示例#1
0
int main(int argc, char*argv[])
{
    // options
    int          ftype       = LIQUID_FIRFILT_ARKAISER;
    int          ms          = LIQUID_MODEM_QPSK;
    unsigned int k           = 2;       // samples per symbol
    unsigned int m           = 7;       // filter delay (symbols)
    float        beta        = 0.20f;   // filter excess bandwidth factor
    unsigned int num_symbols = 4000;    // number of data symbols
    unsigned int hc_len      =   4;     // channel filter length
    float        noise_floor = -60.0f;  // noise floor [dB]
    float        SNRdB       = 30.0f;   // signal-to-noise ratio [dB]
    float        bandwidth   =  0.02f;  // loop filter bandwidth
    float        tau         = -0.2f;   // fractional symbol offset
    float        rate        = 1.001f;  // sample rate offset
    float        dphi        =  0.01f;  // carrier frequency offset [radians/sample]
    float        phi         =  2.1f;   // carrier phase offset [radians]

    unsigned int nfft        =   2400;  // spectral periodogram FFT size
    unsigned int num_samples = 200000;  // number of samples

    int dopt;
    while ((dopt = getopt(argc,argv,"hk:m:b:s:w:n:t:r:")) != EOF) {
        switch (dopt) {
        case 'h':   usage();                        return 0;
        case 'k':   k           = atoi(optarg);     break;
        case 'm':   m           = atoi(optarg);     break;
        case 'b':   beta        = atof(optarg);     break;
        case 's':   SNRdB       = atof(optarg);     break;
        case 'w':   bandwidth   = atof(optarg);     break;
        case 'n':   num_symbols = atoi(optarg);     break;
        case 't':   tau         = atof(optarg);     break;
        case 'r':   rate        = atof(optarg);     break;
        default:
            exit(1);
        }
    }

    // validate input
    if (k < 2) {
        fprintf(stderr,"error: k (samples/symbol) must be greater than 1\n");
        exit(1);
    } else if (m < 1) {
        fprintf(stderr,"error: m (filter delay) must be greater than 0\n");
        exit(1);
    } else if (beta <= 0.0f || beta > 1.0f) {
        fprintf(stderr,"error: beta (excess bandwidth factor) must be in (0,1]\n");
        exit(1);
    } else if (bandwidth <= 0.0f) {
        fprintf(stderr,"error: timing PLL bandwidth must be greater than 0\n");
        exit(1);
    } else if (num_symbols == 0) {
        fprintf(stderr,"error: number of symbols must be greater than 0\n");
        exit(1);
    } else if (tau < -1.0f || tau > 1.0f) {
        fprintf(stderr,"error: timing phase offset must be in [-1,1]\n");
        exit(1);
    } else if (rate > 1.02f || rate < 0.98f) {
        fprintf(stderr,"error: timing rate offset must be in [1.02,0.98]\n");
        exit(1);
    }

    unsigned int i;

    // buffers
    unsigned int    buf_len = 400;      // buffer size
    float complex   x   [buf_len];      // original signal
    float complex   y   [buf_len*2];    // channel output (larger to accommodate resampler)
    float complex   syms[buf_len];      // recovered symbols
    // window for saving last few symbols
    windowcf sym_buf = windowcf_create(buf_len);

    // create stream generator
    symstreamcf gen = symstreamcf_create_linear(ftype,k,m,beta,ms);

    // create channel emulator and add impairments
    channel_cccf channel = channel_cccf_create();
    channel_cccf_add_awgn          (channel, noise_floor, SNRdB);
    channel_cccf_add_carrier_offset(channel, dphi, phi);
    channel_cccf_add_multipath     (channel, NULL, hc_len);
    channel_cccf_add_resamp        (channel, 0.0f, rate);

    // create symbol tracking synchronizer
    symtrack_cccf symtrack = symtrack_cccf_create(ftype,k,m,beta,ms);
    symtrack_cccf_set_bandwidth(symtrack,0.05f);

