示例#1
0
void
zgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       double *recip_pivot_growth, double *rcond,
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    doublecomplex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL;

    /* External functions */
    extern double zlangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	!notran && options->Trans != TRANS && options->Trans != CONJ &&
	!equil && options->Equil != NO)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_Z || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || lsame_(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_Z || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
		      X->Stype != SLU_DN ||
		      X->Dtype != SLU_Z || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("zgsisx", &i);
	return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact ) {
	register int i, j;
	NCformat *Astore = AA->Store;
	int nnz = Astore->nnz;
	int *colptr = Astore->colptr;
	int *rowind = Astore->rowind;
	doublecomplex *nzval = (doublecomplex *)Astore->nzval;
	int n = AA->nrow;

	if ( mc64 ) {
	    *equed = 'B';
	    rowequ = colequ = 1;
	    t0 = SuperLU_timer_();
	    if ((perm = intMalloc(n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm[]");

	    info1 = zldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

	    if (info1 > 0) { /* MC64 fails, call zgsequ() later */
		mc64 = 0;
		SUPERLU_FREE(perm);
		perm = NULL;
	    } else {
		for (i = 0; i < n; i++) {
		    R[i] = exp(R[i]);
		    C[i] = exp(C[i]);
		}
		/* permute and scale the matrix */
		for (j = 0; j < n; j++) {
		    for (i = colptr[j]; i < colptr[j + 1]; i++) {
                        zd_mult(&nzval[i], &nzval[i], R[rowind[i]] * C[j]);
			rowind[i] = perm[rowind[i]];
		    }
		}
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
	if ( !mc64 & equil ) {
	    t0 = SuperLU_timer_();
	    /* Compute row and column scalings to equilibrate the matrix A. */
	    zgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

	    if ( info1 == 0 ) {
		/* Equilibrate matrix A. */
		zlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
		rowequ = lsame_(equed, "R") || lsame_(equed, "B");
		colequ = lsame_(equed, "C") || lsame_(equed, "B");
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
    }

    if ( nrhs > 0 ) {
	/* Scale the right hand side if equilibration was performed. */
	if ( notran ) {
	    if ( rowequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
		    }
	    }
	} else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                    zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
		}
	}
    }

    if ( nofact ) {
	
	t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
	    get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	zgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;

	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( options->PivotGrowth ) {
	if ( *info > 0 ) return;

	/* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
	*recip_pivot_growth = zPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
	/* Estimate the reciprocal of the condition number of A. */
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = zlangs(norm, AA);
	zgscon(norm, L, U, anorm, rcond, stat, &info1);
	utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
	/* Compute the solution matrix X. */
	for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];

	t0 = SuperLU_timer_();
	zgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
	utime[SOLVE] = SuperLU_timer_() - t0;

	/* Transform the solution matrix X to a solution of the original
	   system. */
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
                    }
	    }
	} else {
	    if ( rowequ ) {
		if (perm) {
		    doublecomplex *tmp;
		    int n = A->nrow;

                    if ((tmp = doublecomplexMalloc(n)) == NULL)
			ABORT("SUPERLU_MALLOC fails for tmp[]");
		    for (j = 0; j < nrhs; j++) {
			for (i = 0; i < n; i++)
			    tmp[i] = Xmat[i + j * ldx]; /*dcopy*/
			for (i = 0; i < n; i++)
                           zd_mult(&Xmat[i+j*ldx], &tmp[perm[i]], R[i]);
		    }
		    SUPERLU_FREE(tmp);
		} else {
		    for (j = 0; j < nrhs; ++j)
			for (i = 0; i < A->nrow; ++i) {
                           zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
                        }
		}
	    }
	}
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
	/* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
	if ( *rcond < dlamch_("E") && *info == 0) *info = A->ncol + 1;
    }

    if (perm) SUPERLU_FREE(perm);

