static void lx_init(const LxBoardDesc *board, MachineState *machine) { #ifdef TARGET_WORDS_BIGENDIAN int be = 1; #else int be = 0; #endif MemoryRegion *system_memory = get_system_memory(); XtensaCPU *cpu = NULL; CPUXtensaState *env = NULL; MemoryRegion *ram, *rom, *system_io; DriveInfo *dinfo; pflash_t *flash = NULL; QemuOpts *machine_opts = qemu_get_machine_opts(); const char *cpu_model = machine->cpu_model; const char *kernel_filename = qemu_opt_get(machine_opts, "kernel"); const char *kernel_cmdline = qemu_opt_get(machine_opts, "append"); const char *dtb_filename = qemu_opt_get(machine_opts, "dtb"); const char *initrd_filename = qemu_opt_get(machine_opts, "initrd"); int n; if (!cpu_model) { cpu_model = XTENSA_DEFAULT_CPU_MODEL; } for (n = 0; n < smp_cpus; n++) { cpu = cpu_xtensa_init(cpu_model); if (cpu == NULL) { error_report("unable to find CPU definition '%s'", cpu_model); exit(EXIT_FAILURE); } env = &cpu->env; env->sregs[PRID] = n; qemu_register_reset(lx60_reset, cpu); /* Need MMU initialized prior to ELF loading, * so that ELF gets loaded into virtual addresses */ cpu_reset(CPU(cpu)); } ram = g_malloc(sizeof(*ram)); memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size, &error_fatal); vmstate_register_ram_global(ram); memory_region_add_subregion(system_memory, 0, ram); system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io", 224 * 1024 * 1024); memory_region_add_subregion(system_memory, 0xf0000000, system_io); lx60_fpga_init(system_io, 0x0d020000); if (nd_table[0].used) { lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, xtensa_get_extint(env, 1), nd_table); } if (!serial_hds[0]) { serial_hds[0] = qemu_chr_new("serial0", "null", NULL); } serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { flash = xtfpga_flash_init(system_io, board, dinfo, be); } /* Use presence of kernel file name as 'boot from SRAM' switch. */ if (kernel_filename) { uint32_t entry_point = env->pc; size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ uint32_t tagptr = 0xfe000000 + board->sram_size; uint32_t cur_tagptr; BpMemInfo memory_location = { .type = tswap32(MEMORY_TYPE_CONVENTIONAL), .start = tswap32(0), .end = tswap32(machine->ram_size), }; uint32_t lowmem_end = machine->ram_size < 0x08000000 ? machine->ram_size : 0x08000000; uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); rom = g_malloc(sizeof(*rom)); memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size, &error_fatal); vmstate_register_ram_global(rom); memory_region_add_subregion(system_memory, 0xfe000000, rom); if (kernel_cmdline) { bp_size += get_tag_size(strlen(kernel_cmdline) + 1); } if (dtb_filename) { bp_size += get_tag_size(sizeof(uint32_t)); } if (initrd_filename) { bp_size += get_tag_size(sizeof(BpMemInfo)); } /* Put kernel bootparameters to the end of that SRAM */ tagptr = (tagptr - bp_size) & ~0xff; cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, sizeof(memory_location), &memory_location); if (kernel_cmdline) { cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, strlen(kernel_cmdline) + 1, kernel_cmdline); } if (dtb_filename) { int fdt_size; void *fdt = load_device_tree(dtb_filename, &fdt_size); uint32_t dtb_addr = tswap32(cur_lowmem); if (!fdt) { error_report("could not load DTB '%s'", dtb_filename); exit(EXIT_FAILURE); } cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, sizeof(dtb_addr), &dtb_addr); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096); } if (initrd_filename) { BpMemInfo initrd_location = { 0 }; int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); if (initrd_size < 0) { initrd_size = load_image_targphys(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); } if (initrd_size < 0) { error_report("could not load initrd '%s'", initrd_filename); exit(EXIT_FAILURE); } initrd_location.start = tswap32(cur_lowmem); initrd_location.end = tswap32(cur_lowmem + initrd_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, sizeof(initrd_location), &initrd_location); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096); } cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); env->regs[2] = tagptr; uint64_t elf_entry; uint64_t elf_lowaddr; int success = load_elf(kernel_filename, translate_phys_addr, cpu, &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0); if (success > 0) { entry_point = elf_entry; } else { hwaddr ep; int is_linux; success = load_uimage(kernel_filename, &ep, NULL, &is_linux, translate_phys_addr, cpu); if (success > 0 && is_linux) { entry_point = ep; } else { error_report("could not load kernel '%s'", kernel_filename); exit(EXIT_FAILURE); } } if (entry_point != env->pc) { static const uint8_t jx_a0[] = { #ifdef TARGET_WORDS_BIGENDIAN 0x0a, 0, 0, #else 0xa0, 0, 0, #endif }; env->regs[0] = entry_point; cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0)); } } else { if (flash) { MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); memory_region_init_alias(flash_io, NULL, "lx60.flash", flash_mr, board->flash_boot_base, board->flash_size - board->flash_boot_base < 0x02000000 ? board->flash_size - board->flash_boot_base : 0x02000000); memory_region_add_subregion(system_memory, 0xfe000000, flash_io); } } }