    // create spectral periodogram for estimating spectrum
    spgramcf periodogram = spgramcf_create_default(nfft);

    unsigned int total_samples = 0;
    unsigned int ny;
    unsigned int total_symbols = 0;
    while (total_samples < num_samples)
    {
        // write samples to buffer
        symstreamcf_write_samples(gen, x, buf_len);

        // apply channel
        channel_cccf_execute(channel, x, buf_len, y, &ny);

        // push resulting sample through periodogram
        spgramcf_write(periodogram, y, ny);

        // run resulting stream through synchronizer
        unsigned int num_symbols_sync;
        symtrack_cccf_execute_block(symtrack, y, ny, syms, &num_symbols_sync);
        total_symbols += num_symbols_sync;

        // write resulting symbols to window buffer for plotting
        windowcf_write(sym_buf, syms, num_symbols_sync);

        // accumulated samples
        total_samples += buf_len;
    }
    printf("total samples: %u\n", total_samples);
    printf("total symbols: %u\n", total_symbols);

    // write accumulated power spectral density estimate
    float psd[nfft];
    spgramcf_get_psd(periodogram, psd);

    //
    // export output file
    //

    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s, auto-generated file\n\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n");

    // read buffer and write last symbols to file
    float complex * rc;
    windowcf_read(sym_buf, &rc);
    fprintf(fid,"syms = zeros(1,%u);\n", buf_len);
    for (i=0; i<buf_len; i++)
        fprintf(fid,"syms(%3u) = %12.8f + j*%12.8f;\n", i+1, crealf(rc[i]), cimagf(rc[i]));

    // power spectral density estimate
    fprintf(fid,"nfft = %u;\n", nfft);
    fprintf(fid,"f=[0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"psd = zeros(1,nfft);\n");
    for (i=0; i<nfft; i++)
        fprintf(fid,"psd(%3u) = %12.8f;\n", i+1, psd[i]);

    fprintf(fid,"figure('Color','white','position',[500 500 1400 400]);\n");
    fprintf(fid,"subplot(1,3,1);\n");
    fprintf(fid,"plot(real(syms),imag(syms),'x','MarkerSize',4);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.6);\n");
    fprintf(fid,"  xlabel('In-phase');\n");
    fprintf(fid,"  ylabel('Quadrature');\n");
    fprintf(fid,"  title('Last %u symbols');\n", buf_len);
    fprintf(fid,"subplot(1,3,2:3);\n");
    fprintf(fid,"  plot(f, psd, 'LineWidth',1.5,'Color',[0 0.5 0.2]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  pmin = 10*floor(0.1*min(psd - 5));\n");
    fprintf(fid,"  pmax = 10*ceil (0.1*max(psd + 5));\n");
    fprintf(fid,"  axis([-0.5 0.5 pmin pmax]);\n");
    fprintf(fid,"  xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"  ylabel('Power Spectral Density [dB]');\n");

    fclose(fid);
    printf("results written to %s.\n", OUTPUT_FILENAME);

    // destroy objects
    symstreamcf_destroy  (gen);
    spgramcf_destroy     (periodogram);
    channel_cccf_destroy (channel);
    symtrack_cccf_destroy(symtrack);
    windowcf_destroy     (sym_buf);

    // clean it up
    printf("done.\n");
    return 0;
}
示例#2
0
文件: rtl_asgram.c 项目: EQ4/sdr_rec
// main program
int main (int argc, char **argv)
{
    // command-line options
    int verbose = 1;

    int ppm_error = 0;
    int gain = 0;
    unsigned int nfft    = 64;
    float offset         = -65.0f;
    float scale          = 5.0f;
    float fft_rate       = 10.0f;
    float rx_resamp_rate;
    float bandwidth      = 800e3f;
    unsigned int logsize = 4096;
    char filename[256]   = "rtl_asgram.dat";
    int r, n_read;

    uint32_t frequency = 100000000;
    uint32_t samp_rate = DEFAULT_SAMPLE_RATE;
    uint32_t out_block_size = DEFAULT_BUF_LENGTH;
    uint8_t *buffer;

    int dev_index = 0;
    int dev_given = 0;

    struct sigaction sigact;
    normalizer_t *norm;