    if ( nofact ) {
	ilu_zQuerySpace(L, U, mem_usage);
	Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
示例#2
0
文件: pzgssvx.c 项目: ivanBobrov/Xeon
void
pzgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A, 
	int *perm_c, int *perm_r, equed_t *equed, double *R, double *C,
	SuperMatrix *L, SuperMatrix *U,
	SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
	double *rcond, double *ferr, double *berr, 
	superlu_memusage_t *superlu_memusage, int *info)
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley, 
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * pzgssvx() solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from zgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 * 1. If A is stored column-wise (A->Stype = NC):
 *  
 *    1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS:  (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:   (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A is
 *         overwritten by diag(R)*A*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
 *         that usually preserves sparsity.
 *         For more details of this step, see zsp_colorder.c.
 *
 *    1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *    1.4. Compute the reciprocal pivot growth factor.
 *
 *    1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of A is used to
 *         estimate the condition number of the matrix A. If the reciprocal of
 *         the condition number is less than machine precision, 
 *         info = A->ncol+1 is returned as a warning, but the routine still
 *         goes on to solve for X and computes error bounds as described below.
 *
 *    1.6. The system of equations is solved for X using the factored form
 *         of A.
 *
 *    1.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    1.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *    to the tranpose of A:
 *
 *    2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:  (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A' is
 *         overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    2.2. Permute columns of transpose(A) (rows of A), 
 *         forming transpose(A)*Pc, where Pc is a permutation matrix that
 *         usually preserves sparsity.
 *         For more details of this step, see zsp_colorder.c.
 *
 *    2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
 *         partial pivoting.
 *
 *    2.4. Compute the reciprocal pivot growth factor.
 *
 *    2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of transpose(A)
 *         is used to estimate the condition number of the matrix A.
 *         If the reciprocal of the condition number is less than machine
 *         precision, info = A->nrow+1 is returned as a warning, but the
 *         routine still goes on to solve for X and computes error bounds
 *         as described below.
 *
 *    2.6. The system of equations is solved for X using the factored form
 *         of transpose(A).
 *
 *    2.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    2.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *         Number of processes (or threads) to be spawned and used to perform
 *         the LU factorization by pzgstrf(). There is a single thread of
 *         control to call pzgstrf(), and all threads spawned by pzgstrf() 
 *         are terminated before returning from pzgstrf().
 *
 * superlumt_options (input) superlumt_options_t*
 *         The structure defines the input parameters and data structure
 *         to control how the LU factorization will be performed.
 *         The following fields should be defined for this structure:
 *
 *         o fact (fact_t)
 *           Specifies whether or not the factored form of the matrix
 *           A is supplied on entry, and if not, whether the matrix A should
 *           be equilibrated before it is factored.
 *           = FACTORED: On entry, L, U, perm_r and perm_c contain the 
 *             factored form of A. If equed is not NOEQUIL, the matrix A has
 *             been equilibrated with scaling factors R and C.
 *             A, L, U, perm_r are not modified.
 *           = DOFACT: The matrix A will be factored, and the factors will be
 *             stored in L and U.
 *           = EQUILIBRATE: The matrix A will be equilibrated if necessary,
 *             then factored into L and U.
 *
 *         o trans (trans_t)
 *           Specifies the form of the system of equations:
 *           = NOTRANS: A * X = B        (No transpose)
 *           = TRANS:   A**T * X = B     (Transpose)
 *           = CONJ:    A**H * X = B     (Transpose)
 *
 *         o refact (yes_no_t)
 *           Specifies whether this is first time or subsequent factorization.
 *           = NO:  this factorization is treated as the first one;
 *           = YES: it means that a factorization was performed prior to this
 *               one. Therefore, this factorization will re-use some
 *               existing data structures, such as L and U storage, column
 *               elimination tree, and the symbolic information of the
 *               Householder matrix.
 *
 *         o panel_size (int)
 *           A panel consists of at most panel_size consecutive columns.
 *
 *         o relax (int)
 *           To control degree of relaxing supernodes. If the number
 *           of nodes (columns) in a subtree of the elimination tree is less
 *           than relax, this subtree is considered as one supernode,
 *           regardless of the row structures of those columns.
 *
 *         o diag_pivot_thresh (double)
 *           Diagonal pivoting threshold. At step j of the Gaussian 
 *           elimination, if 
