示例#1
0
/* Subroutine */ int zerrhs_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits\002,\002 (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error \002,\002exits ***\002)";

    /* System generated locals */
    integer i__1;
    doublereal d__1;

    /* Local variables */
    doublecomplex a[9]	/* was [3][3] */, c__[9]	/* was [3][3] */;
    integer i__, j, m;
    doublereal s[3];
    doublecomplex w[9], x[3];
    char c2[2];
    integer nt;
    doublecomplex vl[9]	/* was [3][3] */, vr[9]	/* was [3][3] */;
    doublereal rw[3];
    integer ihi, ilo;
    logical sel[3];
    doublecomplex tau[3];
    integer info, ifaill[3];
    extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublecomplex *, integer *, 
	    integer *), zgebal_(char *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, doublereal *, 
	    integer *);
    integer ifailr[3];
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), chkxer_(char *, integer *, integer *, 
	    logical *, logical *), zhsein_(char *, char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
, integer *, doublecomplex *, doublereal *, integer *, integer *, 
	    integer *), zhseqr_(char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, integer *), ztrevc_(char *, char *, 
	    logical *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, integer *, integer *, 
	    doublecomplex *, doublereal *, integer *), 
	    zunghr_(integer *, integer *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, doublecomplex *, integer *, integer *), 
	    zunmhr_(char *, char *, integer *, integer *, integer *, integer *
, doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };
    static cilist io___22 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___23 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRHS tests the error exits for ZGEBAK, CGEBAL, CGEHRD, ZUNGHR, */
/*  ZUNMHR, ZHSEQR, CHSEIN, and ZTREVC. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 3; ++j) {
	for (i__ = 1; i__ <= 3; ++i__) {
	    i__1 = i__ + j * 3 - 4;
	    d__1 = 1. / (doublereal) (i__ + j);
	    a[i__1].r = d__1, a[i__1].i = 0.;
/* L10: */
	}
	sel[j - 1] = TRUE_;
/* L20: */
    }
    infoc_1.ok = TRUE_;
    nt = 0;

/*     Test error exits of the nonsymmetric eigenvalue routines. */

    if (lsamen_(&c__2, c2, "HS")) {

/*        ZGEBAL */

	s_copy(srnamc_1.srnamt, "ZGEBAL", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgebal_("/", &c__0, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgebal_("N", &c_n1, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebal_("N", &c__2, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("ZGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 3;

/*        ZGEBAK */

	s_copy(srnamc_1.srnamt, "ZGEBAK", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgebak_("/", "R", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgebak_("N", "/", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgebak_("N", "R", &c_n1, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebak_("N", "R", &c__0, &c__0, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zgebak_("N", "R", &c__0, &c__2, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgebak_("N", "R", &c__2, &c__2, &c__1, s, &c__0, a, &c__2, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgebak_("N", "R", &c__0, &c__1, &c__1, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zgebak_("N", "R", &c__0, &c__1, &c__0, s, &c_n1, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	zgebak_("N", "R", &c__2, &c__1, &c__2, s, &c__0, a, &c__1, &info);
	chkxer_("ZGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        ZGEHRD */

	s_copy(srnamc_1.srnamt, "ZGEHRD", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zgehrd_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgehrd_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zgehrd_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgehrd_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zgehrd_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zgehrd_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__2, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zgehrd_(&c__2, &c__1, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("ZGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        ZUNGHR */

	s_copy(srnamc_1.srnamt, "ZUNGHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zunghr_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunghr_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunghr_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunghr_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunghr_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunghr_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunghr_(&c__3, &c__1, &c__3, a, &c__3, tau, w, &c__1, &info);
	chkxer_("ZUNGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        ZUNMHR */

	s_copy(srnamc_1.srnamt, "ZUNMHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zunmhr_("/", "N", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zunmhr_("L", "/", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zunmhr_("L", "N", &c_n1, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zunmhr_("L", "N", &c__0, &c_n1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__0, &c__0, &c__0, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__0, &c__0, &c__2, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("L", "N", &c__1, &c__2, &c__2, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__2, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zunmhr_("R", "N", &c__2, &c__1, &c__2, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__2, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("L", "N", &c__1, &c__1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("L", "N", &c__0, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	zunmhr_("R", "N", &c__1, &c__0, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunmhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	zunmhr_("R", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	zunmhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__2, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zunmhr_("L", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zunmhr_("R", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("ZUNMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 16;

/*        ZHSEQR */

	s_copy(srnamc_1.srnamt, "ZHSEQR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zhseqr_("/", "N", &c__0, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zhseqr_("E", "/", &c__0, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zhseqr_("E", "N", &c_n1, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zhseqr_("E", "N", &c__0, &c__0, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	zhseqr_("E", "N", &c__0, &c__2, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhseqr_("E", "N", &c__1, &c__1, &c__0, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhseqr_("E", "N", &c__1, &c__1, &c__2, a, &c__1, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zhseqr_("E", "N", &c__2, &c__1, &c__2, a, &c__1, x, c__, &c__2, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zhseqr_("E", "V", &c__2, &c__1, &c__2, a, &c__2, x, c__, &c__1, w, &
		c__1, &info);
	chkxer_("ZHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        ZHSEIN */

	s_copy(srnamc_1.srnamt, "ZHSEIN", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	zhsein_("/", "N", "N", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	zhsein_("R", "/", "N", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	zhsein_("R", "N", "/", sel, &c__0, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	zhsein_("R", "N", "N", sel, &c_n1, a, &c__1, x, vl, &c__1, vr, &c__1, 
		&c__0, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__1, x, vl, &c__1, vr, &c__2, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	zhsein_("L", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__1, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__1, 
		&c__4, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	zhsein_("R", "N", "N", sel, &c__2, a, &c__2, x, vl, &c__1, vr, &c__2, 
		&c__1, &m, w, rw, ifaill, ifailr, &info);
	chkxer_("ZHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 8;

/*        ZTREVC */

	s_copy(srnamc_1.srnamt, "ZTREVC", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	ztrevc_("/", "A", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztrevc_("L", "/", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztrevc_("L", "A", sel, &c_n1, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	ztrevc_("L", "A", sel, &c__2, a, &c__1, vl, &c__2, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	ztrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	ztrevc_("R", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	ztrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__2, vr, &c__1, &c__1, &
		m, w, rw, &info);
	chkxer_("ZTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;
    }

/*     Print a summary line. */

    if (infoc_1.ok) {
	io___22.ciunit = infoc_1.nout;
	s_wsfe(&io___22);
	do_fio(&c__1, path, (ftnlen)3);
	do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	e_wsfe();
    } else {
	io___23.ciunit = infoc_1.nout;
	s_wsfe(&io___23);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    }


    return 0;