    //
    int d;
    while ((d = getopt(argc,argv,"hf:b:B:G:n:p:s:o:r:L:F:")) != EOF) {
        switch (d) {
        case 'h':
            usage();
            return 0;
        case 'f':
            frequency   = atof(optarg);
            break;
        case 'b':
            bandwidth   = atof(optarg);
            break;
        case 'B':
            out_block_size = (uint32_t)atof(optarg);
            break;
        case 'G':
            gain = (int)(atof(optarg) * 10);
            break;
        case 'n':
            nfft        = atoi(optarg);
            break;
        case 'o':
            offset      = atof(optarg);
            break;
        case 'p':
            ppm_error = atoi(optarg);
            break;
        case 's':
            samp_rate = (uint32_t)atofs(optarg);
            break;
        case 'r':
            fft_rate    = atof(optarg);
            break;
        case 'L':
            logsize     = atoi(optarg);
            break;
        case 'F':
            strncpy(filename,optarg,255);
            break;
        case 'd':
            dev_index = verbose_device_search(optarg);
            dev_given = 1;
            break;
        default:
            usage();
            return 1;
        }
    }

    // validate parameters
    if (fft_rate <= 0.0f || fft_rate > 100.0f) {
        fprintf(stderr,"error: %s, fft rate must be in (0, 100) Hz\n", argv[0]);
        exit(1);
    }

    if (!dev_given) {
        dev_index = verbose_device_search("0");
    }

    if (dev_index < 0) {
        exit(1);
    }

    r = rtlsdr_open(&dev, (uint32_t)dev_index);
    if (r < 0) {
        fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
        exit(1);
    }

    sigact.sa_handler = sighandler;
    sigemptyset(&sigact.sa_mask);
    sigact.sa_flags = 0;
    sigaction(SIGINT, &sigact, NULL);
    sigaction(SIGTERM, &sigact, NULL);
    sigaction(SIGQUIT, &sigact, NULL);
    sigaction(SIGPIPE, &sigact, NULL);

    /* Set the sample rate */
    verbose_set_sample_rate(dev, samp_rate);

    /* Set the frequency */
    verbose_set_frequency(dev, frequency);

    if (0 == gain) {
        /* Enable automatic gain */
        verbose_auto_gain(dev);
    } else {
        /* Enable manual gain */
        gain = nearest_gain(dev, gain);
        verbose_gain_set(dev, gain);
    }

    verbose_ppm_set(dev, ppm_error);

    rx_resamp_rate = bandwidth/samp_rate;

    printf("frequency       :   %10.4f [MHz]\n", frequency*1e-6f);
    printf("bandwidth       :   %10.4f [kHz]\n", bandwidth*1e-3f);
    printf("sample rate     :   %10.4f kHz = %10.4f kHz * %8.6f\n",
           samp_rate * 1e-3f,
           bandwidth    * 1e-3f,
           1.0f / rx_resamp_rate);
    printf("verbosity       :    %s\n", (verbose?"enabled":"disabled"));

    unsigned int i;

    // add arbitrary resampling component
    msresamp_crcf resamp = msresamp_crcf_create(rx_resamp_rate, 60.0f);
    assert(resamp);

    // create buffer for sample logging
    windowcf log = windowcf_create(logsize);

    // create ASCII spectrogram object
    float maxval;
    float maxfreq;
    char ascii[nfft+1];
    ascii[nfft] = '\0'; // append null character to end of string
    asgram q = asgram_create(nfft);
    asgram_set_scale(q, offset, scale);