 *               abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *           use A_jj as pivot, else use A_ij with maximum magnitude. 
 *           0 <= diag_pivot_thresh <= 1. The default value is 1, 
 *           corresponding to partial pivoting.
 *
 *         o usepr (yes_no_t)
 *           Whether the pivoting will use perm_r specified by the user.
 *           = YES: use perm_r; perm_r is input, unchanged on exit.
 *           = NO:  perm_r is determined by partial pivoting, and is output.
 *
 *         o drop_tol (double) (NOT IMPLEMENTED)
 *	     Drop tolerance parameter. At step j of the Gaussian elimination,
 *           if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *           0 <= drop_tol <= 1. The default value of drop_tol is 0,
 *           corresponding to not dropping any entry.
 *
 *         o work (void*) of size lwork
 *           User-supplied work space and space for the output data structures.
 *           Not referenced if lwork = 0;
 *
 *         o lwork (int)
 *           Specifies the length of work array.
 *           = 0:  allocate space internally by system malloc;
 *           > 0:  use user-supplied work array of length lwork in bytes,
 *                 returns error if space runs out.
 *           = -1: the routine guesses the amount of space needed without
 *                 performing the factorization, and returns it in
 *                 superlu_memusage->total_needed; no other side effects.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *         A->nrow = A->ncol. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
 *         more general A will be handled.
 *
 *         On entry, If superlumt_options->fact = FACTORED and equed is not 
 *         NOEQUIL, then A must have been equilibrated by the scaling factors
 *         in R and/or C.  On exit, A is not modified 
 *         if superlumt_options->fact = FACTORED or DOFACT, or 
 *         if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL.
 *
 *         On exit, if superlumt_options->fact = EQUILIBRATE and equed is not
 *         NOEQUIL, A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = ROW:  A := diag(R) * A
 *           equed = COL:  A := A * diag(C)
 *           equed = BOTH: A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = ROW:  transpose(A) := diag(R) * transpose(A)
 *           equed = COL:  transpose(A) := transpose(A) * diag(C)
 *           equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of tranpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If superlumt_options->usepr = NO, perm_r is output argument;
 *         If superlumt_options->usepr = YES, the pivoting routine will try 
 *            to use the input perm_r, unless a certain threshold criterion
 *            is violated. In that case, perm_r is overwritten by a new
 *            permutation determined by partial pivoting or diagonal 
 *            threshold pivoting.
 * 
 * equed   (input/output) equed_t*
 *         Specifies the form of equilibration that was done.
 *         = NOEQUIL: No equilibration.
 *         = ROW:  Row equilibration, i.e., A was premultiplied by diag(R).
 *         = COL:  Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = BOTH: Both row and column equilibration, i.e., A was replaced 
 *                 by diag(R)*A*diag(C).
 *         If superlumt_options->fact = FACTORED, equed is an input argument, 
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)
 *            (if A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = NOEQUIL or COL, R is not accessed.
 *         If fact = FACTORED, R is an input argument; otherwise, R is output.
 *         If fact = FACTORED and equed = ROW or BOTH, each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A)
 *            (if A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = NOEQUIL or ROW, C is not accessed.
 *         If fact = FACTORED, C is an input argument; otherwise, C is output.
 *         If fact = FACTORED and equed = COL or BOTH, each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = NOEQUIL, B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
 *                  by diag(R)*B;
 *               if trans = TRANS or CONJ and equed = COL of BOTH, B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = NOTRANS and equed = COL or BOTH, B is overwritten
 *                  by diag(C)*B;
 *               if trans = TRANS or CONJ and equed = ROW of BOTH, B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = _D, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not NOEQUIL, and the solution to the 
 *         equilibrated system is inv(diag(C))*X if trans = NOTRANS and
 *         equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
 *         and equed = ROW or BOTH.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor computed as
 *             max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ).
 *         If recip_pivot_growth is much less than 1, the stability of the
 *         LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * ferr    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * berr    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * superlu_memusage (output) superlu_memusage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    NCformat  *Astore;
    DNformat  *Bstore, *Xstore;
    doublecomplex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, dofact, notran, rowequ;
    char      norm[1];
    trans_t   trant;
    int       i, j, info1;
    double amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       n, relax, panel_size;
    Gstat_t   Gstat;
    double    t0;      /* temporary time */
    double    *utime;
    flops_t   *ops, flopcnt;
   
