE_BYTES_BM), temp_data, sizeof(temp_data));

                // If we have a full page in buffer, flash it
                firmware_data_address += sizeof(cur_cbc_mac);
                if (((firmware_data_address & SPM_PAGE_SIZE_BYTES_BM) == 0x0000) && (pass_number == 1))
                {
                    boot_program_page(firmware_data_address - SPM_PAGESIZE, firmware_data);
                }
            }

            // If we got to the part containing the encrypted new aes key (end of the for())
            if (i >= firmware_end_address)
            {
                memcpy(new_aes_key + i - firmware_end_address, temp_data, sizeof(temp_data));
            }

            // Continue computation of CBCMAC
            aesXorVectors(cur_cbc_mac, temp_data, sizeof(temp_data));
            aes256_encrypt_ecb(&temp_aes_context, cur_cbc_mac);
        }

        // Read CBCMAC in memory and compare it with the computed value
        flashRawRead(temp_data, (UINT16_MAX - sizeof(cur_cbc_mac) + 1), sizeof(cur_cbc_mac));
        if (pass_number == 0)
        {
            // First pass, compare CBCMAC and see if we do the next pass or start the firmware
            if (sideChannelSafeMemCmp(temp_data, cur_cbc_mac, sizeof(cur_cbc_mac)) != 0)
            {
                // No match, start the main firmware
                eeprom_write_word((uint16_t*)EEP_BOOTKEY_ADDR, CORRECT_BOOTKEY);
                start_firmware();
            }
            else
            {
                // Otherwise, next pass!
            }
        }
        else
        {
            // Second pass, compare CBCMAC and then update AES keys
            if (sideChannelSafeMemCmp(temp_data, cur_cbc_mac, sizeof(cur_cbc_mac)) == 0)
            {
                // Fetch the encrypted new aes key from flash, decrypt it, store it
                aes256_decrypt_ecb(&temp_aes_context, new_aes_key);
                aes256_decrypt_ecb(&temp_aes_context, new_aes_key+16);
                eeprom_write_block((void*)new_aes_key, (void*)EEP_BOOT_PWD, sizeof(new_aes_key));
                eeprom_write_word((uint16_t*)EEP_BOOTKEY_ADDR, CORRECT_BOOTKEY);
                start_firmware();
            }
            else
            {
                // Fail, erase everything! >> maybe just write a while(1) in the future?
                for (uint16_t i = 0; i < MAX_FIRMWARE_SIZE; i += SPM_PAGESIZE)
                {
                    boot_page_erase(i);
                    boot_spm_busy_wait();
                }
                while(1);
            }
        }
    }
}
示例#13
0
int board_early_init_f(void)
{
	wdt_stop();

	return 0;
}