/*     End of ZERRHS */

} /* zerrhs_ */
示例#2
0
文件: zgeevx.c 项目: flame/libflame
/* Subroutine */
int zgeevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer * lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double sqrt(doublereal), d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);
    /* Local variables */
    integer i__, k;
    char job[1];
    doublereal scl, dum[1], eps;
    doublecomplex tmp;
    char side[1];
    doublereal anrm;
    integer ierr, itau, iwrk, nout, icond;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */
    int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    logical scalea;
    extern doublereal dlamch_(char *);
    doublereal cscale;
    extern /* Subroutine */
    int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), zgebak_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublecomplex *, integer *, integer *), zgebal_(char *, integer *, doublecomplex *, integer *, integer *, integer *, doublereal *, integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */
    int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    logical select[1];
    extern /* Subroutine */
    int zdscal_(integer *, doublereal *, doublecomplex *, integer *);
    doublereal bignum;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *);
    extern /* Subroutine */
    int zgehrd_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    extern /* Subroutine */
    int zhseqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    logical lquery, wantvr;
    extern /* Subroutine */
    int ztrevc_(char *, char *, logical *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *, doublecomplex *, doublereal *, integer *), ztrsna_(char *, char *, logical *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, doublereal *, integer *), zunghr_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *);
    logical wntsnn, wntsnv;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input arguments */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --rwork;
    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    wntsnn = lsame_(sense, "N");
    wntsne = lsame_(sense, "E");
    wntsnv = lsame_(sense, "V");
    wntsnb = lsame_(sense, "B");
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") || lsame_(balanc, "B")))
    {
        *info = -1;
    }
    else if (! wantvl && ! lsame_(jobvl, "N"))
    {
        *info = -2;
    }
    else if (! wantvr && ! lsame_(jobvr, "N"))
    {
        *info = -3;
    }
    else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) && ! (wantvl && wantvr))
    {
        *info = -4;
    }
    else if (*n < 0)
    {
        *info = -5;
    }
    else if (*lda < max(1,*n))
    {
        *info = -7;
    }
    else if (*ldvl < 1 || wantvl && *ldvl < *n)
    {
        *info = -10;
    }
    else if (*ldvr < 1 || wantvr && *ldvr < *n)
    {
        *info = -12;
    }
    /* Compute workspace */
    /* (Note: Comments in the code beginning "Workspace:" describe the */
    /* minimal amount of workspace needed at that point in the code, */
    /* as well as the preferred amount for good performance. */
    /* CWorkspace refers to complex workspace, and RWorkspace to real */
    /* workspace. NB refers to the optimal block size for the */
    /* immediately following subroutine, as returned by ILAENV. */
    /* HSWORK refers to the workspace preferred by ZHSEQR, as */
    /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
    /* the worst case.) */
    if (*info == 0)
    {
        if (*n == 0)
        {
            minwrk = 1;
            maxwrk = 1;
        }
        else
        {
            maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, & c__0);
            if (wantvl)
            {
                zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[1], &c_n1, info);
            }
            else if (wantvr)
            {
                zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[1], &c_n1, info);
            }
            else
            {
                if (wntsnn)
                {
                    zhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], & vr[vr_offset], ldvr, &work[1], &c_n1, info);
                }
                else
                {
                    zhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], & vr[vr_offset], ldvr, &work[1], &c_n1, info);
                }
            }
            hswork = (integer) work[1].r;
            if (! wantvl && ! wantvr)
            {
                minwrk = *n << 1;
                if (! (wntsnn || wntsne))
                {
                    /* Computing MAX */
                    i__1 = minwrk;
                    i__2 = *n * *n + (*n << 1); // , expr subst
                    minwrk = max(i__1,i__2);
                }
                maxwrk = max(maxwrk,hswork);
                if (! (wntsnn || wntsne))
                {
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *n * *n + (*n << 1); // , expr subst
                    maxwrk = max(i__1,i__2);
                }
            }
            else
            {
                minwrk = *n << 1;
                if (! (wntsnn || wntsne))
                {
                    /* Computing MAX */
                    i__1 = minwrk;
                    i__2 = *n * *n + (*n << 1); // , expr subst
                    minwrk = max(i__1,i__2);
                }
                maxwrk = max(maxwrk,hswork);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", " ", n, &c__1, n, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                if (! (wntsnn || wntsne))
                {
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *n * *n + (*n << 1); // , expr subst
                    maxwrk = max(i__1,i__2);
                }
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n << 1; // , expr subst
                maxwrk = max(i__1,i__2);
            }
            maxwrk = max(maxwrk,minwrk);
        }
        work[1].r = (doublereal) maxwrk;
        work[1].i = 0.; // , expr subst
        if (*lwork < minwrk && ! lquery)
        {
            *info = -20;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZGEEVX", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    /* Get machine constants */
    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;
    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    icond = 0;
    anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum)
    {
        scalea = TRUE_;
        cscale = smlnum;
    }
    else if (anrm > bignum)
    {
        scalea = TRUE_;
        cscale = bignum;
    }
    if (scalea)
    {
        zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr);
    }
    /* Balance the matrix and compute ABNRM */
    zgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = zlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea)
    {
        dum[0] = *abnrm;
        dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, & ierr);
        *abnrm = dum[0];
    }
    /* Reduce to upper Hessenberg form */
    /* (CWorkspace: need 2*N, prefer N+N*NB) */
    /* (RWorkspace: none) */
    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, & ierr);
    if (wantvl)
    {
        /* Want left eigenvectors */
        /* Copy Householder vectors to VL */
        *(unsigned char *)side = 'L';
        zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) ;
        /* Generate unitary matrix in VL */
        /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
        /* (RWorkspace: none) */
        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], & i__1, &ierr);
        /* Perform QR iteration, accumulating Schur vectors in VL */
        /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /* (RWorkspace: none) */
        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[iwrk], &i__1, info);
        if (wantvr)
        {
            /* Want left and right eigenvectors */
            /* Copy Schur vectors to VR */
            *(unsigned char *)side = 'B';
            zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
        }
    }
    else if (wantvr)
    {
        /* Want right eigenvectors */
        /* Copy Householder vectors to VR */
        *(unsigned char *)side = 'R';
        zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) ;
        /* Generate unitary matrix in VR */
        /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
        /* (RWorkspace: none) */
        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], & i__1, &ierr);
        /* Perform QR iteration, accumulating Schur vectors in VR */
        /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /* (RWorkspace: none) */
        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info);
    }
    else
    {
        /* Compute eigenvalues only */
        /* If condition numbers desired, compute Schur form */
        if (wntsnn)
        {
            *(unsigned char *)job = 'E';
        }
        else
        {
            *(unsigned char *)job = 'S';
        }
        /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /* (RWorkspace: none) */
        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info);
    }
    /* If INFO > 0 from ZHSEQR, then quit */
    if (*info > 0)
    {
        goto L50;
    }
    if (wantvl || wantvr)
    {
        /* Compute left and/or right eigenvectors */
        /* (CWorkspace: need 2*N) */
        /* (RWorkspace: need N) */
        ztrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], & ierr);
    }
    /* Compute condition numbers if desired */
    /* (CWorkspace: need N*N+2*N unless SENSE = 'E') */
    /* (RWorkspace: need 2*N unless SENSE = 'E') */
    if (! wntsnn)
    {
        ztrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, &work[iwrk], n, &rwork[1], &icond);
    }
    if (wantvl)
    {
        /* Undo balancing of left eigenvectors */
        zgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, &ierr);
        /* Normalize left eigenvectors and make largest component real */
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
            zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
            i__2 = *n;
            for (k = 1;
                    k <= i__2;
                    ++k)
            {
                i__3 = k + i__ * vl_dim1;
                /* Computing 2nd power */
                d__1 = vl[i__3].r;
                /* Computing 2nd power */
                d__2 = d_imag(&vl[k + i__ * vl_dim1]);
                rwork[k] = d__1 * d__1 + d__2 * d__2;
                /* L10: */
            }
            k = idamax_(n, &rwork[1], &c__1);
            d_cnjg(&z__2, &vl[k + i__ * vl_dim1]);
            d__1 = sqrt(rwork[k]);
            z__1.r = z__2.r / d__1;
            z__1.i = z__2.i / d__1; // , expr subst
            tmp.r = z__1.r;
            tmp.i = z__1.i; // , expr subst
            zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
            i__2 = k + i__ * vl_dim1;
            i__3 = k + i__ * vl_dim1;
            d__1 = vl[i__3].r;
            z__1.r = d__1;
            z__1.i = 0.; // , expr subst
            vl[i__2].r = z__1.r;
            vl[i__2].i = z__1.i; // , expr subst
            /* L20: */
        }
    }
    if (wantvr)
    {
        /* Undo balancing of right eigenvectors */
        zgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, &ierr);
        /* Normalize right eigenvectors and make largest component real */
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
            zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
            i__2 = *n;
            for (k = 1;
                    k <= i__2;
                    ++k)
            {
                i__3 = k + i__ * vr_dim1;
                /* Computing 2nd power */
                d__1 = vr[i__3].r;
                /* Computing 2nd power */
                d__2 = d_imag(&vr[k + i__ * vr_dim1]);
                rwork[k] = d__1 * d__1 + d__2 * d__2;
                /* L30: */
            }
            k = idamax_(n, &rwork[1], &c__1);
            d_cnjg(&z__2, &vr[k + i__ * vr_dim1]);
            d__1 = sqrt(rwork[k]);
            z__1.r = z__2.r / d__1;
            z__1.i = z__2.i / d__1; // , expr subst
            tmp.r = z__1.r;
            tmp.i = z__1.i; // , expr subst
            zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
            i__2 = k + i__ * vr_dim1;
            i__3 = k + i__ * vr_dim1;
            d__1 = vr[i__3].r;
            z__1.r = d__1;
            z__1.i = 0.; // , expr subst
            vr[i__2].r = z__1.r;
            vr[i__2].i = z__1.i; // , expr subst
            /* L40: */
        }
    }
    /* Undo scaling if necessary */
L50:
    if (scalea)
    {
        i__1 = *n - *info;
        /* Computing MAX */
        i__3 = *n - *info;
        i__2 = max(i__3,1);
        zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1] , &i__2, &ierr);
        if (*info == 0)
        {
            if ((wntsnv || wntsnb) && icond == 0)
            {
                dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[ 1], n, &ierr);
            }
        }
        else
        {
            i__1 = *ilo - 1;
            zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, &ierr);
        }
    }
    work[1].r = (doublereal) maxwrk;
    work[1].i = 0.; // , expr subst
    return 0;
    /* End of ZGEEVX */
}
示例#3
0
/* Subroutine */ int zgeesx_(char *jobvs, char *sort, L_fp select, char *
	sense, integer *n, doublecomplex *a, integer *lda, integer *sdim, 
	doublecomplex *w, doublecomplex *vs, integer *ldvs, doublereal *
	rconde, doublereal *rcondv, doublecomplex *work, integer *lwork, 
	doublereal *rwork, logical *bwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the   
    eigenvalues, the Schur form T, and, optionally, the matrix of Schur   
    vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).   

    Optionally, it also orders the eigenvalues on the diagonal of the   
    Schur form so that selected eigenvalues are at the top left;   
    computes a reciprocal condition number for the average of the   
    selected eigenvalues (RCONDE); and computes a reciprocal condition   
    number for the right invariant subspace corresponding to the   
    selected eigenvalues (RCONDV).  The leading columns of Z form an   
    orthonormal basis for this invariant subspace.   

    For further explanation of the reciprocal condition numbers RCONDE   
    and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where   
    these quantities are called s and sep respectively).   

    A complex matrix is in Schur form if it is upper triangular.   

    Arguments   
    =========   

    JOBVS   (input) CHARACTER*1   
            = 'N': Schur vectors are not computed;   
            = 'V': Schur vectors are computed.   

    SORT    (input) CHARACTER*1   
            Specifies whether or not to order the eigenvalues on the   
            diagonal of the Schur form.   
            = 'N': Eigenvalues are not ordered;   
            = 'S': Eigenvalues are ordered (see SELECT).   

    SELECT  (input) LOGICAL FUNCTION of one COMPLEX*16 argument   
            SELECT must be declared EXTERNAL in the calling subroutine.   
            If SORT = 'S', SELECT is used to select eigenvalues to order   
            to the top left of the Schur form.   
            If SORT = 'N', SELECT is not referenced.   
            An eigenvalue W(j) is selected if SELECT(W(j)) is true.   

    SENSE   (input) CHARACTER*1   
            Determines which reciprocal condition numbers are computed.   
            = 'N': None are computed;   
            = 'E': Computed for average of selected eigenvalues only;   
            = 'V': Computed for selected right invariant subspace only;   
            = 'B': Computed for both.   
            If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) COMPLEX*16 array, dimension (LDA, N)   
            On entry, the N-by-N matrix A.   
            On exit, A is overwritten by its Schur form T.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    SDIM    (output) INTEGER   
            If SORT = 'N', SDIM = 0.   
            If SORT = 'S', SDIM = number of eigenvalues for which   
                           SELECT is true.   

    W       (output) COMPLEX*16 array, dimension (N)   
            W contains the computed eigenvalues, in the same order   
            that they appear on the diagonal of the output Schur form T.   

    VS      (output) COMPLEX*16 array, dimension (LDVS,N)   
            If JOBVS = 'V', VS contains the unitary matrix Z of Schur   
            vectors.   
            If JOBVS = 'N', VS is not referenced.   

    LDVS    (input) INTEGER   
            The leading dimension of the array VS.  LDVS >= 1, and if   
            JOBVS = 'V', LDVS >= N.   

    RCONDE  (output) DOUBLE PRECISION   
            If SENSE = 'E' or 'B', RCONDE contains the reciprocal   
            condition number for the average of the selected eigenvalues.   
            Not referenced if SENSE = 'N' or 'V'.   

    RCONDV  (output) DOUBLE PRECISION   
            If SENSE = 'V' or 'B', RCONDV contains the reciprocal   
            condition number for the selected right invariant subspace.   
            Not referenced if SENSE = 'N' or 'E'.   

    WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,2*N).   
            Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),   
            where SDIM is the number of selected eigenvalues computed by   
            this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2.   
            For good performance, LWORK must generally be larger.   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    BWORK   (workspace) LOGICAL array, dimension (N)   
            Not referenced if SORT = 'N'.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value.   
            > 0: if INFO = i, and i is   
               <= N: the QR algorithm failed to compute all the   
                     eigenvalues; elements 1:ILO-1 and i+1:N of W   
                     contain those eigenvalues which have converged; if   
                     JOBVS = 'V', VS contains the transformation which   
                     reduces A to its partially converged Schur form.   
               = N+1: the eigenvalues could not be reordered because some   
                     eigenvalues were too close to separate (the problem   
                     is very ill-conditioned);   
               = N+2: after reordering, roundoff changed values of some   
                     complex eigenvalues so that leading eigenvalues in   
                     the Schur form no longer satisfy SELECT=.TRUE.  This   
                     could also be caused by underflow due to scaling.   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static integer c__8 = 8;
    static integer c_n1 = -1;
    static integer c__4 = 4;
    
    /* System generated locals */
    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3, i__4;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer ibal, maxb;
    static doublereal anrm;
    static integer ierr, itau, iwrk, i__, k, icond, ieval;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    static logical scalea;
    extern doublereal dlamch_(char *);
    static doublereal cscale;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), zgebak_(char *, char *, integer *, 
	    integer *, integer *, doublereal *, integer *, doublecomplex *, 
	    integer *, integer *), zgebal_(char *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, doublereal *, 
	    integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    static doublereal bignum;
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), zlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublecomplex *,
	     integer *, integer *);
    static logical wantsb, wantse;
    extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static integer minwrk, maxwrk;
    static logical wantsn;
    static doublereal smlnum;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    static integer hswork;
    extern /* Subroutine */ int zunghr_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static logical wantst, wantsv, wantvs;
    extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, integer *, integer *);
    static integer ihi, ilo;
    static doublereal dum[1], eps;


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --w;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1 * 1;
    vs -= vs_offset;
    --work;
    --rwork;
    --bwork;