    /* External functions */
    extern double zlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Astore = A->Store;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    n      = A->ncol;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    superlumt_options->perm_c = perm_c;
    superlumt_options->perm_r = perm_r;

    *info = 0;
    dofact = (superlumt_options->fact == DOFACT);
    equil = (superlumt_options->fact == EQUILIBRATE);
    notran = (superlumt_options->trans == NOTRANS);
    if (dofact || equil) {
	*equed = NOEQUIL;
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = (*equed == ROW) || (*equed == BOTH);
	colequ = (*equed == COL) || (*equed == BOTH);
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    if ( nprocs <= 0 ) *info = -1;
    else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED))
	      || (!notran && (superlumt_options->trans != TRANS) && 
		 (superlumt_options->trans != CONJ))
	      || (superlumt_options->refact != YES && 
		  superlumt_options->refact != NO)
	      || (superlumt_options->usepr != YES &&
		  superlumt_options->usepr != NO)
	      || superlumt_options->lwork < -1 )
        *info = -2;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_Z || A->Mtype != SLU_GE )
	*info = -3;
    else if ((superlumt_options->fact == FACTORED) && 
	     !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_Z || 
		      B->Mtype != SLU_GE )
		*info = -11;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != SLU_DN ||
		      X->Dtype != SLU_Z || X->Mtype != SLU_GE )
		*info = -12;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("pzgssvx", &i);
	return;
    }
    
    
    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    panel_size = superlumt_options->panel_size;
    relax = superlumt_options->relax;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;
    
    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	trant = superlumt_options->trans;
	AA = A;
    }

    /* ------------------------------------------------------------
       Diagonal scaling to equilibrate the matrix.
       ------------------------------------------------------------*/
    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	zgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    zlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = (*equed == ROW) || (*equed == BOTH);
	    colequ = (*equed == COL) || (*equed == BOTH);
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* ------------------------------------------------------------
       Scale the right hand side.
       ------------------------------------------------------------*/
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
		}
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
                    zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
	    }
    }

    
    /* ------------------------------------------------------------
       Perform the LU factorization.
       ------------------------------------------------------------*/
    if ( dofact || equil ) {
	
        /* Obtain column etree, the column count (colcnt_h) and supernode
	   partition (part_super_h) for the Householder matrix. */
	t0 = SuperLU_timer_();
	sp_colorder(AA, perm_c, superlumt_options, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

#if ( PRNTlevel >= 2 )    
	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout);
#endif
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	pzgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	flopcnt = 0;
	for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
	ops[FACT] = flopcnt;

	if ( superlumt_options->lwork == -1 ) {
	    superlu_memusage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = zPivotGrowth(*info, AA, perm_c, L, U);
	}
    } else {

	/* ------------------------------------------------------------
	   Compute the reciprocal pivot growth factor *recip_pivot_growth.
	   ------------------------------------------------------------*/
	*recip_pivot_growth = zPivotGrowth(A->ncol, AA, perm_c, L, U);

	/* ------------------------------------------------------------
	   Estimate the reciprocal of the condition number of A.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = zlangs(norm, AA);
	zgscon(norm, L, U, anorm, rcond, info);
	utime[RCOND] = SuperLU_timer_() - t0;
    
	/* ------------------------------------------------------------
	   Compute the solution matrix X.
	   ------------------------------------------------------------*/
	for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
	t0 = SuperLU_timer_();
	zgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t0;
	ops[SOLVE] = ops[TRISOLVE];
    
	/* ------------------------------------------------------------
	   Use iterative refinement to improve the computed solution and
	   compute error bounds and backward error estimates for it.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	zgsrfs(trant, AA, L, U, perm_r, perm_c, *equed,
	       R, C, B, X, ferr, berr, &Gstat, info);
	utime[REFINE] = SuperLU_timer_() - t0;

	/* ------------------------------------------------------------
	   Transform the solution matrix X to a solution of the original
	   system.
	   ------------------------------------------------------------*/
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
		    }
	    }
	} else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                    zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
		}
	}
	
	/* Set INFO = A->ncol+1 if the matrix is singular to 
	   working precision.*/
	if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;
	
    }

    superlu_zQuerySpace(nprocs, L, U, panel_size, superlu_memusage);