static void lx_init(const LxBoardDesc *board, ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { #ifdef TARGET_WORDS_BIGENDIAN int be = 1; #else int be = 0; #endif MemoryRegion *system_memory = get_system_memory(); CPUXtensaState *env = NULL; MemoryRegion *ram, *rom, *system_io; DriveInfo *dinfo; pflash_t *flash = NULL; int n; if (!cpu_model) { cpu_model = "dc232b"; } for (n = 0; n < smp_cpus; n++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } env->sregs[PRID] = n; qemu_register_reset(lx60_reset, env); /* Need MMU initialized prior to ELF loading, * so that ELF gets loaded into virtual addresses */ cpu_state_reset(env); } ram = g_malloc(sizeof(*ram)); memory_region_init_ram(ram, "lx60.dram", ram_size); vmstate_register_ram_global(ram); memory_region_add_subregion(system_memory, 0, ram); system_io = g_malloc(sizeof(*system_io)); memory_region_init(system_io, "lx60.io", 224 * 1024 * 1024); memory_region_add_subregion(system_memory, 0xf0000000, system_io); lx60_fpga_init(system_io, 0x0d020000); if (nd_table[0].vlan) { lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, xtensa_get_extint(env, 1), nd_table); } if (!serial_hds[0]) { serial_hds[0] = qemu_chr_new("serial0", "null", NULL); } serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { flash = pflash_cfi01_register(0xf8000000, NULL, "lx60.io.flash", board->flash_size, dinfo->bdrv, board->flash_sector_size, board->flash_size / board->flash_sector_size, 4, 0x0000, 0x0000, 0x0000, 0x0000, be); if (flash == NULL) { fprintf(stderr, "Unable to mount pflash\n"); exit(1); } } /* Use presence of kernel file name as 'boot from SRAM' switch. */ if (kernel_filename) { rom = g_malloc(sizeof(*rom)); memory_region_init_ram(rom, "lx60.sram", board->sram_size); vmstate_register_ram_global(rom); memory_region_add_subregion(system_memory, 0xfe000000, rom); /* Put kernel bootparameters to the end of that SRAM */ if (kernel_cmdline) { size_t cmdline_size = strlen(kernel_cmdline) + 1; size_t bp_size = sizeof(BpTag[4]) + cmdline_size; uint32_t tagptr = (0xfe000000 + board->sram_size - bp_size) & ~0xff; env->regs[2] = tagptr; tagptr = put_tag(tagptr, 0x7b0b, 0, NULL); if (cmdline_size > 1) { tagptr = put_tag(tagptr, 0x1001, cmdline_size, kernel_cmdline); } tagptr = put_tag(tagptr, 0x7e0b, 0, NULL); } uint64_t elf_entry; uint64_t elf_lowaddr; int success = load_elf(kernel_filename, translate_phys_addr, env, &elf_entry, &elf_lowaddr, NULL, be, ELF_MACHINE, 0); if (success > 0) { env->pc = elf_entry; } } else { if (flash) { MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); memory_region_init_alias(flash_io, "lx60.flash", flash_mr, 0, board->flash_size); memory_region_add_subregion(system_memory, 0xfe000000, flash_io); } } }
static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine) { #ifdef TARGET_WORDS_BIGENDIAN int be = 1; #else int be = 0; #endif MemoryRegion *system_memory = get_system_memory(); XtensaCPU *cpu = NULL; CPUXtensaState *env = NULL; MemoryRegion *system_io; DriveInfo *dinfo; pflash_t *flash = NULL; QemuOpts *machine_opts = qemu_get_machine_opts(); const char *kernel_filename = qemu_opt_get(machine_opts, "kernel"); const char *kernel_cmdline = qemu_opt_get(machine_opts, "append"); const char *dtb_filename = qemu_opt_get(machine_opts, "dtb"); const char *initrd_filename = qemu_opt_get(machine_opts, "initrd"); const unsigned system_io_size = 224 * 1024 * 1024; int n; for (n = 0; n < smp_cpus; n++) { cpu = XTENSA_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; env->sregs[PRID] = n; qemu_register_reset(xtfpga_reset, cpu); /* Need MMU initialized prior to ELF loading, * so that ELF gets loaded into virtual addresses */ cpu_reset(CPU(cpu)); } if (env) { XtensaMemory sysram = env->config->sysram; sysram.location[0].size = machine->ram_size; xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom", system_memory); xtensa_create_memory_regions(&env->config->instram, "xtensa.instram", system_memory); xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom", system_memory); xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram", system_memory); xtensa_create_memory_regions(&sysram, "xtensa.sysram", system_memory); } system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io", system_io_size); memory_region_add_subregion(system_memory, board->io[0], system_io); if (board->io[1]) { MemoryRegion *io = g_malloc(sizeof(*io)); memory_region_init_alias(io, NULL, "xtfpga.io.cached", system_io, 0, system_io_size); memory_region_add_subregion(system_memory, board->io[1], io); } xtfpga_fpga_init(system_io, 