STATIC struct xfs_btree_cur * xfs_inobt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_private.a.agbp, cur->bc_private.a.agno); }
/* * Allocate new inodes in the allocation group specified by agbp. * Return 0 for success, else error code. */ STATIC int /* error code or 0 */ xfs_ialloc_ag_alloc( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* alloc group buffer */ int *alloc) { xfs_agi_t *agi; /* allocation group header */ xfs_alloc_arg_t args; /* allocation argument structure */ xfs_btree_cur_t *cur; /* inode btree cursor */ xfs_agnumber_t agno; int error; int i; xfs_agino_t newino; /* new first inode's number */ xfs_agino_t newlen; /* new number of inodes */ xfs_agino_t thisino; /* current inode number, for loop */ int isaligned = 0; /* inode allocation at stripe unit */ /* boundary */ struct xfs_perag *pag; args.tp = tp; args.mp = tp->t_mountp; /* * Locking will ensure that we don't have two callers in here * at one time. */ newlen = XFS_IALLOC_INODES(args.mp); if (args.mp->m_maxicount && args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount) return XFS_ERROR(ENOSPC); args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp); /* * First try to allocate inodes contiguous with the last-allocated * chunk of inodes. If the filesystem is striped, this will fill * an entire stripe unit with inodes. */ agi = XFS_BUF_TO_AGI(agbp); newino = be32_to_cpu(agi->agi_newino); agno = be32_to_cpu(agi->agi_seqno); args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + XFS_IALLOC_BLOCKS(args.mp); if (likely(newino != NULLAGINO && (args.agbno < be32_to_cpu(agi->agi_length)))) { args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); args.type = XFS_ALLOCTYPE_THIS_BNO; args.mod = args.total = args.wasdel = args.isfl = args.userdata = args.minalignslop = 0; args.prod = 1; /* * We need to take into account alignment here to ensure that * we don't modify the free list if we fail to have an exact * block. If we don't have an exact match, and every oher * attempt allocation attempt fails, we'll end up cancelling * a dirty transaction and shutting down. * * For an exact allocation, alignment must be 1, * however we need to take cluster alignment into account when * fixing up the freelist. Use the minalignslop field to * indicate that extra blocks might be required for alignment, * but not to use them in the actual exact allocation. */ args.alignment = 1; args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1; /* Allow space for the inode btree to split. */ args.minleft = args.mp->m_in_maxlevels - 1; if ((error = xfs_alloc_vextent(&args))) return error; } else args.fsbno = NULLFSBLOCK; if (unlikely(args.fsbno == NULLFSBLOCK)) { /* * Set the alignment for the allocation. * If stripe alignment is turned on then align at stripe unit * boundary. * If the cluster size is smaller than a filesystem block * then we're doing I/O for inodes in filesystem block size * pieces, so don't need alignment anyway. */ isaligned = 0; if (args.mp->m_sinoalign) { ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); args.alignment = args.mp->m_dalign; isaligned = 1; } else args.alignment = xfs_ialloc_cluster_alignment(&args); /* * Need to figure out where to allocate the inode blocks. * Ideally they should be spaced out through the a.g. * For now, just allocate blocks up front. */ args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); /* * Allocate a fixed-size extent of inodes. */ args.type = XFS_ALLOCTYPE_NEAR_BNO; args.mod = args.total = args.wasdel = args.isfl = args.userdata = args.minalignslop = 0; args.prod = 1; /* * Allow space for the inode btree to split. */ args.minleft = args.mp->m_in_maxlevels - 1; if ((error = xfs_alloc_vextent(&args))) return error; } /* * If stripe alignment is turned on, then try again with cluster * alignment. */ if (isaligned && args.fsbno == NULLFSBLOCK) { args.type = XFS_ALLOCTYPE_NEAR_BNO; args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); args.alignment = xfs_ialloc_cluster_alignment(&args); if ((error = xfs_alloc_vextent(&args))) return error; } if (args.fsbno == NULLFSBLOCK) { *alloc = 0; return 0; } ASSERT(args.len == args.minlen); /* * Stamp and write the inode buffers. * * Seed the new inode cluster with a random generation number. This * prevents short-term reuse of generation numbers if a chunk is * freed and then immediately reallocated. We use random numbers * rather than a linear progression to prevent the next generation * number from being easily guessable. */ error = xfs_ialloc_inode_init(args.mp, tp, agno, args.agbno, args.len, prandom_u32()); if (error) return error; /* * Convert the results. */ newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); be32_add_cpu(&agi->agi_count, newlen); be32_add_cpu(&agi->agi_freecount, newlen); pag = xfs_perag_get(args.mp, agno); pag->pagi_freecount += newlen; xfs_perag_put(pag); agi->agi_newino = cpu_to_be32(newino); /* * Insert records describing the new inode chunk into the btree. */ cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno); for (thisino = newino; thisino < newino + newlen; thisino += XFS_INODES_PER_CHUNK) { cur->bc_rec.i.ir_startino = thisino; cur->bc_rec.i.ir_freecount = XFS_INODES_PER_CHUNK; cur->bc_rec.i.ir_free = XFS_INOBT_ALL_FREE; error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 0); error = xfs_btree_insert(cur, &i); if (error) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 1); } xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); /* * Log allocation group header fields */ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); /* * Modify/log superblock values for inode count and inode free count. */ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); *alloc = 1; return 0; }