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    if ( superlumt_options->refact == NO ) {
        SUPERLU_FREE(superlumt_options->etree);
        SUPERLU_FREE(superlumt_options->colcnt_h);
	SUPERLU_FREE(superlumt_options->part_super_h);
    }
    if ( dofact || equil ) {
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    PrintStat(&Gstat);
    StatFree(&Gstat);
}
示例#3
0
文件: zgssvx.c 项目: AtomAleks/PyProp
void
zgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{


    DNformat  *Bstore, *Xstore;
    doublecomplex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh, drop_tol;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern double zlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	!notran && options->Trans != TRANS && options->Trans != CONJ &&
	!equil && options->Equil != NO)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_Z || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || lsame_(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_Z || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
		      X->Dtype != SLU_Z || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("zgssvx", &i);
	return;
    }
    
    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;
    drop_tol   = 0.0;

    utime = stat->utime;
    
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact && equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	zgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    zlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
	            }
	    }
        } else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
                    zd_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
	        }
        }
    }

    if ( nofact ) {
	
        t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	zgstrf(options, &AC, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_c, perm_r, L, U, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
	    if ( *info <= A->ncol ) {
	        /* Compute the reciprocal pivot growth factor of the leading
	           rank-deficient *info columns of A. */
	        *recip_pivot_growth = zPivotGrowth(*info, AA, perm_c, L, U);
	    }
	    return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = zPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
	    *(unsigned char *)norm = '1';
        } else {
	    *(unsigned char *)norm = 'I';
        }
        anorm = zlangs(norm, AA);
        zgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }
    
    if ( nrhs > 0 ) {
        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
	        Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
        t0 = SuperLU_timer_();
        zgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;
    
        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            zgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
	    if ( colequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
	            }
	    }
        } else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
	        for (i = 0; i < A->nrow; ++i) {
                    zd_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
                }
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
        if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;
    }

