void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask != (1 << smp_processor_id())) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) mm, start, end); local_flush_tlb_range(mm, start, end); } }
void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask = mm->cpu_vm_mask; cpu_clear(smp_processor_id(), cpu_mask); if (!cpus_empty(cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end); local_flush_tlb_range(vma, start, end); } }
void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (mm->context != NO_CONTEXT) { cpumask_t cpu_mask; cpumask_copy(&cpu_mask, mm_cpumask(mm)); cpumask_clear_cpu(smp_processor_id(), &cpu_mask); if (!cpumask_empty(&cpu_mask)) xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end); local_flush_cache_range(vma, start, end); } }
int main(int argc, char* argv[]) { Polycurve_conic_traits_2 traits; //polycurve constructors Polycurve_conic_traits_2::Construct_x_monotone_curve_2 construct_x_mono_polycurve = traits.construct_x_monotone_curve_2_object(); Polycurve_conic_traits_2::Construct_curve_2 construct_polycurve = traits.construct_curve_2_object(); //create a curve Conic_curve_2 c3(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(0), Algebraic(0)), Conic_point_2(Algebraic(3), Algebraic(9))); Conic_curve_2 c4(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(3), Algebraic(9)), Conic_point_2(Algebraic(5), Algebraic(25))); Conic_curve_2 c5(0,1,0,1,0,0, CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(-25), Algebraic(-5)), Conic_point_2(Algebraic(0), Algebraic(0))); Conic_curve_2 c6(1,1,0,6,-26,162,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(-7), Algebraic(13)), Conic_point_2(Algebraic(-3), Algebraic(9))); Conic_curve_2 c7(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(-3), Algebraic(9)), Conic_point_2(Algebraic(0), Algebraic(0))); Conic_curve_2 c8(0,1,0,-1,0,0, CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(0), Algebraic(0)), Conic_point_2(Algebraic(4), Algebraic(-2))); Conic_curve_2 c9(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(-5), Algebraic(25)), Conic_point_2(Algebraic(5), Algebraic(25))); Conic_curve_2 c10(58, 72, -48, 0, 0, -360); //This vector is used to store curves that will be used to create polycurve std::vector<Conic_curve_2> conic_curves; conic_curves.push_back(c9); //construct poly-curve Polycurve_conic_traits_2::Curve_2 conic_polycurve = construct_polycurve(conic_curves.begin(), conic_curves.end()); Conic_curve_2 c11(0,1,0,-1,0,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(25), Algebraic(-5)), Conic_point_2(Algebraic(0), Algebraic(0))); Conic_curve_2 c12(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(0), Algebraic(0)), Conic_point_2(Algebraic(5), Algebraic(25))); conic_curves.clear(); conic_curves.push_back(c11); conic_curves.push_back(c12); //construct poly-curve Polycurve_conic_traits_2::Curve_2 conic_polycurve_2 = construct_polycurve(conic_curves.begin(), conic_curves.end()); /* VERY IMPORTANT * For efficiency reasons, we recommend users not to construct * x-monotone conic arc directly, but rather use the Make_x_monotone_2 * functor supplied by the conic-arc traits class to convert conic curves * to x-monotone curves. */ Conic_x_monotone_curve_2 xc3(c3); Conic_x_monotone_curve_2 xc4(c4); Conic_x_monotone_curve_2 xc5(c5); Conic_x_monotone_curve_2 xc6(c6); Conic_x_monotone_curve_2 xc7(c7); Conic_x_monotone_curve_2 xc8(c8); //This vector is used to store curves that will be used to create //X-monotone-polycurve std::vector<Conic_x_monotone_curve_2> xmono_conic_curves_2; xmono_conic_curves_2.push_back(xc5); xmono_conic_curves_2.push_back(xc3); xmono_conic_curves_2.push_back(xc4); //construct x-monotone poly-curve Pc_x_monotone_curve_2 conic_x_mono_polycurve_1 = construct_x_mono_polycurve(xmono_conic_curves_2.begin(), xmono_conic_curves_2.end()); xmono_conic_curves_2.clear(); xmono_conic_curves_2.push_back(xc6); xmono_conic_curves_2.push_back(xc7); xmono_conic_curves_2.push_back(xc8); //construct x-monotone poly-curve Pc_x_monotone_curve_2 conic_x_mono_polycurve_2 = construct_x_mono_polycurve(xmono_conic_curves_2.begin(), xmono_conic_curves_2.end()); xmono_conic_curves_2.clear(); xmono_conic_curves_2.push_back(xc5); Pc_x_monotone_curve_2 x_polycurve_push = construct_x_mono_polycurve(xmono_conic_curves_2.begin(), xmono_conic_curves_2.end()); Polycurve_conic_traits_2::X_monotone_subcurve_2 xcurve_push = Polycurve_conic_traits_2::X_monotone_subcurve_2(c5); //traits.construct_x_monotone_curve_2_object()(c5); xmono_conic_curves_2.clear(); xmono_conic_curves_2.push_back(xc3); xmono_conic_curves_2.push_back(xc4); Pc_x_monotone_curve_2 base_curve = construct_x_mono_polycurve(xmono_conic_curves_2.begin(), xmono_conic_curves_2.end()); //curves for push_back Conic_curve_2 c13(1,1,0,-50,12,660,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(25), Algebraic(-7)), Conic_point_2(Algebraic(25), Algebraic(-5))); Conic_curve_2 c14(0,1,0,-1,0,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(25), Algebraic(-5)), Conic_point_2(Algebraic(0), Algebraic(0))); Conic_curve_2 c15(-1,0,0,0,1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(0), Algebraic(0)), Conic_point_2(Algebraic(5), Algebraic(25))); conic_curves.clear(); conic_curves.push_back(c13); conic_curves.push_back(c14); Polycurve_conic_traits_2::Curve_2 base_curve_push_back = construct_polycurve(conic_curves.begin(), conic_curves.end()); conic_curves.push_back(c15); Polycurve_conic_traits_2::Curve_2 Expected_push_back_result = construct_polycurve(conic_curves.begin(), conic_curves.end()); // //checking the orientattion consistency // Conic_curve_2 c21(0,1,0,1,0,0,CGAL::CLOCKWISE, // Conic_point_2(Algebraic(9), Algebraic(-3)), // Conic_point_2(Algebraic(0), Algebraic(0))); // Conic_curve_2 c20(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, // Conic_point_2(Algebraic(0), Algebraic(0)), // Conic_point_2(Algebraic(3), Algebraic(9))); // Conic_x_monotone_curve_2 xc20(c20); // Conic_x_monotone_curve_2 xc21(c21); // xmono_conic_curves_2.clear(); // xmono_conic_curves_2.push_back(xc20); // xmono_conic_curves_2.push_back(xc21); // Pc_x_monotone_curve_2 eric_polycurve = // construct_x_mono_polycurve(xmono_conic_curves_2.begin(), // xmono_conic_curves_2.end()); // std::cout << "the polycurve is: " << eric_polycurve << std::endl; // std::cout<< std::endl; //check_compare_x_2(xc3, xc5); // check_equal(); // std::cout<< std::endl; //check_intersect(conic_x_mono_polycurve_1, conic_x_mono_polycurve_2); //std::cout<< std::endl; // check_compare_end_points_xy_2(); // std::cout<< std::endl; //check_split(conic_x_mono_polycurve_1, conic_x_mono_polycurve_2); // std::cout<< std::endl; //check_make_x_monotne_curve(conic_polycurve_2); //std::cout<< std::endl; // check_is_vertical(); // std::cout<< std::endl; //check_compare_y_at_x_2(); //std::cout<< std::endl; //adds the segment to the right. //check_push_back(base_curve_push_back, c15); //std::cout<< std::endl; //adds the segment to the left. //check_push_front(base_curve, xcurve_push); //std::cout<< std::endl; // check_are_mergable(); // std::cout<< std::endl; // check_merge_2(); // std::cout<< std::endl; // check_construct_opposite(); // std::cout<< std::endl; // check_compare_y_at_x_right(); // std::cout<< std::endl; // check_compare_y_at_x_left(); // std::cout<< std::endl; //check_compare_points(conic_x_mono_polycurve_1); //number of segments //std::cout << "Number of segments: " // << traits.number_of_points_2_object()(base_curve_push_back) // << std::endl; check_trim(conic_x_mono_polycurve_1, atoi(argv[1]), atoi(argv[2]), atoi(argv[3]), atoi(argv[4])); std::cout << std::endl; //std::cout << (atoi(argv[1]) + atoi(argv[2])) << std::endl; // Conic_traits_2 con_traits; // Conic_curve_2 cc3(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, // Conic_point_2(Algebraic(0), Algebraic(0)), // Conic_point_2(Algebraic(3), Algebraic(9))); // Conic_x_monotone_curve_2 xcc3(cc3); // Conic_point_2 ps2(0, 0); // Conic_point_2 pt2(3, 9); // std::cout << "conic curve is : " << xcc3 << std::endl; // Conic_x_monotone_curve_2 trimmed_curve = // con_traits.trim_2_object()(xc3, ps2, pt2); // std::cout << "trimmed conic curve is : " << trimmed_curve << std::endl; return 0; }
bool check_compare_y_at_x_2() { Polycurve_conic_traits_2 traits; Polycurve_conic_traits_2::Compare_y_at_x_2 cmp_y_at_x_2 = traits.compare_y_at_x_2_object(); //polycurve constructors Polycurve_conic_traits_2::Construct_x_monotone_curve_2 construct_x_mono_polycurve = traits.construct_x_monotone_curve_2_object(); Polycurve_conic_traits_2::Construct_curve_2 construct_polycurve = traits.construct_curve_2_object(); //create a curve Rat_point_2 ps1(1, 10); Rat_point_2 pmid1(5, 4); Rat_point_2 pt1(10, 1); Conic_curve_2 c1(ps1, pmid1, pt1); //create a curve Rat_point_2 ps2(10, 1); Rat_point_2 pmid2(15, 5); Rat_point_2 pt2(20, 10); Conic_curve_2 c2(ps2, pmid2, pt2); Conic_curve_2 c3(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(0), Algebraic(0)), Conic_point_2(Algebraic(3), Algebraic(9))); Conic_curve_2 c4(1,0,0,0,-1,0,CGAL::COUNTERCLOCKWISE, Conic_point_2(Algebraic(3), Algebraic(9)), Conic_point_2(Algebraic(5), Algebraic(25))); std::vector<Conic_curve_2> conic_curves, conic_curves_2, Conic_curves_3; conic_curves.push_back(c1); conic_curves.push_back(c2); //conic_curves_2.push_back(c3); //conic_curves_2.push_back(c4); Conic_x_monotone_curve_2 xc1(c1); Conic_x_monotone_curve_2 xc2(c2); Conic_x_monotone_curve_2 xc3(c3); Conic_x_monotone_curve_2 xc4(c4); std::vector<Conic_x_monotone_curve_2> xmono_conic_curves, xmono_conic_curves_2; /* VERY IMPORTANT * For efficiency reasons, we recommend users not to construct x-monotone * conic arc directly, but rather use the Make_x_monotone_2 functor supplied * by the conic-arc traits class to convert conic curves to x-monotone curves. */ xmono_conic_curves.push_back(xc1); xmono_conic_curves.push_back(xc2); xmono_conic_curves_2.push_back(xc3); xmono_conic_curves_2.push_back(xc4); //construct x-monotone poly-curve Polycurve_conic_traits_2::X_monotone_curve_2 conic_x_mono_polycurve = construct_x_mono_polycurve(xmono_conic_curves.begin(), xmono_conic_curves.end()); Polycurve_conic_traits_2::X_monotone_curve_2 conic_x_mono_polycurve_2 = construct_x_mono_polycurve(xmono_conic_curves_2.begin(), xmono_conic_curves_2.end()); //construct poly-curve Polycurve_conic_traits_2::Curve_2 conic_polycurve = construct_polycurve(conic_curves.begin(), conic_curves.end()); //Polycurve_conic_traits_2::Curve_2 conic_polycurve_2 = // construct_polycurve(conic_curves_2.begin(), conic_curves_2.end()); //make x-monotone curve //Polycurve_conic_traits_2::X_monotone_curve_2 polyline_xmc1 = // construct_x_monotone_curve_2(c1); //create points Polycurve_conic_traits_2::Point_2 point_above_line = Polycurve_conic_traits_2::Point_2(2,10), point_below_line = Polycurve_conic_traits_2::Point_2(4,7), point_on_line = Polycurve_conic_traits_2::Point_2(2,4); CGAL::Comparison_result result; result = cmp_y_at_x_2(point_above_line, conic_x_mono_polycurve_2); std::cout << "Compare_y_at_x_2:: for point above the curve computed Answer is: " << (result == CGAL::SMALLER ? "Below": (result == CGAL::LARGER ? "Above" : "On-line")) << std::endl; result = cmp_y_at_x_2(point_below_line, conic_x_mono_polycurve_2); std::cout << "Compare_y_at_x_2:: for point below the curve computed Answer is: " << (result == CGAL::SMALLER ? "Below": (result == CGAL::LARGER ? "Above" : "On-line")) << std::endl; result = cmp_y_at_x_2(point_on_line, conic_x_mono_polycurve_2); std::cout << "Compare_y_at_x_2:: for point on the curve computed Answer is: " << (result == CGAL::SMALLER ? "Below": (result == CGAL::LARGER ? "Above" : "On-line")) << std::endl; return true; }