    /* Function Body */
    *info = 0;
    wantvs = lsame_(jobvs, "V");
    wantst = lsame_(sort, "S");
    wantsn = lsame_(sense, "N");
    wantse = lsame_(sense, "E");
    wantsv = lsame_(sense, "V");
    wantsb = lsame_(sense, "B");
    if (! wantvs && ! lsame_(jobvs, "N")) {
	*info = -1;
    } else if (! wantst && ! lsame_(sort, "N")) {
	*info = -2;
    } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! 
	    wantsn) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
	*info = -11;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of real workspace needed at that point in the   
         code, as well as the preferred amount for good performance.   
         CWorkspace refers to complex workspace, and RWorkspace to real   
         workspace. NB refers to the optimal block size for the   
         immediately following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by ZHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.   
         If SENSE = 'E', 'V' or 'B', then the amount of workspace needed   
         depends on SDIM, which is computed by the routine ZTRSEN later   
         in the code.) */

    minwrk = 1;
    if (*info == 0 && *lwork >= 1) {
	maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &c__0, (
		ftnlen)6, (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = *n << 1;
	minwrk = max(i__1,i__2);
	if (! wantvs) {
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "ZHSEQR", "SN", n, &c__1, n, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	    maxb = max(i__1,2);
/* Computing MIN   
   Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "SN", n, &c__1, n, &
		    c_n1, (ftnlen)6, (ftnlen)2);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	} else {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", 
		    " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "ZHSEQR", "SV", n, &c__1, n, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	    maxb = max(i__1,2);
/* Computing MIN   
   Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "SV", n, &c__1, n, &
		    c_n1, (ftnlen)6, (ftnlen)2);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	}
	work[1].r = (doublereal) maxwrk, work[1].i = 0.;
    }
    if (*lwork < minwrk) {
	*info = -15;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEESX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*sdim = 0;
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }


/*     Permute the matrix to make it more nearly triangular   
       (CWorkspace: none)   
       (RWorkspace: need N) */

    ibal = 1;
    zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);

/*     Reduce to upper Hessenberg form   
       (CWorkspace: need 2*N, prefer N+N*NB)   
       (RWorkspace: none) */

    itau = 1;
    iwrk = *n + itau;
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
	     &ierr);

    if (wantvs) {

/*        Copy Householder vectors to VS */

	zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
		;

/*        Generate unitary matrix in VS   
          (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)   
          (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
		 &i__1, &ierr);
    }

    *sdim = 0;

/*     Perform QR iteration, accumulating Schur vectors in VS if desired   
       (CWorkspace: need 1, prefer HSWORK (see comments) )   
       (RWorkspace: none) */

    iwrk = itau;
    i__1 = *lwork - iwrk + 1;
    zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
	    vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
    if (ieval > 0) {
	*info = ieval;
    }

/*     Sort eigenvalues if desired */

    if (wantst && *info == 0) {
	if (scalea) {
	    zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
		    ierr);
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    bwork[i__] = (*select)(&w[i__]);
/* L10: */
	}

/*        Reorder eigenvalues, transform Schur vectors, and compute   
          reciprocal condition numbers   
          (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)   
                       otherwise, need none )   
          (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	ztrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
		 ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, &
		icond);
	if (! wantsn) {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
	    maxwrk = max(i__1,i__2);
	}
	if (icond == -14) {

/*           Not enough complex workspace */

	    *info = -15;
	}
    }

    if (wantvs) {

/*        Undo balancing   
          (CWorkspace: none)   
          (RWorkspace: need N) */

	zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], 
		ldvs, &ierr);
    }

    if (scalea) {

/*        Undo scaling for the Schur form of A */

	zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
		ierr);
	i__1 = *lda + 1;
	zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
	if ((wantsv || wantsb) && *info == 0) {
	    dum[0] = *rcondv;
	    dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &
		    c__1, &ierr);
	    *rcondv = dum[0];
	}
    }

    work[1].r = (doublereal) maxwrk, work[1].i = 0.;
    return 0;

/*     End of ZGEESX */

} /* zgeesx_ */
示例#4
0
/* Subroutine */ int zgees_(char *jobvs, char *sort, L_fp select, integer *n, 
	doublecomplex *a, integer *lda, integer *sdim, doublecomplex *w, 
	doublecomplex *vs, integer *ldvs, doublecomplex *work, integer *lwork,
	 doublereal *rwork, logical *bwork, integer *info, ftnlen jobvs_len, 
	ftnlen sort_len)
{
    /* System generated locals */
    integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3, i__4;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    static integer i__, k;
    static doublereal s;
    static integer ihi, ilo;
    static doublereal dum[1], eps, sep;
    static integer ibal, maxb;
    static doublereal anrm;
    static integer ierr, itau, iwrk, icond, ieval;
    extern logical lsame_(char *, char *, ftnlen, ftnlen);
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    static logical scalea;
    extern doublereal dlamch_(char *, ftnlen);
    static doublereal cscale;
    extern /* Subroutine */ int zgebak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublecomplex *, integer *, 
	    integer *, ftnlen, ftnlen), zgebal_(char *, integer *, 
	    doublecomplex *, integer *, integer *, integer *, doublereal *, 
	    integer *, ftnlen), xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, ftnlen);
    static doublereal bignum;
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *), zlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublecomplex *,
	     integer *, integer *, ftnlen), zlacpy_(char *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
	     ftnlen);
    static integer minwrk, maxwrk;
    static doublereal smlnum;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *,
	     ftnlen, ftnlen);
    static integer hswork;
    extern /* Subroutine */ int zunghr_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, integer *);
    static logical wantst, lquery, wantvs;
    extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, integer *, integer *, ftnlen, ftnlen);


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */
/*     .. Function Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEES computes for an N-by-N complex nonsymmetric matrix A, the */
/*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur */
/*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H). */

/*  Optionally, it also orders the eigenvalues on the diagonal of the */
/*  Schur form so that selected eigenvalues are at the top left. */
/*  The leading columns of Z then form an orthonormal basis for the */
/*  invariant subspace corresponding to the selected eigenvalues. */

/*  A complex matrix is in Schur form if it is upper triangular. */

/*  Arguments */
/*  ========= */

/*  JOBVS   (input) CHARACTER*1 */
/*          = 'N': Schur vectors are not computed; */
/*          = 'V': Schur vectors are computed. */

/*  SORT    (input) CHARACTER*1 */
/*          Specifies whether or not to order the eigenvalues on the */
/*          diagonal of the Schur form. */
/*          = 'N': Eigenvalues are not ordered: */
/*          = 'S': Eigenvalues are ordered (see SELECT). */

/*  SELECT  (input) LOGICAL FUNCTION of one COMPLEX*16 argument */
/*          SELECT must be declared EXTERNAL in the calling subroutine. */
/*          If SORT = 'S', SELECT is used to select eigenvalues to order */
/*          to the top left of the Schur form. */
/*          IF SORT = 'N', SELECT is not referenced. */
/*          The eigenvalue W(j) is selected if SELECT(W(j)) is true. */

/*  N       (input) INTEGER */
/*          The order of the matrix A. N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the N-by-N matrix A. */
/*          On exit, A has been overwritten by its Schur form T. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  SDIM    (output) INTEGER */
/*          If SORT = 'N', SDIM = 0. */
/*          If SORT = 'S', SDIM = number of eigenvalues for which */
/*                         SELECT is true. */

/*  W       (output) COMPLEX*16 array, dimension (N) */
/*          W contains the computed eigenvalues, in the same order that */
/*          they appear on the diagonal of the output Schur form T. */

/*  VS      (output) COMPLEX*16 array, dimension (LDVS,N) */
/*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur */
/*          vectors. */
/*          If JOBVS = 'N', VS is not referenced. */

/*  LDVS    (input) INTEGER */
/*          The leading dimension of the array VS.  LDVS >= 1; if */
/*          JOBVS = 'V', LDVS >= N. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,2*N). */
/*          For good performance, LWORK must generally be larger. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N) */

/*  BWORK   (workspace) LOGICAL array, dimension (N) */
/*          Not referenced if SORT = 'N'. */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value. */
/*          > 0: if INFO = i, and i is */
/*               <= N:  the QR algorithm failed to compute all the */
/*                      eigenvalues; elements 1:ILO-1 and i+1:N of W */
/*                      contain those eigenvalues which have converged; */
/*                      if JOBVS = 'V', VS contains the matrix which */
/*                      reduces A to its partially converged Schur form. */
/*               = N+1: the eigenvalues could not be reordered because */
/*                      some eigenvalues were too close to separate (the */
/*                      problem is very ill-conditioned); */
/*               = N+2: after reordering, roundoff changed values of */
/*                      some complex eigenvalues so that leading */
/*                      eigenvalues in the Schur form no longer satisfy */
/*                      SELECT = .TRUE..  This could also be caused by */
/*                      underflow due to scaling. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vs_dim1 = *ldvs;
    vs_offset = 1 + vs_dim1;
    vs -= vs_offset;
    --work;
    --rwork;
    --bwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvs = lsame_(jobvs, "V", (ftnlen)1, (ftnlen)1);
    wantst = lsame_(sort, "S", (ftnlen)1, (ftnlen)1);
    if (! wantvs && ! lsame_(jobvs, "N", (ftnlen)1, (ftnlen)1)) {
	*info = -1;
    } else if (! wantst && ! lsame_(sort, "N", (ftnlen)1, (ftnlen)1)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
	*info = -10;
    }

/*     Compute workspace */
/*      (Note: Comments in the code beginning "Workspace:" describe the */
/*       minimal amount of workspace needed at that point in the code, */
/*       as well as the preferred amount for good performance. */
/*       CWorkspace refers to complex workspace, and RWorkspace to real */
/*       workspace. NB refers to the optimal block size for the */
/*       immediately following subroutine, as returned by ILAENV. */
/*       HSWORK refers to the workspace preferred by ZHSEQR, as */
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/*       the worst case.) */

    minwrk = 1;
    if (*info == 0 && (*lwork >= 1 || lquery)) {
	maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &c__0, (
		ftnlen)6, (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = *n << 1;
	minwrk = max(i__1,i__2);
	if (! wantvs) {
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "ZHSEQR", "SN", n, &c__1, n, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	    maxb = max(i__1,2);
/* Computing MIN */
/* Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "SN", n, &c__1, n, &
		    c_n1, (ftnlen)6, (ftnlen)2);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	} else {
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", 
		    " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = ilaenv_(&c__8, "ZHSEQR", "EN", n, &c__1, n, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	    maxb = max(i__1,2);
/* Computing MIN */
/* Computing MAX */
	    i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "EN", n, &c__1, n, &
		    c_n1, (ftnlen)6, (ftnlen)2);
	    i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
	    k = min(i__1,i__2);
/* Computing MAX */
	    i__1 = k * (k + 2), i__2 = *n << 1;
	    hswork = max(i__1,i__2);
/* Computing MAX */
	    i__1 = max(maxwrk,hswork);
	    maxwrk = max(i__1,1);
	}
	work[1].r = (doublereal) maxwrk, work[1].i = 0.;
    }
    if (*lwork < minwrk && ! lquery) {
	*info = -12;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEES ", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	*sdim = 0;
	return 0;
    }

/*     Get machine constants */

    eps = dlamch_("P", (ftnlen)1);
    smlnum = dlamch_("S", (ftnlen)1);
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = zlange_("M", n, n, &a[a_offset], lda, dum, (ftnlen)1);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr, (ftnlen)1);
    }