    if ( nofact ) {
        zQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
void
zgssvx(char *fact, char *trans, char *refact,
       SuperMatrix *A, factor_param_t *factor_params, int *perm_c,
       int *perm_r, int *etree, char *equed, double *R, double *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, double *recip_pivot_growth, 
       double *rcond, double *ferr, double *berr, 
       mem_usage_t *mem_usage, int *info )
{
/*
 * Purpose
 * =======
 *
 * ZGSSVX solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from zgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = SLU_NC):
 *  
 *      1.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A is
 *           overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if trans='N')
 *           or diag(C)*B (if trans = 'T' or 'C').
 *
 *      1.2. Permute columns of A, forming A*Pc, where Pc is a permutation
 *           matrix that usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           matrix A (after equilibration if fact = 'E') as Pr*A*Pc = L*U,
 *           with Pr determined by partial pivoting.
 *
 *      1.4. Compute the reciprocal pivot growth factor.
 *
 *      1.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form of 
 *           A is used to estimate the condition number of the matrix A. If
 *           the reciprocal of the condition number is less than machine
 *           precision, info = A->ncol+1 is returned as a warning, but the
 *           routine still goes on to solve for X and computes error bounds
 *           as described below.
 *
 *      1.6. The system of equations is solved for X using the factored form
 *           of A.
 *
 *      1.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      1.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   2. If A is stored row-wise (A->Stype = SLU_NR), apply the above algorithm
 *      to the transpose of A:
 *
 *      2.1. If fact = 'E', scaling factors are computed to equilibrate the
 *           system:
 *             trans = 'N':  diag(R)*A'*diag(C)     *inv(diag(C))*X = diag(R)*B
 *             trans = 'T': (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *             trans = 'C': (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *           Whether or not the system will be equilibrated depends on the
 *           scaling of the matrix A, but if equilibration is used, A' is
 *           overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *           (if trans='N') or diag(C)*B (if trans = 'T' or 'C').
 *
 *      2.2. Permute columns of transpose(A) (rows of A), 
 *           forming transpose(A)*Pc, where Pc is a permutation matrix that 
 *           usually preserves sparsity.
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.3. If fact = 'N' or 'E', the LU decomposition is used to factor the
 *           transpose(A) (after equilibration if fact = 'E') as 
 *           Pr*transpose(A)*Pc = L*U with the permutation Pr determined by
 *           partial pivoting.
 *
 *      2.4. Compute the reciprocal pivot growth factor.
 *
 *      2.5. If some U(i,i) = 0, so that U is exactly singular, then the
 *           routine returns with info = i. Otherwise, the factored form 
 *           of transpose(A) is used to estimate the condition number of the
 *           matrix A. If the reciprocal of the condition number
 *           is less than machine precision, info = A->nrow+1 is returned as
 *           a warning, but the routine still goes on to solve for X and
 *           computes error bounds as described below.
 *
 *      2.6. The system of equations is solved for X using the factored form
 *           of transpose(A).
 *
 *      2.7. Iterative refinement is applied to improve the computed solution
 *           matrix and calculate error bounds and backward error estimates
 *           for it.
 *
 *      2.8. If equilibration was used, the matrix X is premultiplied by
 *           diag(C) (if trans = 'N') or diag(R) (if trans = 'T' or 'C') so
 *           that it solves the original system before equilibration.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * fact    (input) char*
 *         Specifies whether or not the factored form of the matrix
 *         A is supplied on entry, and if not, whether the matrix A should
 *         be equilibrated before it is factored.
 *         = 'F': On entry, L, U, perm_r and perm_c contain the factored
 *                form of A. If equed is not 'N', the matrix A has been
 *                equilibrated with scaling factors R and C.
 *                A, L, U, perm_r are not modified.
 *         = 'N': The matrix A will be factored, and the factors will be
 *                stored in L and U.
 *         = 'E': The matrix A will be equilibrated if necessary, then
 *                factored into L and U.
 *
 * trans   (input) char*
 *         Specifies the form of the system of equations:
 *         = 'N': A * X = B        (No transpose)
 *         = 'T': A**T * X = B     (Transpose)
 *         = 'C': A**H * X = B     (Transpose)
 *
 * refact  (input) char*
 *         Specifies whether we want to re-factor the matrix.
 *         = 'N': Factor the matrix A.
 *         = 'Y': Matrix A was factored before, now we want to re-factor
 *                matrix A with perm_r and etree as inputs. Use
 *                the same storage for the L\U factors previously allocated,
 *                expand it if necessary. User should insure to use the same
 *                memory model.  In this case, perm_r may be modified due to
 *                different pivoting determined by diagonal threshold.
 *         If fact = 'F', then refact is not accessed.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of the linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = SLU_NC or SLU_NR, Dtype = SLU_Z, Mtype = SLU_GE.
 *         In the future, more general A may be handled.
 *
 *         On entry, If fact = 'F' and equed is not 'N', then A must have
 *         been equilibrated by the scaling factors in R and/or C.  
 *         A is not modified if fact = 'F' or 'N', or if fact = 'E' and 
 *         equed = 'N' on exit.
 *
 *         On exit, if fact = 'E' and equed is not 'N', A is scaled as follows:
 *         If A->Stype = SLU_NC:
 *           equed = 'R':  A := diag(R) * A
 *           equed = 'C':  A := A * diag(C)
 *           equed = 'B':  A := diag(R) * A * diag(C).
 *         If A->Stype = SLU_NR:
 *           equed = 'R':  transpose(A) := diag(R) * transpose(A)
 *           equed = 'C':  transpose(A) := transpose(A) * diag(C)