/* * Allocate an inode on disk. * Mode is used to tell whether the new inode will need space, and whether * it is a directory. * * The arguments IO_agbp and alloc_done are defined to work within * the constraint of one allocation per transaction. * xfs_dialloc() is designed to be called twice if it has to do an * allocation to make more free inodes. On the first call, * IO_agbp should be set to NULL. If an inode is available, * i.e., xfs_dialloc() did not need to do an allocation, an inode * number is returned. In this case, IO_agbp would be set to the * current ag_buf and alloc_done set to false. * If an allocation needed to be done, xfs_dialloc would return * the current ag_buf in IO_agbp and set alloc_done to true. * The caller should then commit the current transaction, allocate a new * transaction, and call xfs_dialloc() again, passing in the previous * value of IO_agbp. IO_agbp should be held across the transactions. * Since the agbp is locked across the two calls, the second call is * guaranteed to have a free inode available. * * Once we successfully pick an inode its number is returned and the * on-disk data structures are updated. The inode itself is not read * in, since doing so would break ordering constraints with xfs_reclaim. */ int xfs_dialloc( xfs_trans_t *tp, /* transaction pointer */ xfs_ino_t parent, /* parent inode (directory) */ umode_t mode, /* mode bits for new inode */ int okalloc, /* ok to allocate more space */ xfs_buf_t **IO_agbp, /* in/out ag header's buffer */ boolean_t *alloc_done, /* true if we needed to replenish inode freelist */ xfs_ino_t *inop) /* inode number allocated */ { xfs_agnumber_t agcount; /* number of allocation groups */ xfs_buf_t *agbp; /* allocation group header's buffer */ xfs_agnumber_t agno; /* allocation group number */ xfs_agi_t *agi; /* allocation group header structure */ xfs_btree_cur_t *cur; /* inode allocation btree cursor */ int error; /* error return value */ int i; /* result code */ int ialloced; /* inode allocation status */ int noroom = 0; /* no space for inode blk allocation */ xfs_ino_t ino; /* fs-relative inode to be returned */ /* REFERENCED */ int j; /* result code */ xfs_mount_t *mp; /* file system mount structure */ int offset; /* index of inode in chunk */ xfs_agino_t pagino; /* parent's AG relative inode # */ xfs_agnumber_t pagno; /* parent's AG number */ xfs_inobt_rec_incore_t rec; /* inode allocation record */ xfs_agnumber_t tagno; /* testing allocation group number */ xfs_btree_cur_t *tcur; /* temp cursor */ xfs_inobt_rec_incore_t trec; /* temp inode allocation record */ struct xfs_perag *pag; if (*IO_agbp == NULL) { /* * We do not have an agbp, so select an initial allocation * group for inode allocation. */ agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc); /* * Couldn't find an allocation group satisfying the * criteria, give up. */ if (!agbp) { *inop = NULLFSINO; return 0; } agi = XFS_BUF_TO_AGI(agbp); ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); } else { /* * Continue where we left off before. In this case, we * know that the allocation group has free inodes. */ agbp = *IO_agbp; agi = XFS_BUF_TO_AGI(agbp); ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); ASSERT(be32_to_cpu(agi->agi_freecount) > 0); } mp = tp->t_mountp; agcount = mp->m_sb.sb_agcount; agno = be32_to_cpu(agi->agi_seqno); tagno = agno; pagno = XFS_INO_TO_AGNO(mp, parent); pagino = XFS_INO_TO_AGINO(mp, parent); /* * If we have already hit the ceiling of inode blocks then clear * okalloc so we scan all available agi structures for a free * inode. */ if (mp->m_maxicount && mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) { noroom = 1; okalloc = 0; } /* * Loop until we find an allocation group that either has free inodes * or in which we can allocate some inodes. Iterate through the * allocation groups upward, wrapping at the end. */ *alloc_done = B_FALSE; while (!agi->agi_freecount) { /* * Don't do anything if we're not supposed to allocate * any blocks, just go on to the next ag. */ if (okalloc) { /* * Try to allocate some new inodes in the allocation * group. */ if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) { xfs_trans_brelse(tp, agbp); if (error == ENOSPC) { *inop = NULLFSINO; return 0; } else return error; } if (ialloced) { /* * We successfully allocated some inodes, return * the current context to the caller so that it * can commit the current transaction and call * us again where we left off. */ ASSERT(be32_to_cpu(agi->agi_freecount) > 0); *alloc_done = B_TRUE; *IO_agbp = agbp; *inop = NULLFSINO; return 0; } } /* * If it failed, give up on this ag. */ xfs_trans_brelse(tp, agbp); /* * Go on to the next ag: get its ag header. */ nextag: if (++tagno == agcount) tagno = 0; if (tagno == agno) { *inop = NULLFSINO; return noroom ? ENOSPC : 0; } pag = xfs_perag_get(mp, tagno); if (pag->pagi_inodeok == 0) { xfs_perag_put(pag); goto nextag; } error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp); xfs_perag_put(pag); if (error) goto nextag; agi = XFS_BUF_TO_AGI(agbp); ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); } /* * Here with an allocation group that has a free inode. * Reset agno since we may have chosen a new ag in the * loop above. */ agno = tagno; *IO_agbp = NULL; pag = xfs_perag_get(mp, agno); restart_pagno: cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno)); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; /* * If in the same AG as the parent, try to get near the parent. */ if (pagno == agno) { int doneleft; /* done, to the left */ int doneright; /* done, to the right */ int searchdistance = 10; error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (rec.ir_freecount > 0) { /* * Found a free inode in the same chunk * as the parent, done. */ goto alloc_inode; } /* * In the same AG as parent, but parent's chunk is full. */ /* duplicate the cursor, search left & right simultaneously */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; /* * Skip to last blocks looked up if same parent inode. */ if (pagino != NULLAGINO && pag->pagl_pagino == pagino && pag->pagl_leftrec != NULLAGINO && pag->pagl_rightrec != NULLAGINO) { error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, &trec, &doneleft, 1); if (error) goto error1; error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, &rec, &doneright, 0); if (error) goto error1; } else { /* search left with tcur, back up 1 record */ error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); if (error) goto error1; /* search right with cur, go forward 1 record. */ error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); if (error) goto error1; } /* * Loop until we find an inode chunk with a free inode. */ while (!doneleft || !doneright) { int useleft; /* using left inode chunk this time */ if (!--searchdistance) { /* * Not in range - save last search * location and allocate a new inode */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto newino; } /* figure out the closer block if both are valid. */ if (!doneleft && !doneright) { useleft = pagino - (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < rec.ir_startino - pagino; } else { useleft = !doneleft; } /* free inodes to the left? */ if (useleft && trec.ir_freecount) { rec = trec; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); cur = tcur; pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* free inodes to the right? */ if (!useleft && rec.ir_freecount) { xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* get next record to check */ if (useleft) { error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); } else { error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); } if (error) goto error1; } /* * We've reached the end of the btree. because * we are only searching a small chunk of the * btree each search, there is obviously free * inodes closer to the parent inode than we * are now. restart the search again. */ pag->pagl_pagino = NULLAGINO; pag->pagl_leftrec = NULLAGINO; pag->pagl_rightrec = NULLAGINO; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); goto restart_pagno; } /* * In a different AG from the parent. * See if the most recently allocated block has any free. */ newino: if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) goto error0; if (i == 1) { error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; if (j == 1 && rec.ir_freecount > 0) { /* * The last chunk allocated in the group * still has a free inode. */ goto alloc_inode; } } } /* * None left in the last group, search the whole AG */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); for (;;) { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (rec.ir_freecount > 0) break; error = xfs_btree_increment(cur, 0, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } alloc_inode: offset = xfs_ialloc_find_free(&rec.ir_free); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; error = xfs_inobt_update(cur, &rec); if (error) goto error0; be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); xfs_perag_put(pag); *inop = ino; return 0; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); xfs_perag_put(pag); return error; }
/* * Return inode number table for the filesystem. */ int /* error status */ xfs_inumbers( struct xfs_mount *mp,/* mount point for filesystem */ xfs_ino_t *lastino,/* last inode returned */ int *count,/* size of buffer/count returned */ void __user *ubuffer,/* buffer with inode descriptions */ inumbers_fmt_pf formatter) { xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, *lastino); xfs_agino_t agino = XFS_INO_TO_AGINO(mp, *lastino); struct xfs_btree_cur *cur = NULL; struct xfs_buf *agbp = NULL; struct xfs_inogrp *buffer; int bcount; int left = *count; int bufidx = 0; int error = 0; *count = 0; if (agno >= mp->m_sb.sb_agcount || *lastino != XFS_AGINO_TO_INO(mp, agno, agino)) return error; bcount = MIN(left, (int)(PAGE_SIZE / sizeof(*buffer))); buffer = kmem_alloc(bcount * sizeof(*buffer), KM_SLEEP); do { struct xfs_inobt_rec_incore r; int stat; if (!agbp) { error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp); if (error) break; cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, XFS_BTNUM_INO); error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_GE, &stat); if (error) break; if (!stat) goto next_ag; } error = xfs_inobt_get_rec(cur, &r, &stat); if (error) break; if (!stat) goto next_ag; agino = r.ir_startino + XFS_INODES_PER_CHUNK - 1; buffer[bufidx].xi_startino = XFS_AGINO_TO_INO(mp, agno, r.ir_startino); buffer[bufidx].xi_alloccount = r.ir_count - r.ir_freecount; buffer[bufidx].xi_allocmask = ~r.ir_free; if (++bufidx == bcount) { long written; error = formatter(ubuffer, buffer, bufidx, &written); if (error) break; ubuffer += written; *count += bufidx; bufidx = 0; } if (!--left) break; error = xfs_btree_increment(cur, 0, &stat); if (error) break; if (stat) continue; next_ag: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); cur = NULL; xfs_buf_relse(agbp); agbp = NULL; agino = 0; agno++; } while (agno < mp->m_sb.sb_agcount); if (!error) { if (bufidx) { long written; error = formatter(ubuffer, buffer, bufidx, &written); if (!error) *count += bufidx; } *lastino = XFS_AGINO_TO_INO(mp, agno, agino); } kmem_free(buffer); if (cur) xfs_btree_del_cursor(cur, (error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR)); if (agbp) xfs_buf_relse(agbp); return error; }