//--------------------------------------------------------- void EulerShock2D::precalc_limiter_data() //--------------------------------------------------------- { //--------------------------------------------- // pre-calculate element geometry and constant // factors for use in this->EulerLimiter2D() //--------------------------------------------- Lim_AVE = 0.5 * MassMatrix.col_sums(); DMat dropAVE = eye(Np) - outer(ones(Np),Lim_AVE); Lim_dx = dropAVE*x; Lim_dy = dropAVE*y; // Extract coordinates of vertices of elements IVec v1=EToV(All,1); Lim_xv1=VX(v1); Lim_yv1=VY(v1); IVec v2=EToV(All,2); Lim_xv2=VX(v2); Lim_yv2=VY(v2); IVec v3=EToV(All,3); Lim_xv3=VX(v3); Lim_yv3=VY(v3); const DVec &xv1=Lim_xv1,&xv2=Lim_xv2,&xv3=Lim_xv3; const DVec &yv1=Lim_yv1,&yv2=Lim_yv2,&yv3=Lim_yv3; DMat &fnx=Lim_fnx, &fny=Lim_fny, &fL=Lim_fL; // Compute face unit normals and lengths fnx.resize(3,K); fny.resize(3,K); // fnx = (3,K) = [yv2-yv1; yv3-yv2; yv1-yv3]; fnx.set_row(1, yv2-yv1); fnx.set_row(2, yv3-yv2); fnx.set_row(3, yv1-yv3); // fny = (3,K) = -[xv2-xv1;xv3-xv2;xv1-xv3]; //fny.set_row(1, xv2-xv1); fny.set_row(2, xv3-xv2); fny.set_row(3, xv1-xv3); fny.set_row(1, xv1-xv2); fny.set_row(2, xv2-xv3); fny.set_row(3, xv3-xv1); fL = sqrt(sqr(fnx)+sqr(fny)); fnx.div_element(fL); fny.div_element(fL); //------------------------------------------------------- // Compute coords of element centers and face weights //------------------------------------------------------- // Find neighbors in patch Lim_E1=EToE(All,1); Lim_E2=EToE(All,2); Lim_E3=EToE(All,3); // Compute coordinates of element centers xc0=Lim_AVE*x; xc1=xc0(Lim_E1); xc2=xc0(Lim_E2); xc3=xc0(Lim_E3); yc0=Lim_AVE*y; yc1=yc0(Lim_E1); yc2=yc0(Lim_E2); yc3=yc0(Lim_E3); // Compute weights for face gradients A0=Lim_AVE*J*TWOTHIRD; A1=A0+A0(Lim_E1); A2=A0+A0(Lim_E2); A3=A0+A0(Lim_E3); A1_A2_A3 = A1+A2+A3; // Find boundary faces for each face Lim_id1=find(BCType.get_col(1),'!',0); Lim_id2=find(BCType.get_col(2),'!',0); Lim_id3=find(BCType.get_col(3),'!',0); // Compute location of centers of reflected ghost elements at boundary faces if (1) { DMat FL1=fL(1,Lim_id1), Fnx1=fnx(1,Lim_id1), Fny1=fny(1,Lim_id1); DVec fL1=FL1, fnx1=Fnx1, fny1=Fny1; DVec H1 = 2.0*(dd(A0(Lim_id1),fL1)); xc1(Lim_id1) += 2.0*fnx1.dm(H1); yc1(Lim_id1) += 2.0*fny1.dm(H1); DMat FL2=fL(2,Lim_id2), Fnx2=fnx(2,Lim_id2), Fny2=fny(2,Lim_id2); DVec fL2=FL2, fnx2=Fnx2, fny2=Fny2; DVec H2 = 2.0*(dd(A0(Lim_id2),fL2)); xc2(Lim_id2) += 2.0*fnx2.dm(H2); yc2(Lim_id2) += 2.0*fny2.dm(H2); DMat FL3=fL(3,Lim_id3), Fnx3=fnx(3,Lim_id3), Fny3=fny(3,Lim_id3); DVec fL3=FL3, fnx3=Fnx3, fny3=Fny3; DVec H3 = 2.0*(dd(A0(Lim_id3),fL3)); xc3(Lim_id3) += 2.0*fnx3.dm(H3); yc3(Lim_id3) += 2.0*fny3.dm(H3); } // Find boundary faces IVec bct = trans(BCType); Lim_idI = find(bct, '=', (int)BC_In); Lim_idO = find(bct, '=', (int)BC_Out); Lim_idW = find(bct, '=', (int)BC_Wall); Lim_idC = find(bct, '=', (int)BC_Cyl); Lim_ctx.resize(3,K); Lim_cty.resize(3,K); Lim_ctx.set_row(1,xc1); Lim_ctx.set_row(2,xc2); Lim_ctx.set_row(3,xc3); Lim_cty.set_row(1,yc1); Lim_cty.set_row(2,yc2); Lim_cty.set_row(3,yc3); // load the set of ids Lim_ids.resize(6); Lim_ids(1)=1; Lim_ids(2)=Nfp; Lim_ids(3)=Nfp+1; Lim_ids(4)=2*Nfp; Lim_ids(5)=3*Nfp; Lim_ids(6)=2*Nfp+1; limQ = Q; }