/*     Permute the matrix to make it more nearly triangular */
/*     (CWorkspace: none) */
/*     (RWorkspace: need N) */

    ibal = 1;
    zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr, (
	    ftnlen)1);

/*     Reduce to upper Hessenberg form */
/*     (CWorkspace: need 2*N, prefer N+N*NB) */
/*     (RWorkspace: none) */

    itau = 1;
    iwrk = *n + itau;
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
	     &ierr);

    if (wantvs) {

/*        Copy Householder vectors to VS */

	zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs, (ftnlen)1)
		;

/*        Generate unitary matrix in VS */
/*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
		 &i__1, &ierr);
    }

    *sdim = 0;

/*     Perform QR iteration, accumulating Schur vectors in VS if desired */
/*     (CWorkspace: need 1, prefer HSWORK (see comments) ) */
/*     (RWorkspace: none) */

    iwrk = itau;
    i__1 = *lwork - iwrk + 1;
    zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[
	    vs_offset], ldvs, &work[iwrk], &i__1, &ieval, (ftnlen)1, (ftnlen)
	    1);
    if (ieval > 0) {
	*info = ieval;
    }

/*     Sort eigenvalues if desired */

    if (wantst && *info == 0) {
	if (scalea) {
	    zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, &
		    ierr, (ftnlen)1);
	}
	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    bwork[i__] = (*select)(&w[i__]);
/* L10: */
	}

/*        Reorder eigenvalues and transform Schur vectors */
/*        (CWorkspace: none) */
/*        (RWorkspace: none) */

	i__1 = *lwork - iwrk + 1;
	ztrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], 
		ldvs, &w[1], sdim, &s, &sep, &work[iwrk], &i__1, &icond, (
		ftnlen)1, (ftnlen)1);
    }

    if (wantvs) {

/*        Undo balancing */
/*        (CWorkspace: none) */
/*        (RWorkspace: need N) */

	zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], 
		ldvs, &ierr, (ftnlen)1, (ftnlen)1);
    }

    if (scalea) {

/*        Undo scaling for the Schur form of A */

	zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
		ierr, (ftnlen)1);
	i__1 = *lda + 1;
	zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1);
    }

    work[1].r = (doublereal) maxwrk, work[1].i = 0.;
    return 0;

/*     End of ZGEES */

} /* zgees_ */
示例#5
0
/* Subroutine */ int zgeevx_(char *balanc, char *jobvl, char *jobvr, char *
                             sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w,
                             doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
                             integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm,
                             doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer *
                             lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
            i__2, i__3;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    double sqrt(doublereal), d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);

    /* Local variables */
    integer i__, k;
    char job[1];
    doublereal scl, dum[1], eps;
    doublecomplex tmp;
    char side[1];
    doublereal anrm;
    integer ierr, itau, iwrk, nout, icond;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
                                       doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    logical scalea;
    extern doublereal dlamch_(char *);
    doublereal cscale;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
                                        doublereal *, doublereal *, integer *, integer *, doublereal *,
                                        integer *, integer *), zgebak_(char *, char *, integer *,
                                                integer *, integer *, doublereal *, integer *, doublecomplex *,
                                                integer *, integer *), zgebal_(char *, integer *,
                                                        doublecomplex *, integer *, integer *, integer *, doublereal *,
                                                        integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
                           integer *, integer *);
    logical select[1];
    extern /* Subroutine */ int zdscal_(integer *, doublereal *,
                                        doublecomplex *, integer *);
    doublereal bignum;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
                              integer *, doublereal *);
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, doublecomplex *,
                                        integer *, integer *), zlascl_(char *, integer *, integer *,
                                                doublereal *, doublereal *, integer *, integer *, doublecomplex *,
                                                integer *, integer *), zlacpy_(char *, integer *,
                                                        integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
                                        integer *, doublecomplex *, integer *, doublecomplex *,
                                        doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    logical lquery, wantvr;
    extern /* Subroutine */ int ztrevc_(char *, char *, logical *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, integer *,
                                        doublecomplex *, integer *, integer *, integer *, doublecomplex *,
                                        doublereal *, integer *), ztrsna_(char *, char *,
                                                logical *, integer *, doublecomplex *, integer *, doublecomplex *
                                                , integer *, doublecomplex *, integer *, doublereal *, doublereal
                                                *, integer *, integer *, doublecomplex *, integer *, doublereal *,
                                                integer *), zunghr_(integer *, integer *,
                                                        integer *, doublecomplex *, integer *, doublecomplex *,
                                                        doublecomplex *, integer *, integer *);
    logical wntsnn, wntsnv;


    /*  -- LAPACK driver routine (version 3.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
    /*  eigenvalues and, optionally, the left and/or right eigenvectors. */

    /*  Optionally also, it computes a balancing transformation to improve */
    /*  the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
    /*  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
    /*  (RCONDE), and reciprocal condition numbers for the right */
    /*  eigenvectors (RCONDV). */

    /*  The right eigenvector v(j) of A satisfies */
    /*                   A * v(j) = lambda(j) * v(j) */
    /*  where lambda(j) is its eigenvalue. */
    /*  The left eigenvector u(j) of A satisfies */
    /*                u(j)**H * A = lambda(j) * u(j)**H */
    /*  where u(j)**H denotes the conjugate transpose of u(j). */

    /*  The computed eigenvectors are normalized to have Euclidean norm */
    /*  equal to 1 and largest component real. */

    /*  Balancing a matrix means permuting the rows and columns to make it */
    /*  more nearly upper triangular, and applying a diagonal similarity */
    /*  transformation D * A * D**(-1), where D is a diagonal matrix, to */
    /*  make its rows and columns closer in norm and the condition numbers */
    /*  of its eigenvalues and eigenvectors smaller.  The computed */
    /*  reciprocal condition numbers correspond to the balanced matrix. */
    /*  Permuting rows and columns will not change the condition numbers */
    /*  (in exact arithmetic) but diagonal scaling will.  For further */
    /*  explanation of balancing, see section 4.10.2 of the LAPACK */
    /*  Users' Guide. */

    /*  Arguments */
    /*  ========= */

    /*  BALANC  (input) CHARACTER*1 */
    /*          Indicates how the input matrix should be diagonally scaled */
    /*          and/or permuted to improve the conditioning of its */
    /*          eigenvalues. */
    /*          = 'N': Do not diagonally scale or permute; */
    /*          = 'P': Perform permutations to make the matrix more nearly */
    /*                 upper triangular. Do not diagonally scale; */
    /*          = 'S': Diagonally scale the matrix, ie. replace A by */
    /*                 D*A*D**(-1), where D is a diagonal matrix chosen */
    /*                 to make the rows and columns of A more equal in */
    /*                 norm. Do not permute; */
    /*          = 'B': Both diagonally scale and permute A. */

    /*          Computed reciprocal condition numbers will be for the matrix */
    /*          after balancing and/or permuting. Permuting does not change */
    /*          condition numbers (in exact arithmetic), but balancing does. */

    /*  JOBVL   (input) CHARACTER*1 */
    /*          = 'N': left eigenvectors of A are not computed; */
    /*          = 'V': left eigenvectors of A are computed. */
    /*          If SENSE = 'E' or 'B', JOBVL must = 'V'. */

    /*  JOBVR   (input) CHARACTER*1 */
    /*          = 'N': right eigenvectors of A are not computed; */
    /*          = 'V': right eigenvectors of A are computed. */
    /*          If SENSE = 'E' or 'B', JOBVR must = 'V'. */

    /*  SENSE   (input) CHARACTER*1 */
    /*          Determines which reciprocal condition numbers are computed. */
    /*          = 'N': None are computed; */
    /*          = 'E': Computed for eigenvalues only; */
    /*          = 'V': Computed for right eigenvectors only; */
    /*          = 'B': Computed for eigenvalues and right eigenvectors. */

    /*          If SENSE = 'E' or 'B', both left and right eigenvectors */
    /*          must also be computed (JOBVL = 'V' and JOBVR = 'V'). */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A. N >= 0. */

    /*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
    /*          On entry, the N-by-N matrix A. */
    /*          On exit, A has been overwritten.  If JOBVL = 'V' or */
    /*          JOBVR = 'V', A contains the Schur form of the balanced */
    /*          version of the matrix A. */

    /*  LDA     (input) INTEGER */
    /*          The leading dimension of the array A.  LDA >= max(1,N). */

    /*  W       (output) COMPLEX*16 array, dimension (N) */
    /*          W contains the computed eigenvalues. */

    /*  VL      (output) COMPLEX*16 array, dimension (LDVL,N) */
    /*          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
    /*          after another in the columns of VL, in the same order */
    /*          as their eigenvalues. */
    /*          If JOBVL = 'N', VL is not referenced. */
    /*          u(j) = VL(:,j), the j-th column of VL. */

    /*  LDVL    (input) INTEGER */
    /*          The leading dimension of the array VL.  LDVL >= 1; if */
    /*          JOBVL = 'V', LDVL >= N. */

    /*  VR      (output) COMPLEX*16 array, dimension (LDVR,N) */
    /*          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
    /*          after another in the columns of VR, in the same order */
    /*          as their eigenvalues. */
    /*          If JOBVR = 'N', VR is not referenced. */
    /*          v(j) = VR(:,j), the j-th column of VR. */

    /*  LDVR    (input) INTEGER */
    /*          The leading dimension of the array VR.  LDVR >= 1; if */
    /*          JOBVR = 'V', LDVR >= N. */

    /*  ILO     (output) INTEGER */
    /*  IHI     (output) INTEGER */
    /*          ILO and IHI are integer values determined when A was */
    /*          balanced.  The balanced A(i,j) = 0 if I > J and */
    /*          J = 1,...,ILO-1 or I = IHI+1,...,N. */

    /*  SCALE   (output) DOUBLE PRECISION array, dimension (N) */
    /*          Details of the permutations and scaling factors applied */
    /*          when balancing A.  If P(j) is the index of the row and column */
    /*          interchanged with row and column j, and D(j) is the scaling */
    /*          factor applied to row and column j, then */
    /*          SCALE(J) = P(J),    for J = 1,...,ILO-1 */
    /*                   = D(J),    for J = ILO,...,IHI */
    /*                   = P(J)     for J = IHI+1,...,N. */
    /*          The order in which the interchanges are made is N to IHI+1, */
    /*          then 1 to ILO-1. */

    /*  ABNRM   (output) DOUBLE PRECISION */
    /*          The one-norm of the balanced matrix (the maximum */
    /*          of the sum of absolute values of elements of any column). */

    /*  RCONDE  (output) DOUBLE PRECISION array, dimension (N) */
    /*          RCONDE(j) is the reciprocal condition number of the j-th */
    /*          eigenvalue. */

    /*  RCONDV  (output) DOUBLE PRECISION array, dimension (N) */
    /*          RCONDV(j) is the reciprocal condition number of the j-th */
    /*          right eigenvector. */

    /*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
    /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

    /*  LWORK   (input) INTEGER */
    /*          The dimension of the array WORK.  If SENSE = 'N' or 'E', */
    /*          LWORK >= max(1,2*N), and if SENSE = 'V' or 'B', */
    /*          LWORK >= N*N+2*N. */
    /*          For good performance, LWORK must generally be larger. */