/* * Return stat information in bulk (by-inode) for the filesystem. */ int /* error status */ xfs_bulkstat( xfs_mount_t *mp, /* mount point for filesystem */ xfs_ino_t *lastinop, /* last inode returned */ int *ubcountp, /* size of buffer/count returned */ bulkstat_one_pf formatter, /* func that'd fill a single buf */ size_t statstruct_size, /* sizeof struct filling */ char __user *ubuffer, /* buffer with inode stats */ int *done) /* 1 if there are more stats to get */ { xfs_buf_t *agbp; /* agi header buffer */ xfs_agino_t agino; /* inode # in allocation group */ xfs_agnumber_t agno; /* allocation group number */ xfs_btree_cur_t *cur; /* btree cursor for ialloc btree */ size_t irbsize; /* size of irec buffer in bytes */ xfs_inobt_rec_incore_t *irbuf; /* start of irec buffer */ int nirbuf; /* size of irbuf */ int ubcount; /* size of user's buffer */ struct xfs_bulkstat_agichunk ac; int error = 0; /* * Get the last inode value, see if there's nothing to do. */ agno = XFS_INO_TO_AGNO(mp, *lastinop); agino = XFS_INO_TO_AGINO(mp, *lastinop); if (agno >= mp->m_sb.sb_agcount || *lastinop != XFS_AGINO_TO_INO(mp, agno, agino)) { *done = 1; *ubcountp = 0; return 0; } ubcount = *ubcountp; /* statstruct's */ ac.ac_ubuffer = &ubuffer; ac.ac_ubleft = ubcount * statstruct_size; /* bytes */; ac.ac_ubelem = 0; *ubcountp = 0; *done = 0; irbuf = kmem_zalloc_greedy(&irbsize, PAGE_SIZE, PAGE_SIZE * 4); if (!irbuf) return -ENOMEM; nirbuf = irbsize / sizeof(*irbuf); /* * Loop over the allocation groups, starting from the last * inode returned; 0 means start of the allocation group. */ while (agno < mp->m_sb.sb_agcount) { struct xfs_inobt_rec_incore *irbp = irbuf; struct xfs_inobt_rec_incore *irbufend = irbuf + nirbuf; bool end_of_ag = false; int icount = 0; int stat; error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp); if (error) break; /* * Allocate and initialize a btree cursor for ialloc btree. */ cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, XFS_BTNUM_INO); if (agino > 0) { /* * In the middle of an allocation group, we need to get * the remainder of the chunk we're in. */ struct xfs_inobt_rec_incore r; error = xfs_bulkstat_grab_ichunk(cur, agino, &icount, &r); if (error) goto del_cursor; if (icount) { irbp->ir_startino = r.ir_startino; irbp->ir_holemask = r.ir_holemask; irbp->ir_count = r.ir_count; irbp->ir_freecount = r.ir_freecount; irbp->ir_free = r.ir_free; irbp++; } /* Increment to the next record */ error = xfs_btree_increment(cur, 0, &stat); } else { /* Start of ag. Lookup the first inode chunk */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &stat); } if (error || stat == 0) { end_of_ag = true; goto del_cursor; } /* * Loop through inode btree records in this ag, * until we run out of inodes or space in the buffer. */ while (irbp < irbufend && icount < ubcount) { struct xfs_inobt_rec_incore r; error = xfs_inobt_get_rec(cur, &r, &stat); if (error || stat == 0) { end_of_ag = true; goto del_cursor; } /* * If this chunk has any allocated inodes, save it. * Also start read-ahead now for this chunk. */ if (r.ir_freecount < r.ir_count) { xfs_bulkstat_ichunk_ra(mp, agno, &r); irbp->ir_startino = r.ir_startino; irbp->ir_holemask = r.ir_holemask; irbp->ir_count = r.ir_count; irbp->ir_freecount = r.ir_freecount; irbp->ir_free = r.ir_free; irbp++; icount += r.ir_count - r.ir_freecount; } error = xfs_btree_increment(cur, 0, &stat); if (error || stat == 0) { end_of_ag = true; goto del_cursor; } cond_resched(); } /* * Drop the btree buffers and the agi buffer as we can't hold any * of the locks these represent when calling iget. If there is a * pending error, then we are done. */ del_cursor: xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_buf_relse(agbp); if (error) break; /* * Now format all the good inodes into the user's buffer. The * call to xfs_bulkstat_ag_ichunk() sets up the agino pointer * for the next loop iteration. */ irbufend = irbp; for (irbp = irbuf; irbp < irbufend && ac.ac_ubleft >= statstruct_size; irbp++) { error = xfs_bulkstat_ag_ichunk(mp, agno, irbp, formatter, statstruct_size, &ac, &agino); if (error) break; cond_resched(); } /* * If we've run out of space or had a formatting error, we * are now done */ if (ac.ac_ubleft < statstruct_size || error) break; if (end_of_ag) { agno++; agino = 0; } } /* * Done, we're either out of filesystem or space to put the data. */ kmem_free(irbuf); *ubcountp = ac.ac_ubelem; /* * We found some inodes, so clear the error status and return them. * The lastino pointer will point directly at the inode that triggered * any error that occurred, so on the next call the error will be * triggered again and propagated to userspace as there will be no * formatted inodes in the buffer. */ if (ac.ac_ubelem) error = 0; /* * If we ran out of filesystem, lastino will point off the end of * the filesystem so the next call will return immediately. */ *lastinop = XFS_AGINO_TO_INO(mp, agno, agino); if (agno >= mp->m_sb.sb_agcount) *done = 1; return error; }