 *           equed = 'B':  transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * factor_params (input) factor_param_t*
 *         The structure defines the input scalar parameters, consisting of
 *         the following fields. If factor_params = NULL, the default
 *         values are used for all the fields; otherwise, the values
 *         are given by the user.
 *         - panel_size (int): Panel size. A panel consists of at most
 *             panel_size consecutive columns. If panel_size = -1, use 
 *             default value 8.
 *         - relax (int): To control degree of relaxing supernodes. If the
 *             number of nodes (columns) in a subtree of the elimination
 *             tree is less than relax, this subtree is considered as one
 *             supernode, regardless of the row structures of those columns.
 *             If relax = -1, use default value 8.
 *         - diag_pivot_thresh (double): Diagonal pivoting threshold.
 *             At step j of the Gaussian elimination, if
 *                 abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *             then use A_jj as pivot. 0 <= diag_pivot_thresh <= 1.
 *             If diag_pivot_thresh = -1, use default value 1.0,
 *             which corresponds to standard partial pivoting.
 *         - drop_tol (double): Drop tolerance threshold. (NOT IMPLEMENTED)
 *             At step j of the Gaussian elimination, if
 *                 abs(A_ij)/(max_i abs(A_ij)) < drop_tol,
 *             then drop entry A_ij. 0 <= drop_tol <= 1.
 *             If drop_tol = -1, use default value 0.0, which corresponds to
 *             standard Gaussian elimination.
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = SLU_NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = SLU_NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = SLU_NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = SLU_NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If refact is not 'Y', perm_r is output argument;
 *         If refact = 'Y', the pivoting routine will try to use the input
 *         perm_r, unless a certain threshold criterion is violated.
 *         In that case, perm_r is overwritten by a new permutation
 *         determined by partial pivoting or diagonal threshold pivoting.
 * 
 * etree   (input/output) int*,  dimension (A->ncol)
 *         Elimination tree of Pc'*A'*A*Pc.
 *         If fact is not 'F' and refact = 'Y', etree is an input argument,
 *         otherwise it is an output argument.
 *         Note: etree is a vector of parent pointers for a forest whose
 *         vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *
 * equed   (input/output) char*
 *         Specifies the form of equilibration that was done.
 *         = 'N': No equilibration.
 *         = 'R': Row equilibration, i.e., A was premultiplied by diag(R).
 *         = 'C': Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = 'B': Both row and column equilibration, i.e., A was replaced 
 *                by diag(R)*A*diag(C).
 *         If fact = 'F', equed is an input argument, otherwise it is
 *         an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = 'R' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *            (if A->Stype = SLU_NR) is multiplied on the left by diag(R).
 *         If equed = 'N' or 'C', R is not accessed.
 *         If fact = 'F', R is an input argument; otherwise, R is output.
 *         If fact = 'F' and equed = 'R' or 'B', each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = 'C' or 'B', A (if A->Stype = SLU_NC) or transpose(A)
 *            (if A->Stype = SLU_NR) is multiplied on the right by diag(C).
 *         If equed = 'N' or 'R', C is not accessed.
 *         If fact = 'F', C is an input argument; otherwise, C is output.
 *         If fact = 'F' and equed = 'C' or 'B', each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype SLU_= NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = SLU_Z, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = SLU_NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = SLU_NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = SLU_NC, Dtype = SLU_Z, Mtype = TRU.
 *
 * work    (workspace/output) void*, size (lwork) (in bytes)
 *         User supplied workspace, should be large enough
 *         to hold data structures for factors L and U.
 *         On exit, if fact is not 'F', L and U point to this array.
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               mem_usage->total_needed; no other side effects.
 *
 *         See argument 'mem_usage' for memory usage statistics.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = SLU_DN, Dtype = SLU_Z, Mtype = SLU_GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = 'N', B is not modified; otherwise
 *            if A->Stype = SLU_NC:
 *               if trans = 'N' and equed = 'R' or 'B', B is overwritten by
 *                  diag(R)*B;
 *               if trans = 'T' or 'C' and equed = 'C' of 'B', B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = SLU_NR:
 *               if trans = 'N' and equed = 'C' or 'B', B is overwritten by
 *                  diag(C)*B;
 *               if trans = 'T' or 'C' and equed = 'R' of 'B', B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = SLU_DN, Dtype = SLU_Z, Mtype = SLU_GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not 'N', and the solution to the equilibrated
 *         system is inv(diag(C))*X if trans = 'N' and equed = 'C' or 'B',
 *         or inv(diag(R))*X if trans = 'T' or 'C' and equed = 'R' or 'B'.
 *
 * recip_pivot_growth (output) double*
 *         The reciprocal pivot growth factor max_j( norm(A_j)/norm(U_j) ).
 *         The infinity norm is used. If recip_pivot_growth is much less
 *         than 1, the stability of the LU factorization could be poor.
 *
 * rcond   (output) double*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * FERR    (output) double*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * BERR    (output) double*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * mem_usage (output) mem_usage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    DNformat  *Bstore, *Xstore;
    doublecomplex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ;
    char      trant[1], norm[1];
    int       i, j, info1;
    double    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    double    diag_pivot_thresh, drop_tol;
    double    t0;      /* temporary time */
    double    *utime;
    extern SuperLUStat_t SuperLUStat;