    /*          If LWORK = -1, then a workspace query is assumed; the routine */
    /*          only calculates the optimal size of the WORK array, returns */
    /*          this value as the first entry of the WORK array, and no error */
    /*          message related to LWORK is issued by XERBLA. */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
    /*          > 0:  if INFO = i, the QR algorithm failed to compute all the */
    /*                eigenvalues, and no eigenvectors or condition numbers */
    /*                have been computed; elements 1:ILO-1 and i+1:N of W */
    /*                contain eigenvalues which have converged. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    wntsnn = lsame_(sense, "N");
    wntsne = lsame_(sense, "E");
    wntsnv = lsame_(sense, "V");
    wntsnb = lsame_(sense, "B");
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
            || lsame_(balanc, "B"))) {
        *info = -1;
    } else if (! wantvl && ! lsame_(jobvl, "N")) {
        *info = -2;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
        *info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
               && ! (wantvl && wantvr)) {
        *info = -4;
    } else if (*n < 0) {
        *info = -5;
    } else if (*lda < max(1,*n)) {
        *info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
        *info = -10;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
        *info = -12;
    }

    /*     Compute workspace */
    /*      (Note: Comments in the code beginning "Workspace:" describe the */
    /*       minimal amount of workspace needed at that point in the code, */
    /*       as well as the preferred amount for good performance. */
    /*       CWorkspace refers to complex workspace, and RWorkspace to real */
    /*       workspace. NB refers to the optimal block size for the */
    /*       immediately following subroutine, as returned by ILAENV. */
    /*       HSWORK refers to the workspace preferred by ZHSEQR, as */
    /*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
    /*       the worst case.) */

    if (*info == 0) {
        if (*n == 0) {
            minwrk = 1;
            maxwrk = 1;
        } else {
            maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &
                                       c__0);

            if (wantvl) {
                zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
                            vl_offset], ldvl, &work[1], &c_n1, info);
            } else if (wantvr) {
                zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
                            vr_offset], ldvr, &work[1], &c_n1, info);
            } else {
                if (wntsnn) {
                    zhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
                            vr[vr_offset], ldvr, &work[1], &c_n1, info);
                } else {
                    zhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
                            vr[vr_offset], ldvr, &work[1], &c_n1, info);
                }
            }
            hswork = (integer) work[1].r;

            if (! wantvl && ! wantvr) {
                minwrk = *n << 1;
                if (! (wntsnn || wntsne)) {
                    /* Computing MAX */
                    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
                    minwrk = max(i__1,i__2);
                }
                maxwrk = max(maxwrk,hswork);
                if (! (wntsnn || wntsne)) {
                    /* Computing MAX */
                    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
                    maxwrk = max(i__1,i__2);
                }
            } else {
                minwrk = *n << 1;
                if (! (wntsnn || wntsne)) {
                    /* Computing MAX */
                    i__1 = minwrk, i__2 = *n * *n + (*n << 1);
                    minwrk = max(i__1,i__2);
                }
                maxwrk = max(maxwrk,hswork);
                /* Computing MAX */
                i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
                                      " ", n, &c__1, n, &c_n1);
                maxwrk = max(i__1,i__2);
                if (! (wntsnn || wntsne)) {
                    /* Computing MAX */
                    i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
                    maxwrk = max(i__1,i__2);
                }
                /* Computing MAX */
                i__1 = maxwrk, i__2 = *n << 1;
                maxwrk = max(i__1,i__2);
            }
            maxwrk = max(maxwrk,minwrk);
        }
        work[1].r = (doublereal) maxwrk, work[1].i = 0.;

        if (*lwork < minwrk && ! lquery) {
            *info = -20;
        }
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZGEEVX", &i__1);
        return 0;
    } else if (lquery) {
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = zlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
        scalea = TRUE_;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = TRUE_;
        cscale = bignum;
    }
    if (scalea) {
        zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
                ierr);
    }

    /*     Balance the matrix and compute ABNRM */

    zgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = zlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
        dum[0] = *abnrm;
        dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
                ierr);
        *abnrm = dum[0];
    }

    /*     Reduce to upper Hessenberg form */
    /*     (CWorkspace: need 2*N, prefer N+N*NB) */
    /*     (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
            ierr);

    if (wantvl) {

        /*        Want left eigenvectors */
        /*        Copy Householder vectors to VL */

        *(unsigned char *)side = 'L';
        zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
        ;

        /*        Generate unitary matrix in VL */
        /*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
        /*        (RWorkspace: none) */

        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
                i__1, &ierr);

        /*        Perform QR iteration, accumulating Schur vectors in VL */
        /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /*        (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
                    vl_offset], ldvl, &work[iwrk], &i__1, info);

        if (wantvr) {

            /*           Want left and right eigenvectors */
            /*           Copy Schur vectors to VR */

            *(unsigned char *)side = 'B';
            zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
        }

    } else if (wantvr) {

        /*        Want right eigenvectors */
        /*        Copy Householder vectors to VR */

        *(unsigned char *)side = 'R';
        zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
        ;

        /*        Generate unitary matrix in VR */
        /*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
        /*        (RWorkspace: none) */

        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
                i__1, &ierr);

        /*        Perform QR iteration, accumulating Schur vectors in VR */
        /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /*        (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
                    vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

        /*        Compute eigenvalues only */
        /*        If condition numbers desired, compute Schur form */

        if (wntsnn) {
            *(unsigned char *)job = 'E';
        } else {
            *(unsigned char *)job = 'S';
        }

        /*        (CWorkspace: need 1, prefer HSWORK (see comments) ) */
        /*        (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
                    vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

    /*     If INFO > 0 from ZHSEQR, then quit */

    if (*info > 0) {
        goto L50;
    }

    if (wantvl || wantvr) {

        /*        Compute left and/or right eigenvectors */
        /*        (CWorkspace: need 2*N) */
        /*        (RWorkspace: need N) */

        ztrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
                &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], &
                ierr);
    }

    /*     Compute condition numbers if desired */
    /*     (CWorkspace: need N*N+2*N unless SENSE = 'E') */
    /*     (RWorkspace: need 2*N unless SENSE = 'E') */

    if (! wntsnn) {
        ztrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
                ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
                &work[iwrk], n, &rwork[1], &icond);
    }

    if (wantvl) {

        /*        Undo balancing of left eigenvectors */

        zgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
                &ierr);

        /*        Normalize left eigenvectors and make largest component real */

        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
            zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
            i__2 = *n;
            for (k = 1; k <= i__2; ++k) {
                i__3 = k + i__ * vl_dim1;
                /* Computing 2nd power */
                d__1 = vl[i__3].r;
                /* Computing 2nd power */
                d__2 = d_imag(&vl[k + i__ * vl_dim1]);
                rwork[k] = d__1 * d__1 + d__2 * d__2;
                /* L10: */
            }
            k = idamax_(n, &rwork[1], &c__1);
            d_cnjg(&z__2, &vl[k + i__ * vl_dim1]);
            d__1 = sqrt(rwork[k]);
            z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
            tmp.r = z__1.r, tmp.i = z__1.i;
            zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
            i__2 = k + i__ * vl_dim1;
            i__3 = k + i__ * vl_dim1;
            d__1 = vl[i__3].r;
            z__1.r = d__1, z__1.i = 0.;
            vl[i__2].r = z__1.r, vl[i__2].i = z__1.i;
            /* L20: */
        }
    }

    if (wantvr) {

        /*        Undo balancing of right eigenvectors */

        zgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
                &ierr);

        /*        Normalize right eigenvectors and make largest component real */

        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
            zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
            i__2 = *n;
            for (k = 1; k <= i__2; ++k) {
                i__3 = k + i__ * vr_dim1;
                /* Computing 2nd power */
                d__1 = vr[i__3].r;
                /* Computing 2nd power */
                d__2 = d_imag(&vr[k + i__ * vr_dim1]);
                rwork[k] = d__1 * d__1 + d__2 * d__2;
                /* L30: */
            }
            k = idamax_(n, &rwork[1], &c__1);
            d_cnjg(&z__2, &vr[k + i__ * vr_dim1]);
            d__1 = sqrt(rwork[k]);
            z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
            tmp.r = z__1.r, tmp.i = z__1.i;
            zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
            i__2 = k + i__ * vr_dim1;
            i__3 = k + i__ * vr_dim1;
            d__1 = vr[i__3].r;
            z__1.r = d__1, z__1.i = 0.;
            vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
            /* L40: */
        }
    }

    /*     Undo scaling if necessary */

L50:
    if (scalea) {
        i__1 = *n - *info;
        /* Computing MAX */
        i__3 = *n - *info;
        i__2 = max(i__3,1);
        zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
                , &i__2, &ierr);
        if (*info == 0) {
            if ((wntsnv || wntsnb) && icond == 0) {
                dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
                            1], n, &ierr);
            }
        } else {
            i__1 = *ilo - 1;
            zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
                    &ierr);
        }
    }

    work[1].r = (doublereal) maxwrk, work[1].i = 0.;
    return 0;

    /*     End of ZGEEVX */

} /* zgeevx_ */
示例#6
0
/* Subroutine */ int zchkbl_(integer *nin, integer *nout)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,\002.. test output of ZGEBAL .. \002)";
    static char fmt_9998[] = "(1x,\002value of largest test error           "
	    " = \002,d12.3)";
    static char fmt_9997[] = "(1x,\002example number where info is not zero "
	    " = \002,i4)";
    static char fmt_9996[] = "(1x,\002example number where ILO or IHI wrong "
	    " = \002,i4)";
    static char fmt_9995[] = "(1x,\002example number having largest error   "
	    " = \002,i4)";
    static char fmt_9994[] = "(1x,\002number of examples where info is not 0"
	    " = \002,i4)";
    static char fmt_9993[] = "(1x,\002total number of examples tested       "
	    " = \002,i4)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
    doublecomplex z__1, z__2;

    /* Local variables */
    doublecomplex a[400]	/* was [20][20] */;
    integer i__, j, n;
    doublecomplex ain[400]	/* was [20][20] */;
    integer ihi, ilo, knt, info, lmax[3];
    doublereal meps, temp, rmax, vmax, scale[20];
    integer ihiin, ninfo, iloin;
    doublereal anorm, sfmin, dummy[1];
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int zgebal_(char *, integer *, doublecomplex *, 
	    integer *, integer *, integer *, doublereal *, integer *);
    doublereal scalin[20];
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);

    /* Fortran I/O blocks */
    static cilist io___8 = { 0, 0, 0, 0, 0 };
    static cilist io___11 = { 0, 0, 0, 0, 0 };
    static cilist io___14 = { 0, 0, 0, 0, 0 };
    static cilist io___17 = { 0, 0, 0, 0, 0 };
    static cilist io___19 = { 0, 0, 0, 0, 0 };
    static cilist io___28 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___32 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9993, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZCHKBL tests ZGEBAL, a routine for balancing a general complex */
/*  matrix and isolating some of its eigenvalues. */

/*  Arguments */
/*  ========= */

/*  NIN     (input) INTEGER */
/*          The logical unit number for input.  NIN > 0. */

/*  NOUT    (input) INTEGER */
/*          The logical unit number for output.  NOUT > 0. */

/* ====================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

    lmax[0] = 0;
    lmax[1] = 0;
    lmax[2] = 0;
    ninfo = 0;
    knt = 0;
    rmax = 0.;
    vmax = 0.;
    sfmin = dlamch_("S");
    meps = dlamch_("E");