/* * Allocate an inode. * * The caller selected an AG for us, and made sure that free inodes are * available. */ STATIC int xfs_dialloc_ag( struct xfs_trans *tp, struct xfs_buf *agbp, xfs_ino_t parent, xfs_ino_t *inop) { struct xfs_mount *mp = tp->t_mountp; struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); struct xfs_perag *pag; struct xfs_btree_cur *cur, *tcur; struct xfs_inobt_rec_incore rec, trec; xfs_ino_t ino; int error; int offset; int i, j; pag = xfs_perag_get(mp, agno); ASSERT(pag->pagi_init); ASSERT(pag->pagi_inodeok); ASSERT(pag->pagi_freecount > 0); restart_pagno: cur = xfs_inobt_init_cursor(mp, tp, agbp, agno); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; /* * If in the same AG as the parent, try to get near the parent. */ if (pagno == agno) { int doneleft; /* done, to the left */ int doneright; /* done, to the right */ int searchdistance = 10; error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (rec.ir_freecount > 0) { /* * Found a free inode in the same chunk * as the parent, done. */ goto alloc_inode; } /* * In the same AG as parent, but parent's chunk is full. */ /* duplicate the cursor, search left & right simultaneously */ error = xfs_btree_dup_cursor(cur, &tcur); if (error) goto error0; /* * Skip to last blocks looked up if same parent inode. */ if (pagino != NULLAGINO && pag->pagl_pagino == pagino && pag->pagl_leftrec != NULLAGINO && pag->pagl_rightrec != NULLAGINO) { error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, &trec, &doneleft); if (error) goto error1; error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, &rec, &doneright); if (error) goto error1; } else { /* search left with tcur, back up 1 record */ error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); if (error) goto error1; /* search right with cur, go forward 1 record. */ error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); if (error) goto error1; } /* * Loop until we find an inode chunk with a free inode. */ while (!doneleft || !doneright) { int useleft; /* using left inode chunk this time */ if (!--searchdistance) { /* * Not in range - save last search * location and allocate a new inode */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto newino; } /* figure out the closer block if both are valid. */ if (!doneleft && !doneright) { useleft = pagino - (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < rec.ir_startino - pagino; } else { useleft = !doneleft; } /* free inodes to the left? */ if (useleft && trec.ir_freecount) { rec = trec; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); cur = tcur; pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* free inodes to the right? */ if (!useleft && rec.ir_freecount) { xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); pag->pagl_leftrec = trec.ir_startino; pag->pagl_rightrec = rec.ir_startino; pag->pagl_pagino = pagino; goto alloc_inode; } /* get next record to check */ if (useleft) { error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); } else { error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); } if (error) goto error1; } /* * We've reached the end of the btree. because * we are only searching a small chunk of the * btree each search, there is obviously free * inodes closer to the parent inode than we * are now. restart the search again. */ pag->pagl_pagino = NULLAGINO; pag->pagl_leftrec = NULLAGINO; pag->pagl_rightrec = NULLAGINO; xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); goto restart_pagno; } /* * In a different AG from the parent. * See if the most recently allocated block has any free. */ newino: if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), XFS_LOOKUP_EQ, &i); if (error) goto error0; if (i == 1) { error = xfs_inobt_get_rec(cur, &rec, &j); if (error) goto error0; if (j == 1 && rec.ir_freecount > 0) { /* * The last chunk allocated in the group * still has a free inode. */ goto alloc_inode; } } } /* * None left in the last group, search the whole AG */ error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); for (;;) { error = xfs_inobt_get_rec(cur, &rec, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (rec.ir_freecount > 0) break; error = xfs_btree_increment(cur, 0, &i); if (error) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } alloc_inode: offset = xfs_lowbit64(rec.ir_free); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); rec.ir_free &= ~XFS_INOBT_MASK(offset); rec.ir_freecount--; error = xfs_inobt_update(cur, &rec); if (error) goto error0; be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); pag->pagi_freecount--; error = xfs_check_agi_freecount(cur, agi); if (error) goto error0; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); xfs_perag_put(pag); *inop = ino; return 0; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); xfs_perag_put(pag); return error; }
/* * Allocate an inode on disk. * Mode is used to tell whether the new inode will need space, and whether * it is a directory. * * The arguments IO_agbp and alloc_done are defined to work within * the constraint of one allocation per transaction. * xfs_dialloc() is designed to be called twice if it has to do an * allocation to make more free inodes. On the first call, * IO_agbp should be set to NULL. If an inode is available, * i.e., xfs_dialloc() did not need to do an allocation, an inode * number is returned. In this case, IO_agbp would be set to the * current ag_buf and alloc_done set to false. * If an allocation needed to be done, xfs_dialloc would return * the current ag_buf in IO_agbp and set alloc_done to true. * The caller should then commit the current transaction, allocate a new * transaction, and call xfs_dialloc() again, passing in the previous * value of IO_agbp. IO_agbp should be held across the transactions. * Since the agbp is locked across the two calls, the second call is * guaranteed to have a free inode available. * * Once we successfully pick an inode its number is returned and the * on-disk data structures are updated. The inode itself is not read * in, since doing so would break ordering constraints with xfs_reclaim. */ int xfs_dialloc( xfs_trans_t *tp, /* transaction pointer */ xfs_ino_t parent, /* parent inode (directory) */ mode_t mode, /* mode bits for new inode */ int okalloc, /* ok to allocate more space */ xfs_buf_t **IO_agbp, /* in/out ag header's buffer */ boolean_t *alloc_done, /* true if we needed to replenish