    /* External functions */
    extern double zlangs(char *, SuperMatrix *);
    extern double dlamch_(char *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

#if 0
printf("zgssvx: fact=%c, trans=%c, refact=%c, equed=%c\n",
       *fact, *trans, *refact, *equed);
#endif
    
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    notran = lsame_(trans, "N");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = dlamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (!nofact && !equil && !lsame_(fact, "F")) *info = -1;
    else if (!notran && !lsame_(trans, "T") && !lsame_(trans, "C")) *info = -2;
    else if ( !(lsame_(refact,"Y") || lsame_(refact, "N")) ) *info = -3;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_Z || A->Mtype != SLU_GE )
	*info = -4;
    else if (lsame_(fact, "F") && !(rowequ || colequ || lsame_(equed, "N")))
	*info = -9;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -10;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -11;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -15;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_Z || 
		      B->Mtype != SLU_GE )
		*info = -16;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != SLU_DN ||
		      X->Dtype != SLU_Z || X->Mtype != SLU_GE )
		*info = -17;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("zgssvx", &i);
	return;
    }
    
    /* Default values for factor_params */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = 1.0;
    drop_tol   = 0.0;
    if ( factor_params != NULL ) {
	if ( factor_params->panel_size != -1 )
	    panel_size = factor_params->panel_size;
	if ( factor_params->relax != -1 ) relax = factor_params->relax;
	if ( factor_params->diag_pivot_thresh != -1 )
	    diag_pivot_thresh = factor_params->diag_pivot_thresh;
	if ( factor_params->drop_tol != -1 )
	    drop_tol = factor_params->drop_tol;
    }

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
    
    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	zCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    *trant = 'T';
	    notran = 0;
	} else {
	    *trant = 'N';
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	*trant = *trans;
	AA = A;
    }

    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	zgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    zlaqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	    colequ = lsame_(equed, "C") || lsame_(equed, "B");
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* Scale the right hand side if equilibration was performed. */
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                  zd_mult(&Bmat[i + j*ldb], &Bmat[i + j*ldb], R[i]);
	        }
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
              zd_mult(&Bmat[i + j*ldb], &Bmat[i + j*ldb], C[i]);
	    }
    }

    if ( nofact || equil ) {
	
	t0 = SuperLU_timer_();
	sp_preorder(refact, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;
    
/*	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout); */
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	zgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	       etree, work, lwork, perm_r, perm_c, L, U, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = zPivotGrowth(*info, AA, perm_c, L, U);
	}
	return;
    }

    /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
    *recip_pivot_growth = zPivotGrowth(A->ncol, AA, perm_c, L, U);

    /* Estimate the reciprocal of the condition number of A. */
    t0 = SuperLU_timer_();
    if ( notran ) {
	*(unsigned char *)norm = '1';
    } else {
	*(unsigned char *)norm = 'I';
    }
    anorm = zlangs(norm, AA);
    zgscon(norm, L, U, anorm, rcond, info);
    utime[RCOND] = SuperLU_timer_() - t0;
    
    /* Compute the solution matrix X. */
    for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	for (i = 0; i < B->nrow; i++)
	    Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
    t0 = SuperLU_timer_();
    zgstrs (trant, L, U, perm_r, perm_c, X, info);
    utime[SOLVE] = SuperLU_timer_() - t0;
    
    /* Use iterative refinement to improve the computed solution and compute
       error bounds and backward error estimates for it. */
    t0 = SuperLU_timer_();
    zgsrfs(trant, AA, L, U, perm_r, perm_c, equed, R, C, B,
	      X, ferr, berr, info);
    utime[REFINE] = SuperLU_timer_() - t0;

    /* Transform the solution matrix X to a solution of the original system. */
    if ( notran ) {
	if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                  zd_mult(&Xmat[i + j*ldx], &Xmat[i + j*ldx], C[i]);
	        }
	}
    } else if ( rowequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
              zd_mult(&Xmat[i+ j*ldx], &Xmat[i+ j*ldx], R[i]);
            }
    }

    /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
    if ( *rcond < dlamch_("E") ) *info = A->ncol + 1;

    zQuerySpace(L, U, panel_size, mem_usage);

    if ( nofact || equil ) Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    PrintStat( &SuperLUStat );
    StatFree();
}