0x0d020000); if (nd_table[0].used) { xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, xtensa_get_extint(env, 1), nd_table); } if (!serial_hds[0]) { serial_hds[0] = qemu_chr_new("serial0", "null"); } serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { flash = xtfpga_flash_init(system_io, board, dinfo, be); } /* Use presence of kernel file name as 'boot from SRAM' switch. */ if (kernel_filename) { uint32_t entry_point = env->pc; size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ uint32_t tagptr = env->config->sysrom.location[0].addr + board->sram_size; uint32_t cur_tagptr; BpMemInfo memory_location = { .type = tswap32(MEMORY_TYPE_CONVENTIONAL), .start = tswap32(env->config->sysram.location[0].addr), .end = tswap32(env->config->sysram.location[0].addr + machine->ram_size), }; uint32_t lowmem_end = machine->ram_size < 0x08000000 ? machine->ram_size : 0x08000000; uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); lowmem_end += env->config->sysram.location[0].addr; cur_lowmem += env->config->sysram.location[0].addr; xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", system_memory); if (kernel_cmdline) { bp_size += get_tag_size(strlen(kernel_cmdline) + 1); } if (dtb_filename) { bp_size += get_tag_size(sizeof(uint32_t)); } if (initrd_filename) { bp_size += get_tag_size(sizeof(BpMemInfo)); } /* Put kernel bootparameters to the end of that SRAM */ tagptr = (tagptr - bp_size) & ~0xff; cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, sizeof(memory_location), &memory_location); if (kernel_cmdline) { cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, strlen(kernel_cmdline) + 1, kernel_cmdline); } #ifdef CONFIG_FDT if (dtb_filename) { int fdt_size; void *fdt = load_device_tree(dtb_filename, &fdt_size); uint32_t dtb_addr = tswap32(cur_lowmem); if (!fdt) { error_report("could not load DTB '%s'", dtb_filename); exit(EXIT_FAILURE); } cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, sizeof(dtb_addr), &dtb_addr); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096); } #else if (dtb_filename) { error_report("could not load DTB '%s': " "FDT support is not configured in QEMU", dtb_filename); exit(EXIT_FAILURE); } #endif if (initrd_filename) { BpMemInfo initrd_location = { 0 }; int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); if (initrd_size < 0) { initrd_size = load_image_targphys(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); } if (initrd_size < 0) { error_report("could not load initrd '%s'", initrd_filename); exit(EXIT_FAILURE); } initrd_location.start = tswap32(cur_lowmem); initrd_location.end = tswap32(cur_lowmem + initrd_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, sizeof(initrd_location), &initrd_location); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096); } cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); env->regs[2] = tagptr; uint64_t elf_entry; uint64_t elf_lowaddr; int success = load_elf(kernel_filename, translate_phys_addr, cpu, &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0); if (success > 0) { entry_point = elf_entry; } else { hwaddr ep; int is_linux; success = load_uimage(kernel_filename, &ep, NULL, &is_linux, translate_phys_addr, cpu); if (success > 0 && is_linux) { entry_point = ep; } else { error_report("could not load kernel '%s'", kernel_filename); exit(EXIT_FAILURE); } } if (entry_point != env->pc) { uint8_t boot[] = { #ifdef TARGET_WORDS_BIGENDIAN 0x60, 0x00, 0x08, /* j 1f */ 0x00, /* .literal_position */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ /* 1: */ 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */ 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */ 0x0a, 0x00, 0x00, /* jx a0 */ #else 0x06, 0x02, 0x00, /* j 1f */ 0x00, /* .literal_position */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */ 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */ /* 1: */ 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */ 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */ 0xa0, 0x00, 0x00, /* jx a0 */ #endif }; uint32_t entry_pc = tswap32(entry_point); uint32_t entry_a2 = tswap32(tagptr); memcpy(boot + 4, &entry_pc, sizeof(entry_pc)); memcpy(boot + 8, &entry_a2, sizeof(entry_a2)); cpu_physical_memory_write(env->pc, boot, sizeof(boot)); } } else { if (flash) { MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); uint32_t size = env->config->sysrom.location[0].size; if (board->flash->size - board->flash->boot_base < size) { size = board->flash->size - board->flash->boot_base; } memory_region_init_alias(flash_io, NULL, "xtfpga.flash", flash_mr, board->flash->boot_base, size); memory_region_add_subregion(system_memory, env->config->sysrom.location[0].addr, flash_io); } else { xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom", system_memory); } } }