inode freelist */ xfs_ino_t *inop) /* inode number allocated */ { xfs_agnumber_t agcount; /* number of allocation groups */ xfs_buf_t *agbp; /* allocation group header's buffer */ xfs_agnumber_t agno; /* allocation group number */ xfs_agi_t *agi; /* allocation group header structure */ xfs_btree_cur_t *cur; /* inode allocation btree cursor */ int error; /* error return value */ int i; /* result code */ int ialloced; /* inode allocation status */ int noroom = 0; /* no space for inode blk allocation */ xfs_ino_t ino; /* fs-relative inode to be returned */ /* REFERENCED */ int j; /* result code */ xfs_mount_t *mp; /* file system mount structure */ int offset; /* index of inode in chunk */ xfs_agino_t pagino; /* parent's a.g. relative inode # */ xfs_agnumber_t pagno; /* parent's allocation group number */ xfs_inobt_rec_incore_t rec; /* inode allocation record */ xfs_agnumber_t tagno; /* testing allocation group number */ xfs_btree_cur_t *tcur; /* temp cursor */ xfs_inobt_rec_incore_t trec; /* temp inode allocation record */ if (*IO_agbp == NULL) { /* * We do not have an agbp, so select an initial allocation * group for inode allocation. */ agbp = xfs_ialloc_ag_select(tp, parent, mode, okalloc); /* * Couldn't find an allocation group satisfying the * criteria, give up. */ if (!agbp) { *inop = NULLFSINO; return 0; } agi = XFS_BUF_TO_AGI(agbp); ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC); } else { /* * Continue where we left off before. In this case, we * know that the allocation group has free inodes. */ agbp = *IO_agbp; agi = XFS_BUF_TO_AGI(agbp); ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC); ASSERT(be32_to_cpu(agi->agi_freecount) > 0); } mp = tp->t_mountp; agcount = mp->m_sb.sb_agcount; agno = be32_to_cpu(agi->agi_seqno); tagno = agno; pagno = XFS_INO_TO_AGNO(mp, parent); pagino = XFS_INO_TO_AGINO(mp, parent); /* * If we have already hit the ceiling of inode blocks then clear * okalloc so we scan all available agi structures for a free * inode. */ if (mp->m_maxicount && mp->m_sb.sb_icount + XFS_IALLOC_INODES(mp) > mp->m_maxicount) { noroom = 1; okalloc = 0; } /* * Loop until we find an allocation group that either has free inodes * or in which we can allocate some inodes. Iterate through the * allocation groups upward, wrapping at the end. */ *alloc_done = B_FALSE; while (!agi->agi_freecount) { /* * Don't do anything if we're not supposed to allocate * any blocks, just go on to the next ag. */ if (okalloc) { /* * Try to allocate some new inodes in the allocation * group. */ if ((error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced))) { xfs_trans_brelse(tp, agbp); if (error == ENOSPC) { *inop = NULLFSINO; return 0; } else return error; } if (ialloced) { /* * We successfully allocated some inodes, return * the current context to the caller so that it * can commit the current transaction and call * us again where we left off. */ ASSERT(be32_to_cpu(agi->agi_freecount) > 0); *alloc_done = B_TRUE; *IO_agbp = agbp; *inop = NULLFSINO; return 0; } } /* * If it failed, give up on this ag. */ xfs_trans_brelse(tp, agbp); /* * Go on to the next ag: get its ag header. */ nextag: if (++tagno == agcount) tagno = 0; if (tagno == agno) { *inop = NULLFSINO; return noroom ? ENOSPC : 0; } down_read(&mp->m_peraglock); if (mp->m_perag[tagno].pagi_inodeok == 0) { up_read(&mp->m_peraglock); goto nextag; } error = xfs_ialloc_read_agi(mp, tp, tagno, &agbp); up_read(&mp->m_peraglock); if (error) goto nextag; agi = XFS_BUF_TO_AGI(agbp); ASSERT(be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC); } /* * Here with an allocation group that has a free inode. * Reset agno since we may have chosen a new ag in the * loop above. */ agno = tagno; *IO_agbp = NULL; cur = xfs_inobt_init_cursor(mp, tp, agbp, be32_to_cpu(agi->agi_seqno)); /* * If pagino is 0 (this is the root inode allocation) use newino. * This must work because we've just allocated some. */ if (!pagino) pagino = be32_to_cpu(agi->agi_newino); #ifdef DEBUG if (cur->bc_nlevels == 1) { int freecount = 0; if ((error = xfs_inobt_lookup_ge(cur, 0, 0, 0, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); do { if ((error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); freecount += rec.ir_freecount; if ((error = xfs_btree_increment(cur, 0, &i))) goto error0; } while (i == 1); ASSERT(freecount == be32_to_cpu(agi->agi_freecount) || XFS_FORCED_SHUTDOWN(mp)); } #endif /* * If in the same a.g. as the parent, try to get near the parent. */ if (pagno == agno) { if ((error = xfs_inobt_lookup_le(cur, pagino, 0, 0, &i))) goto error0; if (i != 0 && (error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &j)) == 0 && j == 1 && rec.ir_freecount > 0) { /* * Found a free inode in the same chunk * as parent, done. */ } /* * In the same a.g. as parent, but parent's chunk is full. */ else { int doneleft; /* done, to the left */ int doneright; /* done, to the right */ if (error) goto error0; ASSERT(i == 1); ASSERT(j == 1); /* * Duplicate the cursor, search left & right * simultaneously. */ if ((error = xfs_btree_dup_cursor(cur, &tcur))) goto error0; /* * Search left with tcur, back up 1 record. */ if ((error = xfs_btree_decrement(tcur, 0, &i))) goto error1; doneleft = !i; if (!doneleft) { if ((error = xfs_inobt_get_rec(tcur, &trec.ir_startino, &trec.ir_freecount, &trec.ir_free, &i))) goto error1; XFS_WANT_CORRUPTED_GOTO(i == 1, error1); } /* * Search right with cur, go forward 1 record. */ if ((error = xfs_btree_increment(cur, 0, &i))) goto error1; doneright = !i; if (!doneright) { if ((error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &i))) goto error1; XFS_WANT_CORRUPTED_GOTO(i == 1, error1); } /* * Loop until we find the closest inode