L10:

    io___8.ciunit = *nin;
    s_rsle(&io___8);
    do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    e_rsle();
    if (n == 0) {
	goto L70;
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___11.ciunit = *nin;
	s_rsle(&io___11);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__7, &c__1, (char *)&a[i__ + j * 20 - 21], (ftnlen)
		    sizeof(doublecomplex));
	}
	e_rsle();
/* L20: */
    }

    io___14.ciunit = *nin;
    s_rsle(&io___14);
    do_lio(&c__3, &c__1, (char *)&iloin, (ftnlen)sizeof(integer));
    do_lio(&c__3, &c__1, (char *)&ihiin, (ftnlen)sizeof(integer));
    e_rsle();
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___17.ciunit = *nin;
	s_rsle(&io___17);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__7, &c__1, (char *)&ain[i__ + j * 20 - 21], (ftnlen)
		    sizeof(doublecomplex));
	}
	e_rsle();
/* L30: */
    }
    io___19.ciunit = *nin;
    s_rsle(&io___19);
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	do_lio(&c__5, &c__1, (char *)&scalin[i__ - 1], (ftnlen)sizeof(
		doublereal));
    }
    e_rsle();

    anorm = zlange_("M", &n, &n, a, &c__20, dummy);
    ++knt;
    zgebal_("B", &n, a, &c__20, &ilo, &ihi, scale, &info);

    if (info != 0) {
	++ninfo;
	lmax[0] = knt;
    }

    if (ilo != iloin || ihi != ihiin) {
	++ninfo;
	lmax[1] = knt;
    }

    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
/* Computing MAX */
	    i__3 = i__ + j * 20 - 21;
	    i__4 = i__ + j * 20 - 21;
	    d__5 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j *
		     20 - 21]), abs(d__2)), d__6 = (d__3 = ain[i__4].r, abs(
		    d__3)) + (d__4 = d_imag(&ain[i__ + j * 20 - 21]), abs(
		    d__4));
	    temp = max(d__5,d__6);
	    temp = max(temp,sfmin);
	    i__3 = i__ + j * 20 - 21;
	    i__4 = i__ + j * 20 - 21;
	    z__2.r = a[i__3].r - ain[i__4].r, z__2.i = a[i__3].i - ain[i__4]
		    .i;
	    z__1.r = z__2.r, z__1.i = z__2.i;
/* Computing MAX */
	    d__3 = vmax, d__4 = ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&
		    z__1), abs(d__2))) / temp;
	    vmax = max(d__3,d__4);
/* L40: */
	}
/* L50: */
    }

    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	d__1 = scale[i__ - 1], d__2 = scalin[i__ - 1];
	temp = max(d__1,d__2);
	temp = max(temp,sfmin);
/* Computing MAX */
	d__2 = vmax, d__3 = (d__1 = scale[i__ - 1] - scalin[i__ - 1], abs(
		d__1)) / temp;
	vmax = max(d__2,d__3);
/* L60: */
    }

    if (vmax > rmax) {
	lmax[2] = knt;
	rmax = vmax;
    }

    goto L10;

L70:

    io___28.ciunit = *nout;
    s_wsfe(&io___28);
    e_wsfe();

    io___29.ciunit = *nout;
    s_wsfe(&io___29);
    do_fio(&c__1, (char *)&rmax, (ftnlen)sizeof(doublereal));
    e_wsfe();
    io___30.ciunit = *nout;
    s_wsfe(&io___30);
    do_fio(&c__1, (char *)&lmax[0], (ftnlen)sizeof(integer));
    e_wsfe();
    io___31.ciunit = *nout;
    s_wsfe(&io___31);
    do_fio(&c__1, (char *)&lmax[1], (ftnlen)sizeof(integer));
    e_wsfe();
    io___32.ciunit = *nout;
    s_wsfe(&io___32);
    do_fio(&c__1, (char *)&lmax[2], (ftnlen)sizeof(integer));
    e_wsfe();
    io___33.ciunit = *nout;
    s_wsfe(&io___33);
    do_fio(&c__1, (char *)&ninfo, (ftnlen)sizeof(integer));
    e_wsfe();
    io___34.ciunit = *nout;
    s_wsfe(&io___34);
    do_fio(&c__1, (char *)&knt, (ftnlen)sizeof(integer));
    e_wsfe();

    return 0;

/*     End of ZCHKBL */

} /* zchkbl_ */
示例#7
0
文件: zchkbl.c 项目: zangel/uquad
/* Subroutine */ int zchkbl_(integer *nin, integer *nout)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,\002.. test output of ZGEBAL .. \002)";
    static char fmt_9998[] = "(1x,\002value of largest test error           "
	    " = \002,d12.3)";
    static char fmt_9997[] = "(1x,\002example number where info is not zero "
	    " = \002,i4)";
    static char fmt_9996[] = "(1x,\002example number where ILO or IHI wrong "
	    " = \002,i4)";
    static char fmt_9995[] = "(1x,\002example number having largest error   "
	    " = \002,i4)";
    static char fmt_9994[] = "(1x,\002number of examples where info is not 0"
	    " = \002,i4)";
    static char fmt_9993[] = "(1x,\002total number of examples tested       "
	    " = \002,i4)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
    doublecomplex z__1, z__2;

    /* Builtin functions */
    integer s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), 
	    e_rsle(void);
    double d_imag(doublecomplex *);
    integer s_wsfe(cilist *), e_wsfe(void), do_fio(integer *, char *, ftnlen);

    /* Local variables */
    static integer info, lmax[3];
    static doublereal meps, temp, rmax, vmax;
    static doublecomplex a[400]	/* was [20][20] */;
    static integer i__, j, n;
    static doublereal scale[20];
    static integer ihiin, ninfo, iloin;
    static doublereal anorm, sfmin, dummy[1];
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int zgebal_(char *, integer *, doublecomplex *, 
	    integer *, integer *, integer *, doublereal *, integer *);
    static doublereal scalin[20];
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *);
    static doublecomplex ain[400]	/* was [20][20] */;
    static integer ihi, ilo, knt;

    /* Fortran I/O blocks */
    static cilist io___8 = { 0, 0, 0, 0, 0 };
    static cilist io___11 = { 0, 0, 0, 0, 0 };
    static cilist io___14 = { 0, 0, 0, 0, 0 };
    static cilist io___17 = { 0, 0, 0, 0, 0 };
    static cilist io___19 = { 0, 0, 0, 0, 0 };
    static cilist io___28 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___29 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___30 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___31 = { 0, 0, 0, fmt_9996, 0 };
    static cilist io___32 = { 0, 0, 0, fmt_9995, 0 };
    static cilist io___33 = { 0, 0, 0, fmt_9994, 0 };
    static cilist io___34 = { 0, 0, 0, fmt_9993, 0 };



#define a_subscr(a_1,a_2) (a_2)*20 + a_1 - 21
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define ain_subscr(a_1,a_2) (a_2)*20 + a_1 - 21
#define ain_ref(a_1,a_2) ain[ain_subscr(a_1,a_2)]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZCHKBL tests ZGEBAL, a routine for balancing a general complex   
    matrix and isolating some of its eigenvalues.   

    Arguments   
    =========   

    NIN     (input) INTEGER   
            The logical unit number for input.  NIN > 0.   

    NOUT    (input) INTEGER   
            The logical unit number for output.  NOUT > 0.   

   ====================================================================== */


    lmax[0] = 0;
    lmax[1] = 0;
    lmax[2] = 0;
    ninfo = 0;
    knt = 0;
    rmax = 0.;
    vmax = 0.;
    sfmin = dlamch_("S");
    meps = dlamch_("E");

L10:

    io___8.ciunit = *nin;
    s_rsle(&io___8);
    do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer));
    e_rsle();
    if (n == 0) {
	goto L70;
    }
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___11.ciunit = *nin;
	s_rsle(&io___11);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__7, &c__1, (char *)&a_ref(i__, j), (ftnlen)sizeof(
		    doublecomplex));
	}
	e_rsle();
/* L20: */
    }

    io___14.ciunit = *nin;
    s_rsle(&io___14);
    do_lio(&c__3, &c__1, (char *)&iloin, (ftnlen)sizeof(integer));
    do_lio(&c__3, &c__1, (char *)&ihiin, (ftnlen)sizeof(integer));
    e_rsle();
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	io___17.ciunit = *nin;
	s_rsle(&io___17);
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
	    do_lio(&c__7, &c__1, (char *)&ain_ref(i__, j), (ftnlen)sizeof(
		    doublecomplex));
	}
	e_rsle();
/* L30: */
    }
    io___19.ciunit = *nin;
    s_rsle(&io___19);
    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	do_lio(&c__5, &c__1, (char *)&scalin[i__ - 1], (ftnlen)sizeof(
		doublereal));
    }
    e_rsle();

    anorm = zlange_("M", &n, &n, a, &c__20, dummy);
    ++knt;
    zgebal_("B", &n, a, &c__20, &ilo, &ihi, scale, &info);

    if (info != 0) {
	++ninfo;
	lmax[0] = knt;
    }

    if (ilo != iloin || ihi != ihiin) {
	++ninfo;
	lmax[1] = knt;
    }

    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
	i__2 = n;
	for (j = 1; j <= i__2; ++j) {
/* Computing MAX */
	    i__3 = a_subscr(i__, j);
	    i__4 = ain_subscr(i__, j);
	    d__5 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a_ref(i__, 
		    j)), abs(d__2)), d__6 = (d__3 = ain[i__4].r, abs(d__3)) + 
		    (d__4 = d_imag(&ain_ref(i__, j)), abs(d__4));
	    temp = max(d__5,d__6);
	    temp = max(temp,sfmin);
	    i__3 = a_subscr(i__, j);
	    i__4 = ain_subscr(i__, j);
	    z__2.r = a[i__3].r - ain[i__4].r, z__2.i = a[i__3].i - ain[i__4]
		    .i;
	    z__1.r = z__2.r, z__1.i = z__2.i;
/* Computing MAX */
	    d__3 = vmax, d__4 = ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&
		    z__1), abs(d__2))) / temp;
	    vmax = max(d__3,d__4);
/* L40: */
	}
/* L50: */
    }

    i__1 = n;
    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	d__1 = scale[i__ - 1], d__2 = scalin[i__ - 1];
	temp = max(d__1,d__2);
	temp = max(temp,sfmin);
/* Computing MAX */
	d__2 = vmax, d__3 = (d__1 = scale[i__ - 1] - scalin[i__ - 1], abs(
		d__1)) / temp;
	vmax = max(d__2,d__3);
/* L60: */
    }

    if (vmax > rmax) {
	lmax[2] = knt;
	rmax = vmax;
    }

    goto L10;

L70:

    io___28.ciunit = *nout;
    s_wsfe(&io___28);
    e_wsfe();

    io___29.ciunit = *nout;
    s_wsfe(&io___29);
    do_fio(&c__1, (char *)&rmax, (ftnlen)sizeof(doublereal));
    e_wsfe();
    io___30.ciunit = *nout;
    s_wsfe(&io___30);
    do_fio(&c__1, (char *)&lmax[0], (ftnlen)sizeof(integer));
    e_wsfe();
    io___31.ciunit = *nout;
    s_wsfe(&io___31);
    do_fio(&c__1, (char *)&lmax[1], (ftnlen)sizeof(integer));
    e_wsfe();
    io___32.ciunit = *nout;
    s_wsfe(&io___32);
    do_fio(&c__1, (char *)&lmax[2], (ftnlen)sizeof(integer));
    e_wsfe();
    io___33.ciunit = *nout;
    s_wsfe(&io___33);
    do_fio(&c__1, (char *)&ninfo, (ftnlen)sizeof(integer));
    e_wsfe();
    io___34.ciunit = *nout;
    s_wsfe(&io___34);
    do_fio(&c__1, (char *)&knt, (ftnlen)sizeof(integer));
    e_wsfe();

    return 0;

/*     End of ZCHKBL */

} /* zchkbl_ */
示例#8
0
/* Subroutine */ int zgeevx_(char *balanc, char *jobvl, char *jobvr, char *
                             sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w,
                             doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr,
                             integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm,
                             doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer *
                             lwork, doublereal *rwork, integer *info)
{
    /*  -- LAPACK driver routine (version 2.0) --
           Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
           Courant Institute, Argonne National Lab, and Rice University
           September 30, 1994


        Purpose
        =======

        ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the
        eigenvalues and, optionally, the left and/or right eigenvectors.