    // assemble footer
    unsigned int footer_len = nfft + 16;
    char footer[footer_len+1];
    for (i=0; i<footer_len; i++)
        footer[i] = ' ';
    footer[1] = '[';
    footer[nfft/2 + 3] = '+';
    footer[nfft + 4] = ']';
    sprintf(&footer[nfft+6], "%8.3f MHz", frequency*1e-6f);
    unsigned int msdelay = 1000 / fft_rate;

    // create/initialize Hamming window
    float w[nfft];
    for (i=0; i<nfft; i++)
        w[i] = hamming(i,nfft);

    //allocate recv buffer
    buffer = malloc(out_block_size * sizeof(uint8_t));
    assert(buffer);

    // create buffer for arbitrary resamper output
    int b_len = ((int)(out_block_size * rx_resamp_rate) + 64) >> 1;
    complex float buffer_resamp[b_len];
    debug("resamp_buffer_len: %d", b_len);

    // timer to control asgram output
    timer t1 = timer_create();
    timer_tic(t1);

    norm = normalizer_create();

    verbose_reset_buffer(dev);

    while (!do_exit) {
        // grab data from device
        r = rtlsdr_read_sync(dev, buffer, out_block_size, &n_read);
        if (r < 0) {
            fprintf(stderr, "WARNING: sync read failed.\n");
            break;
        }

        if ((bytes_to_read > 0) && (bytes_to_read < (uint32_t)n_read)) {
            n_read = bytes_to_read;
            do_exit = 1;
        }

        // push data through arbitrary resampler and give to frame synchronizer
        // TODO : apply bandwidth-dependent gain
        for (i=0; i<n_read/2; i++) {
            // grab sample from usrp buffer
            complex float rtlsdr_sample = normalizer_normalize(norm, *((uint16_t*)buffer+i));

            // push through resampler (one at a time)
            unsigned int nw;
            msresamp_crcf_execute(resamp, &rtlsdr_sample, 1, buffer_resamp, &nw);

            // push resulting samples into asgram object
            asgram_push(q, buffer_resamp, nw);

            // write samples to log
            windowcf_write(log, buffer_resamp, nw);
        }

        if ((uint32_t)n_read < out_block_size) {
            fprintf(stderr, "Short read, samples lost, exiting!\n");
            break;
        }

        if (bytes_to_read > 0)
            bytes_to_read -= n_read;

        if (timer_toc(t1) > msdelay*1e-3f) {
            // reset timer
            timer_tic(t1);

            // run the spectrogram
            asgram_execute(q, ascii, &maxval, &maxfreq);

            // print the spectrogram
            printf(" > %s < pk%5.1fdB [%5.2f]\n", ascii, maxval, maxfreq);
            printf("%s\r", footer);
            fflush(stdout);
        }
    }

    // try to write samples to file
    FILE * fid = fopen(filename,"w");
    if (fid != NULL) {
        // write header
        fprintf(fid, "# %s : auto-generated file\n", filename);
        fprintf(fid, "#\n");
        fprintf(fid, "# num_samples :   %u\n", logsize);
        fprintf(fid, "# frequency   :   %12.8f MHz\n", frequency*1e-6f);
        fprintf(fid, "# bandwidth   :   %12.8f kHz\n", bandwidth*1e-3f);

        // save results to file
        complex float * rc;   // read pointer
        windowcf_read(log, &rc);
        for (i=0; i<logsize; i++)
            fprintf(fid, "%12.4e %12.4e\n", crealf(rc[i]), cimagf(rc[i]));

        // close it up
        fclose(fid);
        printf("results written to '%s'\n", filename);
    } else {
        fprintf(stderr,"error: %s, could not open '%s' for writing\n", argv[0], filename);
    }

    // destroy objects
    normalizer_destroy(&norm);
    msresamp_crcf_destroy(resamp);
    windowcf_destroy(log);
    asgram_destroy(q);
    timer_destroy(t1);

    rtlsdr_close(dev);
    free (buffer);

    return 0;
}