chunk * with a free one. */ while (!doneleft || !doneright) { int useleft; /* using left inode chunk this time */ /* * Figure out which block is closer, * if both are valid. */ if (!doneleft && !doneright) useleft = pagino - (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < rec.ir_startino - pagino; else useleft = !doneleft; /* * If checking the left, does it have * free inodes? */ if (useleft && trec.ir_freecount) { /* * Yes, set it up as the chunk to use. */ rec = trec; xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); cur = tcur; break; } /* * If checking the right, does it have * free inodes? */ if (!useleft && rec.ir_freecount) { /* * Yes, it's already set up. */ xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); break; } /* * If used the left, get another one * further left. */ if (useleft) { if ((error = xfs_btree_decrement(tcur, 0, &i))) goto error1; doneleft = !i; if (!doneleft) { if ((error = xfs_inobt_get_rec( tcur, &trec.ir_startino, &trec.ir_freecount, &trec.ir_free, &i))) goto error1; XFS_WANT_CORRUPTED_GOTO(i == 1, error1); } } /* * If used the right, get another one * further right. */ else { if ((error = xfs_btree_increment(cur, 0, &i))) goto error1; doneright = !i; if (!doneright) { if ((error = xfs_inobt_get_rec( cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &i))) goto error1; XFS_WANT_CORRUPTED_GOTO(i == 1, error1); } } } ASSERT(!doneleft || !doneright); } } /* * In a different a.g. from the parent. * See if the most recently allocated block has any free. */ else if (be32_to_cpu(agi->agi_newino) != NULLAGINO) { if ((error = xfs_inobt_lookup_eq(cur, be32_to_cpu(agi->agi_newino), 0, 0, &i))) goto error0; if (i == 1 && (error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &j)) == 0 && j == 1 && rec.ir_freecount > 0) { /* * The last chunk allocated in the group still has * a free inode. */ } /* * None left in the last group, search the whole a.g. */ else { if (error) goto error0; if ((error = xfs_inobt_lookup_ge(cur, 0, 0, 0, &i))) goto error0; ASSERT(i == 1); for (;;) { if ((error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); if (rec.ir_freecount > 0) break; if ((error = xfs_btree_increment(cur, 0, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); } } } offset = xfs_ialloc_find_free(&rec.ir_free); ASSERT(offset >= 0); ASSERT(offset < XFS_INODES_PER_CHUNK); ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % XFS_INODES_PER_CHUNK) == 0); ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); XFS_INOBT_CLR_FREE(&rec, offset); rec.ir_freecount--; if ((error = xfs_inobt_update(cur, rec.ir_startino, rec.ir_freecount, rec.ir_free))) goto error0; be32_add_cpu(&agi->agi_freecount, -1); xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); down_read(&mp->m_peraglock); mp->m_perag[tagno].pagi_freecount--; up_read(&mp->m_peraglock); #ifdef DEBUG if (cur->bc_nlevels == 1) { int freecount = 0; if ((error = xfs_inobt_lookup_ge(cur, 0, 0, 0, &i))) goto error0; do { if ((error = xfs_inobt_get_rec(cur, &rec.ir_startino, &rec.ir_freecount, &rec.ir_free, &i))) goto error0; XFS_WANT_CORRUPTED_GOTO(i == 1, error0); freecount += rec.ir_freecount; if ((error = xfs_btree_increment(cur, 0, &i))) goto error0; } while (i == 1); ASSERT(freecount == be32_to_cpu(agi->agi_freecount) || XFS_FORCED_SHUTDOWN(mp)); } #endif xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); *inop = ino; return 0; error1: xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); error0: xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; }
/* * Allocate new inodes in the allocation group specified by agbp. * Return 0 for success, else error code. */ STATIC int /* error code or 0 */ xfs_ialloc_ag_alloc( xfs_trans_t *tp, /* transaction pointer */ xfs_buf_t *agbp, /* alloc group buffer */ int *alloc) { xfs_agi_t *agi; /* allocation group header */ xfs_alloc_arg_t args; /* allocation argument structure */ int blks_per_cluster; /* fs blocks per inode cluster */ xfs_btree_cur_t *cur; /* inode btree cursor */ xfs_daddr_t d; /* disk addr of buffer */ xfs_agnumber_t agno; int error; xfs_buf_t *fbuf; /* new free inodes' buffer */ xfs_dinode_t *free; /* new free inode structure */ int i; /* inode counter */ int j; /* block counter */ int nbufs; /* num bufs of new inodes */ xfs_agino_t newino; /* new first inode's number */ xfs_agino_t newlen; /* new number of inodes */ int ninodes; /* num inodes per buf */ xfs_agino_t thisino; /* current inode number, for loop */ int version; /* inode version number to use */ int isaligned = 0; /* inode allocation at stripe unit */ /* boundary */ unsigned int gen; args.tp = tp; args.mp = tp->t_mountp; /* * Locking will ensure that we don't have two callers in here * at one time. */ newlen = XFS_IALLOC_INODES(args.mp); if (args.mp->m_maxicount && args.mp->m_sb.sb_icount + newlen > args.mp->m_maxicount) return XFS_ERROR(ENOSPC); args.minlen = args.maxlen = XFS_IALLOC_BLOCKS(args.mp); /* * First try to allocate inodes contiguous with the last-allocated * chunk of inodes. If the filesystem is striped, this will fill * an entire stripe unit with inodes. */ agi = XFS_BUF_TO_AGI(agbp); newino = be32_to_cpu(agi->agi_newino); args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + XFS_IALLOC_BLOCKS(args.mp); if (likely(newino != NULLAGINO && (args.agbno < be32_to_cpu(agi->agi_length)))) { args.fsbno = XFS_AGB_TO_FSB(args.mp, be32_to_cpu(agi->agi_seqno), args.agbno); args.type = XFS_ALLOCTYPE_THIS_BNO; args.mod = args.total = args.wasdel = args.isfl = args.userdata = args.minalignslop = 0; args.prod = 1; /* * We need to take into account alignment here to ensure that * we don't modify the free list if we fail to have an exact * block. If we don't have