        Optionally also, it computes a balancing transformation to improve
        the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
        (RCONDE), and reciprocal condition numbers for the right
        eigenvectors (RCONDV).

        The right eigenvector v(j) of A satisfies
                         A * v(j) = lambda(j) * v(j)
        where lambda(j) is its eigenvalue.
        The left eigenvector u(j) of A satisfies
                      u(j)**H * A = lambda(j) * u(j)**H
        where u(j)**H denotes the conjugate transpose of u(j).

        The computed eigenvectors are normalized to have Euclidean norm
        equal to 1 and largest component real.

        Balancing a matrix means permuting the rows and columns to make it
        more nearly upper triangular, and applying a diagonal similarity
        transformation D * A * D**(-1), where D is a diagonal matrix, to
        make its rows and columns closer in norm and the condition numbers
        of its eigenvalues and eigenvectors smaller.  The computed
        reciprocal condition numbers correspond to the balanced matrix.
        Permuting rows and columns will not change the condition numbers
        (in exact arithmetic) but diagonal scaling will.  For further
        explanation of balancing, see section 4.10.2 of the LAPACK
        Users' Guide.

        Arguments
        =========

        BALANC  (input) CHARACTER*1
                Indicates how the input matrix should be diagonally scaled
                and/or permuted to improve the conditioning of its
                eigenvalues.
                = 'N': Do not diagonally scale or permute;
                = 'P': Perform permutations to make the matrix more nearly
                       upper triangular. Do not diagonally scale;
                = 'S': Diagonally scale the matrix, ie. replace A by
                       D*A*D**(-1), where D is a diagonal matrix chosen
                       to make the rows and columns of A more equal in
                       norm. Do not permute;
                = 'B': Both diagonally scale and permute A.

                Computed reciprocal condition numbers will be for the matrix

                after balancing and/or permuting. Permuting does not change
                condition numbers (in exact arithmetic), but balancing does.


        JOBVL   (input) CHARACTER*1
                = 'N': left eigenvectors of A are not computed;
                = 'V': left eigenvectors of A are computed.
                If SENSE = 'E' or 'B', JOBVL must = 'V'.

        JOBVR   (input) CHARACTER*1
                = 'N': right eigenvectors of A are not computed;
                = 'V': right eigenvectors of A are computed.
                If SENSE = 'E' or 'B', JOBVR must = 'V'.

        SENSE   (input) CHARACTER*1
                Determines which reciprocal condition numbers are computed.
                = 'N': None are computed;
                = 'E': Computed for eigenvalues only;
                = 'V': Computed for right eigenvectors only;
                = 'B': Computed for eigenvalues and right eigenvectors.

                If SENSE = 'E' or 'B', both left and right eigenvectors
                must also be computed (JOBVL = 'V' and JOBVR = 'V').

        N       (input) INTEGER
                The order of the matrix A. N >= 0.

        A       (input/output) COMPLEX*16 array, dimension (LDA,N)
                On entry, the N-by-N matrix A.
                On exit, A has been overwritten.  If JOBVL = 'V' or
                JOBVR = 'V', A contains the Schur form of the balanced
                version of the matrix A.

        LDA     (input) INTEGER
                The leading dimension of the array A.  LDA >= max(1,N).

        W       (output) COMPLEX*16 array, dimension (N)
                W contains the computed eigenvalues.

        VL      (output) COMPLEX*16 array, dimension (LDVL,N)
                If JOBVL = 'V', the left eigenvectors u(j) are stored one
                after another in the columns of VL, in the same order
                as their eigenvalues.
                If JOBVL = 'N', VL is not referenced.
                u(j) = VL(:,j), the j-th column of VL.

        LDVL    (input) INTEGER
                The leading dimension of the array VL.  LDVL >= 1; if
                JOBVL = 'V', LDVL >= N.

        VR      (output) COMPLEX*16 array, dimension (LDVR,N)
                If JOBVR = 'V', the right eigenvectors v(j) are stored one
                after another in the columns of VR, in the same order
                as their eigenvalues.
                If JOBVR = 'N', VR is not referenced.
                v(j) = VR(:,j), the j-th column of VR.

        LDVR    (input) INTEGER
                The leading dimension of the array VR.  LDVR >= 1; if
                JOBVR = 'V', LDVR >= N.

        ILO,IHI (output) INTEGER
                ILO and IHI are integer values determined when A was
                balanced.  The balanced A(i,j) = 0 if I > J and
                J = 1,...,ILO-1 or I = IHI+1,...,N.

        SCALE   (output) DOUBLE PRECISION array, dimension (N)
                Details of the permutations and scaling factors applied
                when balancing A.  If P(j) is the index of the row and column

                interchanged with row and column j, and D(j) is the scaling
                factor applied to row and column j, then
                SCALE(J) = P(J),    for J = 1,...,ILO-1
                         = D(J),    for J = ILO,...,IHI
                         = P(J)     for J = IHI+1,...,N.
                The order in which the interchanges are made is N to IHI+1,
                then 1 to ILO-1.

        ABNRM   (output) DOUBLE PRECISION
                The one-norm of the balanced matrix (the maximum
                of the sum of absolute values of elements of any column).

        RCONDE  (output) DOUBLE PRECISION array, dimension (N)
                RCONDE(j) is the reciprocal condition number of the j-th
                eigenvalue.

        RCONDV  (output) DOUBLE PRECISION array, dimension (N)
                RCONDV(j) is the reciprocal condition number of the j-th
                right eigenvector.

        WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
                On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

        LWORK   (input) INTEGER
                The dimension of the array WORK.  If SENSE = 'N' or 'E',
                LWORK >= max(1,2*N), and if SENSE = 'V' or 'B',
                LWORK >= N*N+2*N.
                For good performance, LWORK must generally be larger.

        RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value.
                > 0:  if INFO = i, the QR algorithm failed to compute all the

                      eigenvalues, and no eigenvectors or condition numbers
                      have been computed; elements 1:ILO-1 and i+1:N of W
                      contain eigenvalues which have converged.

        =====================================================================



           Test the input arguments


       Parameter adjustments
           Function Body */
    /* Table of constant values */
    static integer c__1 = 1;
    static integer c__0 = 0;
    static integer c__8 = 8;
    static integer c_n1 = -1;
    static integer c__4 = 4;

    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
            i__2, i__3, i__4;
    doublereal d__1, d__2;
    doublecomplex z__1, z__2;
    /* Builtin functions */
    double sqrt(doublereal), d_imag(doublecomplex *);
    void d_cnjg(doublecomplex *, doublecomplex *);
    /* Local variables */
    static char side[1];
    static integer maxb;
    static doublereal anrm;
    static integer ierr, itau, iwrk, nout, i, k, icond;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
                                       doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    static logical scalea;
    extern doublereal dlamch_(char *);
    static doublereal cscale;
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
                                        doublereal *, doublereal *, integer *, integer *, doublereal *,
                                        integer *, integer *), zgebak_(char *, char *, integer *,
                                                integer *, integer *, doublereal *, integer *, doublecomplex *,
                                                integer *, integer *), zgebal_(char *, integer *,
                                                        doublecomplex *, integer *, integer *, integer *, doublereal *,
                                                        integer *);
    extern integer idamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
                           integer *, integer *, ftnlen, ftnlen);
    static logical select[1];
    extern /* Subroutine */ int zdscal_(integer *, doublereal *,
                                        doublecomplex *, integer *);
    static doublereal bignum;
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
                              integer *, doublereal *);
    extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, doublecomplex *,
                                        integer *, integer *), zlascl_(char *, integer *, integer *,
                                                doublereal *, doublereal *, integer *, integer *, doublecomplex *,
                                                integer *, integer *), zlacpy_(char *, integer *,
                                                        integer *, doublecomplex *, integer *, doublecomplex *, integer *);
    static integer minwrk, maxwrk;
    static logical wantvl, wntsnb;
    static integer hswork;
    static logical wntsne;
    static doublereal smlnum;
    extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *,
                                        integer *, doublecomplex *, integer *, doublecomplex *,
                                        doublecomplex *, integer *, doublecomplex *, integer *, integer *);
    static logical wantvr;
    extern /* Subroutine */ int ztrevc_(char *, char *, logical *, integer *,
                                        doublecomplex *, integer *, doublecomplex *, integer *,
                                        doublecomplex *, integer *, integer *, integer *, doublecomplex *,
                                        doublereal *, integer *), ztrsna_(char *, char *,
                                                logical *, integer *, doublecomplex *, integer *, doublecomplex *
                                                , integer *, doublecomplex *, integer *, doublereal *, doublereal
                                                *, integer *, integer *, doublecomplex *, integer *, doublereal *,
                                                integer *), zunghr_(integer *, integer *,
                                                        integer *, doublecomplex *, integer *, doublecomplex *,
                                                        doublecomplex *, integer *, integer *);
    static logical wntsnn, wntsnv;
    static char job[1];
    static doublereal scl, dum[1], eps;
    static doublecomplex tmp;



#define DUM(I) dum[(I)]
#define W(I) w[(I)-1]
#define SCALE(I) scale[(I)-1]
#define RCONDE(I) rconde[(I)-1]
#define RCONDV(I) rcondv[(I)-1]
#define WORK(I) work[(I)-1]
#define RWORK(I) rwork[(I)-1]

#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define VL(I,J) vl[(I)-1 + ((J)-1)* ( *ldvl)]
#define VR(I,J) vr[(I)-1 + ((J)-1)* ( *ldvr)]

    *info = 0;
    wantvl = lsame_(jobvl, "V");
    wantvr = lsame_(jobvr, "V");
    wntsnn = lsame_(sense, "N");
    wntsne = lsame_(sense, "E");
    wntsnv = lsame_(sense, "V");
    wntsnb = lsame_(sense, "B");
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") ||
            lsame_(balanc, "P") || lsame_(balanc, "B"))) {
        *info = -1;
    } else if (! wantvl && ! lsame_(jobvl, "N")) {
        *info = -2;
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
        *info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
               && ! (wantvl && wantvr)) {
        *info = -4;
    } else if (*n < 0) {
        *info = -5;
    } else if (*lda < max(1,*n)) {
        *info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
        *info = -10;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
        *info = -12;
    }

    /*     Compute workspace
            (Note: Comments in the code beginning "Workspace:" describe the
             minimal amount of workspace needed at that point in the code,
             as well as the preferred amount for good performance.
             CWorkspace refers to complex workspace, and RWorkspace to real
             workspace. NB refers to the optimal block size for the
             immediately following subroutine, as returned by ILAENV.
             HSWORK refers to the workspace preferred by ZHSEQR, as
             calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
             the worst case.) */

    minwrk = 1;
    if (*info == 0 && *lwork >= 1) {
        maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, &c__0,
                                   6L, 1L);
        if (! wantvl && ! wantvr) {
            /* Computing MAX */
            i__1 = 1, i__2 = *n << 1;
            minwrk = max(i__1,i__2);
            if (! (wntsnn || wntsne)) {
                /* Computing MAX */
                i__1 = minwrk, i__2 = *n * *n + (*n << 1);
                minwrk = max(i__1,i__2);
            }
            /* Computing MAX */
            i__1 = ilaenv_(&c__8, "ZHSEQR", "SN", n, &c__1, n, &c_n1, 6L, 2L);
            maxb = max(i__1,2);
            if (wntsnn) {
                /* Computing MIN
                   Computing MAX */
                i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "EN", n, &c__1, n, &
                                         c_n1, 6L, 2L);
                i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
                k = min(i__1,i__2);
            } else {
                /* Computing MIN
                   Computing MAX */
                i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "SN", n, &c__1, n, &
                                         c_n1, 6L, 2L);
                i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
                k = min(i__1,i__2);
            }
            /* Computing MAX */
            i__1 = k * (k + 2), i__2 = *n << 1;
            hswork = max(i__1,i__2);
            /* Computing MAX */
            i__1 = max(maxwrk,1);
            maxwrk = max(i__1,hswork);
            if (! (wntsnn || wntsne)) {
                /* Computing MAX */
                i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
                maxwrk = max(i__1,i__2);
            }
        } else {
            /* Computing MAX */
            i__1 = 1, i__2 = *n << 1;
            minwrk = max(i__1,i__2);
            if (! (wntsnn || wntsne)) {
                /* Computing MAX */
                i__1 = minwrk, i__2 = *n * *n + (*n << 1);
                minwrk = max(i__1,i__2);
            }
            /* Computing MAX */
            i__1 = ilaenv_(&c__8, "ZHSEQR", "SN", n, &c__1, n, &c_n1, 6L, 2L);
            maxb = max(i__1,2);
            /* Computing MIN
               Computing MAX */
            i__3 = 2, i__4 = ilaenv_(&c__4, "ZHSEQR", "EN", n, &c__1, n, &
                                     c_n1, 6L, 2L);
            i__1 = min(maxb,*n), i__2 = max(i__3,i__4);
            k = min(i__1,i__2);
            /* Computing MAX */
            i__1 = k * (k + 2), i__2 = *n << 1;
            hswork = max(i__1,i__2);
            /* Computing MAX */
            i__1 = max(maxwrk,1);
            maxwrk = max(i__1,hswork);
            /* Computing MAX */
            i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR",
                                  " ", n, &c__1, n, &c_n1, 6L, 1L);
            maxwrk = max(i__1,i__2);
            if (! (wntsnn || wntsne)) {
                /* Computing MAX */
                i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
                maxwrk = max(i__1,i__2);
            }
            /* Computing MAX */
            i__1 = maxwrk, i__2 = *n << 1, i__1 = max(i__1,i__2);
            maxwrk = max(i__1,1);
        }
        WORK(1).r = (doublereal) maxwrk, WORK(1).i = 0.;
    }
    if (*lwork < minwrk) {
        *info = -20;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZGEEVX", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    /*     Get machine constants */

    eps = dlamch_("P");
    smlnum = dlamch_("S");
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

    /*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = zlange_("M", n, n, &A(1,1), lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
        scalea = TRUE_;
        cscale = smlnum;
    } else if (anrm > bignum) {
        scalea = TRUE_;
        cscale = bignum;
    }
    if (scalea) {
        zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &A(1,1), lda, &
                ierr);
    }

    /*     Balance the matrix and compute ABNRM */

    zgebal_(balanc, n, &A(1,1), lda, ilo, ihi, &SCALE(1), &ierr);
    *abnrm = zlange_("1", n, n, &A(1,1), lda, dum);
    if (scalea) {
        DUM(0) = *abnrm;
        dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
                ierr);
        *abnrm = DUM(0);
    }

    /*     Reduce to upper Hessenberg form
           (CWorkspace: need 2*N, prefer N+N*NB)
           (RWorkspace: none) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    zgehrd_(n, ilo, ihi, &A(1,1), lda, &WORK(itau), &WORK(iwrk), &i__1, &
            ierr);

    if (wantvl) {

        /*        Want left eigenvectors
                  Copy Householder vectors to VL */

        *(unsigned char *)side = 'L';
        zlacpy_("L", n, n, &A(1,1), lda, &VL(1,1), ldvl);

        /*        Generate unitary matrix in VL
                  (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                  (RWorkspace: none) */

        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &VL(1,1), ldvl, &WORK(itau), &WORK(iwrk), &
                i__1, &ierr);

        /*        Perform QR iteration, accumulating Schur vectors in VL
                  (CWorkspace: need 1, prefer HSWORK (see comments) )
                  (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &A(1,1), lda, &W(1), &VL(1,1), ldvl, &WORK(iwrk), &i__1, info);

        if (wantvr) {

            /*           Want left and right eigenvectors
                         Copy Schur vectors to VR */

            *(unsigned char *)side = 'B';
            zlacpy_("F", n, n, &VL(1,1), ldvl, &VR(1,1), ldvr)
            ;
        }

    } else if (wantvr) {

        /*        Want right eigenvectors
                  Copy Householder vectors to VR */

        *(unsigned char *)side = 'R';
        zlacpy_("L", n, n, &A(1,1), lda, &VR(1,1), ldvr);

        /*        Generate unitary matrix in VR
                  (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
                  (RWorkspace: none) */

        i__1 = *lwork - iwrk + 1;
        zunghr_(n, ilo, ihi, &VR(1,1), ldvr, &WORK(itau), &WORK(iwrk), &
                i__1, &ierr);

        /*        Perform QR iteration, accumulating Schur vectors in VR
                  (CWorkspace: need 1, prefer HSWORK (see comments) )
                  (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_("S", "V", n, ilo, ihi, &A(1,1), lda, &W(1), &VR(1,1), ldvr, &WORK(iwrk), &i__1, info);

    } else {

        /*        Compute eigenvalues only
                  If condition numbers desired, compute Schur form */

        if (wntsnn) {
            *(unsigned char *)job = 'E';
        } else {
            *(unsigned char *)job = 'S';
        }

        /*        (CWorkspace: need 1, prefer HSWORK (see comments) )
                  (RWorkspace: none) */

        iwrk = itau;
        i__1 = *lwork - iwrk + 1;
        zhseqr_(job, "N", n, ilo, ihi, &A(1,1), lda, &W(1), &VR(1,1), ldvr, &WORK(iwrk), &i__1, info);
    }

    /*     If INFO > 0 from ZHSEQR, then quit */

    if (*info > 0) {
        goto L50;
    }

    if (wantvl || wantvr) {

        /*        Compute left and/or right eigenvectors
                  (CWorkspace: need 2*N)
                  (RWorkspace: need N) */

        ztrevc_(side, "B", select, n, &A(1,1), lda, &VL(1,1), ldvl,
                &VR(1,1), ldvr, n, &nout, &WORK(iwrk), &RWORK(1), &
                ierr);
    }

    /*     Compute condition numbers if desired
           (CWorkspace: need N*N+2*N unless SENSE = 'E')
           (RWorkspace: need 2*N unless SENSE = 'E') */

    if (! wntsnn) {
        ztrsna_(sense, "A", select, n, &A(1,1), lda, &VL(1,1),
                ldvl, &VR(1,1), ldvr, &RCONDE(1), &RCONDV(1), n, &nout,
                &WORK(iwrk), n, &RWORK(1), &icond);
    }

    if (wantvl) {

        /*        Undo balancing of left eigenvectors */

        zgebak_(balanc, "L", n, ilo, ihi, &SCALE(1), n, &VL(1,1), ldvl,
                &ierr);

        /*        Normalize left eigenvectors and make largest component real
        */

        i__1 = *n;
        for (i = 1; i <= *n; ++i) {
            scl = 1. / dznrm2_(n, &VL(1,i), &c__1);
            zdscal_(n, &scl, &VL(1,i), &c__1);
            i__2 = *n;
            for (k = 1; k <= *n; ++k) {
                i__3 = k + i * vl_dim1;
                /* Computing 2nd power */
                d__1 = VL(k,i).r;
                /* Computing 2nd power */
                d__2 = d_imag(&VL(k,i));
                RWORK(k) = d__1 * d__1 + d__2 * d__2;
                /* L10: */
            }
            k = idamax_(n, &RWORK(1), &c__1);
            d_cnjg(&z__2, &VL(k,i));
            d__1 = sqrt(RWORK(k));
            z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
            tmp.r = z__1.r, tmp.i = z__1.i;
            zscal_(n, &tmp, &VL(1,i), &c__1);
            i__2 = k + i * vl_dim1;
            i__3 = k + i * vl_dim1;
            d__1 = VL(k,i).r;
            z__1.r = d__1, z__1.i = 0.;
            VL(k,i).r = z__1.r, VL(k,i).i = z__1.i;
            /* L20: */
        }
    }

    if (wantvr) {

        /*        Undo balancing of right eigenvectors */

        zgebak_(balanc, "R", n, ilo, ihi, &SCALE(1), n, &VR(1,1), ldvr,
                &ierr);

        /*        Normalize right eigenvectors and make largest component real
         */

        i__1 = *n;
        for (i = 1; i <= *n; ++i) {
            scl = 1. / dznrm2_(n, &VR(1,i), &c__1);
            zdscal_(n, &scl, &VR(1,i), &c__1);
            i__2 = *n;
            for (k = 1; k <= *n; ++k) {
                i__3 = k + i * vr_dim1;
                /* Computing 2nd power */
                d__1 = VR(k,i).r;
                /* Computing 2nd power */
                d__2 = d_imag(&VR(k,i));
                RWORK(k) = d__1 * d__1 + d__2 * d__2;
                /* L30: */
            }
            k = idamax_(n, &RWORK(1), &c__1);
            d_cnjg(&z__2, &VR(k,i));
            d__1 = sqrt(RWORK(k));
            z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1;
            tmp.r = z__1.r, tmp.i = z__1.i;
            zscal_(n, &tmp, &VR(1,i), &c__1);
            i__2 = k + i * vr_dim1;
            i__3 = k + i * vr_dim1;
            d__1 = VR(k,i).r;
            z__1.r = d__1, z__1.i = 0.;
            VR(k,i).r = z__1.r, VR(k,i).i = z__1.i;
            /* L40: */
        }
    }

    /*     Undo scaling if necessary */

L50:
    if (scalea) {
        i__1 = *n - *info;
        /* Computing MAX */
        i__3 = *n - *info;
        i__2 = max(i__3,1);
        zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &W(*info + 1)
                , &i__2, &ierr);
        if (*info == 0) {
            if ((wntsnv || wntsnb) && icond == 0) {
                dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &RCONDV(
                            1), n, &ierr);
            }
        } else {
            i__1 = *ilo - 1;
            zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &W(1), n,
                    &ierr);
        }
    }

    WORK(1).r = (doublereal) maxwrk, WORK(1).i = 0.;
    return 0;

    /*     End of ZGEEVX */

} /* zgeevx_ */