an exact match, and every oher * attempt allocation attempt fails, we'll end up cancelling * a dirty transaction and shutting down. * * For an exact allocation, alignment must be 1, * however we need to take cluster alignment into account when * fixing up the freelist. Use the minalignslop field to * indicate that extra blocks might be required for alignment, * but not to use them in the actual exact allocation. */ args.alignment = 1; args.minalignslop = xfs_ialloc_cluster_alignment(&args) - 1; /* Allow space for the inode btree to split. */ args.minleft = XFS_IN_MAXLEVELS(args.mp) - 1; if ((error = xfs_alloc_vextent(&args))) return error; } else args.fsbno = NULLFSBLOCK; if (unlikely(args.fsbno == NULLFSBLOCK)) { /* * Set the alignment for the allocation. * If stripe alignment is turned on then align at stripe unit * boundary. * If the cluster size is smaller than a filesystem block * then we're doing I/O for inodes in filesystem block size * pieces, so don't need alignment anyway. */ isaligned = 0; if (args.mp->m_sinoalign) { ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); args.alignment = args.mp->m_dalign; isaligned = 1; } else args.alignment = xfs_ialloc_cluster_alignment(&args); /* * Need to figure out where to allocate the inode blocks. * Ideally they should be spaced out through the a.g. * For now, just allocate blocks up front. */ args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, be32_to_cpu(agi->agi_seqno), args.agbno); /* * Allocate a fixed-size extent of inodes. */ args.type = XFS_ALLOCTYPE_NEAR_BNO; args.mod = args.total = args.wasdel = args.isfl = args.userdata = args.minalignslop = 0; args.prod = 1; /* * Allow space for the inode btree to split. */ args.minleft = XFS_IN_MAXLEVELS(args.mp) - 1; if ((error = xfs_alloc_vextent(&args))) return error; } /* * If stripe alignment is turned on, then try again with cluster * alignment. */ if (isaligned && args.fsbno == NULLFSBLOCK) { args.type = XFS_ALLOCTYPE_NEAR_BNO; args.agbno = be32_to_cpu(agi->agi_root); args.fsbno = XFS_AGB_TO_FSB(args.mp, be32_to_cpu(agi->agi_seqno), args.agbno); args.alignment = xfs_ialloc_cluster_alignment(&args); if ((error = xfs_alloc_vextent(&args))) return error; } if (args.fsbno == NULLFSBLOCK) { *alloc = 0; return 0; } ASSERT(args.len == args.minlen); /* * Convert the results. */ newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); /* * Loop over the new block(s), filling in the inodes. * For small block sizes, manipulate the inodes in buffers * which are multiples of the blocks size. */ if (args.mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(args.mp)) { blks_per_cluster = 1; nbufs = (int)args.len; ninodes = args.mp->m_sb.sb_inopblock; } else { blks_per_cluster = XFS_INODE_CLUSTER_SIZE(args.mp) / args.mp->m_sb.sb_blocksize; nbufs = (int)args.len / blks_per_cluster; ninodes = blks_per_cluster * args.mp->m_sb.sb_inopblock; } /* * Figure out what version number to use in the inodes we create. * If the superblock version has caught up to the one that supports * the new inode format, then use the new inode version. Otherwise * use the old version so that old kernels will continue to be * able to use the file system. */ if (xfs_sb_version_hasnlink(&args.mp->m_sb)) version = 2; else version = 1; /* * Seed the new inode cluster with a random generation number. This * prevents short-term reuse of generation numbers if a chunk is * freed and then immediately reallocated. We use random numbers * rather than a linear progression to prevent the next generation * number from being easily guessable. */ gen = random32(); for (j = 0; j < nbufs; j++) { /* * Get the block. */ d = XFS_AGB_TO_DADDR(args.mp, be32_to_cpu(agi->agi_seqno), args.agbno + (j * blks_per_cluster)); fbuf = xfs_trans_get_buf(tp, args.mp->m_ddev_targp, d, args.mp->m_bsize * blks_per_cluster, XFS_BUF_LOCK); ASSERT(fbuf); ASSERT(!XFS_BUF_GETERROR(fbuf)); /* * Initialize all inodes in this buffer and then log them. * * XXX: It would be much better if we had just one transaction to * log a whole cluster of inodes instead of all the indivdual * transactions causing a lot of log traffic. */ xfs_biozero(fbuf, 0, ninodes << args.mp->m_sb.sb_inodelog); for (i = 0; i < ninodes; i++) { int ioffset = i << args.mp->m_sb.sb_inodelog; uint isize = sizeof(struct xfs_dinode); free = xfs_make_iptr(args.mp, fbuf, i); free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); free->di_version = version; free->di_gen = cpu_to_be32(gen); free->di_next_unlinked = cpu_to_be32(NULLAGINO); xfs_trans_log_buf(tp, fbuf, ioffset, ioffset + isize - 1); } xfs_trans_inode_alloc_buf(tp, fbuf); } be32_add_cpu(&agi->agi_count, newlen); be32_add_cpu(&agi->agi_freecount, newlen); agno = be32_to_cpu(agi->agi_seqno); down_read(&args.mp->m_peraglock); args.mp->m_perag[agno].pagi_freecount += newlen; up_read(&args.mp->m_peraglock); agi->agi_newino = cpu_to_be32(newino); /* * Insert records describing the new inode chunk into the btree. */ cur = xfs_inobt_init_cursor(args.mp, tp, agbp, agno); for (thisino = newino; thisino < newino + newlen; thisino += XFS_INODES_PER_CHUNK) { if ((error = xfs_inobt_lookup_eq(cur, thisino, XFS_INODES_PER_CHUNK, XFS_INOBT_ALL_FREE, &i))) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 0); if ((error = xfs_btree_insert(cur, &i))) { xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); return error; } ASSERT(i == 1); } xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); /* * Log allocation group header fields */ xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); /* * Modify/log superblock values for inode count and inode free count. */ xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); *alloc = 1; return 0; }