DLLEXPORT MKL_INT z_lu_solve_factored(MKL_INT n, MKL_INT nrhs, MKL_Complex16 a[], MKL_INT ipiv[], MKL_Complex16 b[]) { MKL_INT info = 0; MKL_INT i; for(i = 0; i < n; ++i ){ ipiv[i] += 1; } char trans ='N'; zgetrs_(&trans, &n, &nrhs, a, &n, ipiv, b, &n, &info); for(i = 0; i < n; ++i ){ ipiv[i] -= 1; } return info; }
DLLEXPORT int z_lu_solve_factored(int n, int nrhs, doublecomplex a[], int ipiv[], doublecomplex b[]) { int info = 0; int i; for(i = 0; i < n; ++i ){ ipiv[i] += 1; } char trans ='N'; zgetrs_(&trans, &n, &nrhs, a, &n, ipiv, b, &n, &info); for(i = 0; i < n; ++i ){ ipiv[i] -= 1; } return info; }
//! solve "imaginary" part. //! \param Zr IN/OUT: RHS, real part (IN); result,real part (OUT). //! \param Zi IN/OUT: RHS, imag. part (IN); result,imag part (OUT). //! \param Jac the Jacobian matrix. inline void solvecomplex(fortranVectorF<n>& Zr,fortranVectorF<n>& Zi, const fortranArray<n>& Jac) { #include "Ivdep.hpp" for(int i=n;i>=1;i--) { Z2N(2*i-1)=Zr(i); Z2N(2*i)=Zi(i); } int nn=n,un=1,ier; char notrans='n'; zgetrs_(¬rans,&nn,&un,&E2R,&nn,&(ipivc[0]),&Z2N,&nn,&ier); if(ier!=0) throw OdesException("odes::Matrices::solvecomplex, zgetrs,ier=",ier); #include "Ivdep.hpp" for(int i=1;i<=n;i++) { Zi(i)=Z2N(2*i); Zr(i)=Z2N(2*i-1); } }
DLLEXPORT MKL_INT z_lu_solve(MKL_INT n, MKL_INT nrhs, MKL_Complex16 a[], MKL_Complex16 b[]) { MKL_Complex16* clone = new MKL_Complex16[n*n]; std::memcpy(clone, a, n*n*sizeof(MKL_Complex16)); MKL_INT* ipiv = new MKL_INT[n]; MKL_INT info = 0; zgetrf_(&n, &n, clone, &n, ipiv, &info); if (info != 0){ delete[] ipiv; delete[] clone; return info; } char trans ='N'; zgetrs_(&trans, &n, &nrhs, clone, &n, ipiv, b, &n, &info); delete[] ipiv; delete[] clone; return info; }
DLLEXPORT int z_lu_solve(int n, int nrhs, doublecomplex a[], doublecomplex b[]) { doublecomplex* clone = new doublecomplex[n*n]; memcpy(clone, a, n*n*sizeof(doublecomplex)); int* ipiv = new int[n]; int info = 0; zgetrf_(&n, &n, clone, &n, ipiv, &info); if (info != 0){ delete[] ipiv; delete[] clone; return info; } char trans ='N'; zgetrs_(&trans, &n, &nrhs, clone, &n, ipiv, b, &n, &info); delete[] ipiv; delete[] clone; return info; }
doublereal zla_gercond_c__(char *trans, integer *n, doublecomplex *a, integer *lda, doublecomplex *af, integer *ldaf, integer *ipiv, doublereal * c__, logical *capply, integer *info, doublecomplex *work, doublereal * rwork, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; doublereal ret_val, d__1, d__2; doublecomplex z__1; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ integer i__, j; doublereal tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; doublereal anorm; extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *), xerbla_( char *, integer *); doublereal ainvnm; extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); logical notrans; /* -- LAPACK routine (version 3.2.1) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- April 2009 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Aguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLA_GERCOND_C computes the infinity norm condition number of */ /* op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) COMPLEX*16 array, dimension (LDAF,N) */ /* The factors L and U from the factorization */ /* A = P*L*U as computed by ZGETRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from the factorization A = P*L*U */ /* as computed by ZGETRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* C (input) DOUBLE PRECISION array, dimension (N) */ /* The vector C in the formula op(A) * inv(diag(C)). */ /* CAPPLY (input) LOGICAL */ /* If .TRUE. then access the vector C in the formula above. */ /* INFO (output) INTEGER */ /* = 0: Successful exit. */ /* i > 0: The ith argument is invalid. */ /* WORK (input) COMPLEX*16 array, dimension (2*N). */ /* Workspace. */ /* RWORK (input) DOUBLE PRECISION array, dimension (N). */ /* Workspace. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function Definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --c__; --work; --rwork; /* Function Body */ ret_val = 0.; *info = 0; notrans = lsame_(trans, "N"); if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { } else if (*n < 0) { *info = -2; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLA_GERCOND_C", &i__1); return ret_val; } /* Compute norm of op(A)*op2(C). */ anorm = 0.; if (notrans) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*capply) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += ((d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2))) / c__[j]; } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; tmp += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + j * a_dim1]), abs(d__2)); } } rwork[i__] = tmp; anorm = max(anorm,tmp); } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; if (*capply) { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += ((d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[ j + i__ * a_dim1]), abs(d__2))) / c__[j]; } } else { i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; tmp += (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[ j + i__ * a_dim1]), abs(d__2)); } } rwork[i__] = tmp; anorm = max(anorm,tmp); } } /* Quick return if possible. */ if (*n == 0) { ret_val = 1.; return ret_val; } else if (anorm == 0.) { return ret_val; } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.; kase = 0; L10: zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] * work[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; } if (notrans) { zgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } else { zgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } /* Multiply by inv(C). */ if (*capply) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = c__[i__4] * work[i__3].r, z__1.i = c__[i__4] * work[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; } } } else { /* Multiply by inv(C'). */ if (*capply) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = c__[i__4] * work[i__3].r, z__1.i = c__[i__4] * work[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; } } if (notrans) { zgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } else { zgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = rwork[i__4] * work[i__3].r, z__1.i = rwork[i__4] * work[i__3].i; work[i__2].r = z__1.r, work[i__2].i = z__1.i; } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; } /* zla_gercond_c__ */
/* Subroutine */ int zerrge_(char *path, integer *nunit) { /* System generated locals */ integer i__1; doublereal d__1, d__2; doublecomplex z__1; /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ doublecomplex a[16] /* was [4][4] */, b[4]; integer i__, j; doublereal r__[4]; doublecomplex w[8], x[4]; char c2[2]; doublereal r1[4], r2[4]; doublecomplex af[16] /* was [4][4] */; integer ip[4], info; doublereal anrm, ccond, rcond; extern /* Subroutine */ int zgbtf2_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgetf2_(integer *, integer *, doublecomplex *, integer *, integer *, integer *), alaesm_(char *, logical *, integer *); extern logical lsamen_(integer *, char *, char *); extern /* Subroutine */ int zgbcon_(char *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), zgecon_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgbequ_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), zgbrfs_( char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgbtrf_(integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgeequ_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), zgerfs_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), zgetrf_(integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgetri_(integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zgbtrs_(char *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *), zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZERRGE tests the error exits for the COMPLEX*16 routines */ /* for general matrices. */ /* Arguments */ /* ========= */ /* PATH (input) CHARACTER*3 */ /* The LAPACK path name for the routines to be tested. */ /* NUNIT (input) INTEGER */ /* The unit number for output. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2); /* Set the variables to innocuous values. */ for (j = 1; j <= 4; ++j) { for (i__ = 1; i__ <= 4; ++i__) { i__1 = i__ + (j << 2) - 5; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; a[i__1].r = z__1.r, a[i__1].i = z__1.i; i__1 = i__ + (j << 2) - 5; d__1 = 1. / (doublereal) (i__ + j); d__2 = -1. / (doublereal) (i__ + j); z__1.r = d__1, z__1.i = d__2; af[i__1].r = z__1.r, af[i__1].i = z__1.i; /* L10: */ } i__1 = j - 1; b[i__1].r = 0., b[i__1].i = 0.; r1[j - 1] = 0.; r2[j - 1] = 0.; i__1 = j - 1; w[i__1].r = 0., w[i__1].i = 0.; i__1 = j - 1; x[i__1].r = 0., x[i__1].i = 0.; ip[j - 1] = j; /* L20: */ } infoc_1.ok = TRUE_; /* Test error exits of the routines that use the LU decomposition */ /* of a general matrix. */ if (lsamen_(&c__2, c2, "GE")) { /* ZGETRF */ s_copy(srnamc_1.srnamt, "ZGETRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgetrf_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgetrf_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgetrf_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("ZGETRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGETF2 */ s_copy(srnamc_1.srnamt, "ZGETF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgetf2_(&c_n1, &c__0, a, &c__1, ip, &info); chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgetf2_(&c__0, &c_n1, a, &c__1, ip, &info); chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgetf2_(&c__2, &c__1, a, &c__1, ip, &info); chkxer_("ZGETF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGETRI */ s_copy(srnamc_1.srnamt, "ZGETRI", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgetri_(&c_n1, a, &c__1, ip, w, &c__1, &info); chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgetri_(&c__2, a, &c__1, ip, w, &c__2, &info); chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zgetri_(&c__2, a, &c__2, ip, w, &c__1, &info); chkxer_("ZGETRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGETRS */ s_copy(srnamc_1.srnamt, "ZGETRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgetrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgetrs_("N", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info); chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgetrs_("N", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info); chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zgetrs_("N", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info); chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; zgetrs_("N", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info); chkxer_("ZGETRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGERFS */ s_copy(srnamc_1.srnamt, "ZGERFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgerfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgerfs_("N", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgerfs_("N", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zgerfs_("N", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, & c__2, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zgerfs_("N", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, & c__1, r1, r2, w, r__, &info); chkxer_("ZGERFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGECON */ s_copy(srnamc_1.srnamt, "ZGECON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgecon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgecon_("1", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgecon_("1", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info) ; chkxer_("ZGECON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGEEQU */ s_copy(srnamc_1.srnamt, "ZGEEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgeequ_(&c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgeequ_(&c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgeequ_(&c__2, &c__2, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGEEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Test error exits of the routines that use the LU decomposition */ /* of a general band matrix. */ } else if (lsamen_(&c__2, c2, "GB")) { /* ZGBTRF */ s_copy(srnamc_1.srnamt, "ZGBTRF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbtrf_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbtrf_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbtrf_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbtrf_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zgbtrf_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("ZGBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGBTF2 */ s_copy(srnamc_1.srnamt, "ZGBTF2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbtf2_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbtf2_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbtf2_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, ip, &info); chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbtf2_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, ip, &info); chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zgbtf2_(&c__2, &c__2, &c__1, &c__1, a, &c__3, ip, &info); chkxer_("ZGBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGBTRS */ s_copy(srnamc_1.srnamt, "ZGBTRS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbtrs_("/", &c__0, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbtrs_("N", &c_n1, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbtrs_("N", &c__1, &c_n1, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbtrs_("N", &c__1, &c__0, &c_n1, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zgbtrs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zgbtrs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, ip, b, &c__2, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; zgbtrs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, ip, b, &c__1, & info); chkxer_("ZGBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGBRFS */ s_copy(srnamc_1.srnamt, "ZGBRFS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbrfs_("/", &c__0, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbrfs_("N", &c_n1, &c__0, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbrfs_("N", &c__1, &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbrfs_("N", &c__1, &c__0, &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; zgbrfs_("N", &c__1, &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__2, af, &c__4, ip, b, & c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 9; zgbrfs_("N", &c__2, &c__1, &c__1, &c__1, a, &c__3, af, &c__3, ip, b, & c__2, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__1, x, &c__2, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 14; zgbrfs_("N", &c__2, &c__0, &c__0, &c__1, a, &c__1, af, &c__1, ip, b, & c__2, x, &c__1, r1, r2, w, r__, &info); chkxer_("ZGBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGBCON */ s_copy(srnamc_1.srnamt, "ZGBCON", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbcon_("/", &c__0, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, &info); chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbcon_("1", &c_n1, &c__0, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, &info); chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbcon_("1", &c__1, &c_n1, &c__0, a, &c__1, ip, &anrm, &rcond, w, r__, &info); chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbcon_("1", &c__1, &c__0, &c_n1, a, &c__1, ip, &anrm, &rcond, w, r__, &info); chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zgbcon_("1", &c__2, &c__1, &c__1, a, &c__3, ip, &anrm, &rcond, w, r__, &info); chkxer_("ZGBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* ZGBEQU */ s_copy(srnamc_1.srnamt, "ZGBEQU", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; zgbequ_(&c_n1, &c__0, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; zgbequ_(&c__0, &c_n1, &c__0, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; zgbequ_(&c__1, &c__1, &c_n1, &c__0, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; zgbequ_(&c__1, &c__1, &c__0, &c_n1, a, &c__1, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 6; zgbequ_(&c__2, &c__2, &c__1, &c__1, a, &c__2, r1, r2, &rcond, &ccond, &anrm, &info); chkxer_("ZGBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); } /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of ZERRGE */ } /* zerrge_ */
/* Subroutine */ int zgerfs_(char *trans, integer *n, integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *ldaf, integer *ipiv, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr, doublecomplex *work, doublereal *rwork, integer *info, ftnlen trans_len) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5; doublereal d__1, d__2, d__3, d__4; doublecomplex z__1; /* Builtin functions */ double d_imag(doublecomplex *); /* Local variables */ static integer i__, j, k; static doublereal s, xk; static integer nz; static doublereal eps; static integer kase; static doublereal safe1, safe2; extern logical lsame_(char *, char *, ftnlen, ftnlen); static integer count; extern /* Subroutine */ int zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, ftnlen), zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *, ftnlen); static doublereal safmin; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zlacon_( integer *, doublecomplex *, doublecomplex *, doublereal *, integer *); static logical notran; static char transn[1], transt[1]; static doublereal lstres; extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *, ftnlen); /* -- LAPACK routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* September 30, 1994 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGERFS improves the computed solution to a system of linear */ /* equations and provides error bounds and backward error estimates for */ /* the solution. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The original N-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input) COMPLEX*16 array, dimension (LDAF,N) */ /* The factors L and U from the factorization A = P*L*U */ /* as computed by ZGETRF. */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices from ZGETRF; for 1<=i<=N, row i of the */ /* matrix was interchanged with row IPIV(i). */ /* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ /* The right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */ /* On entry, the solution matrix X, as computed by ZGETRS. */ /* On exit, the improved solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Internal Parameters */ /* =================== */ /* ITMAX is the maximum number of steps of iterative refinement. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --rwork; /* Function Body */ *info = 0; notran = lsame_(trans, "N", (ftnlen)1, (ftnlen)1); if (! notran && ! lsame_(trans, "T", (ftnlen)1, (ftnlen)1) && ! lsame_( trans, "C", (ftnlen)1, (ftnlen)1)) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldaf < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -10; } else if (*ldx < max(1,*n)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGERFS", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { ferr[j] = 0.; berr[j] = 0.; /* L10: */ } return 0; } if (notran) { *(unsigned char *)transn = 'N'; *(unsigned char *)transt = 'C'; } else { *(unsigned char *)transn = 'C'; *(unsigned char *)transt = 'N'; } /* NZ = maximum number of nonzero elements in each row of A, plus 1 */ nz = *n + 1; eps = dlamch_("Epsilon", (ftnlen)7); safmin = dlamch_("Safe minimum", (ftnlen)12); safe1 = nz * safmin; safe2 = safe1 / eps; /* Do for each right hand side */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { count = 1; lstres = 3.; L20: /* Loop until stopping criterion is satisfied. */ /* Compute residual R = B - op(A) * X, */ /* where op(A) = A, A**T, or A**H, depending on TRANS. */ zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); z__1.r = -1., z__1.i = -0.; zgemv_(trans, n, n, &z__1, &a[a_offset], lda, &x[j * x_dim1 + 1], & c__1, &c_b1, &work[1], &c__1, (ftnlen)1); /* Compute componentwise relative backward error from formula */ /* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */ /* where abs(Z) is the componentwise absolute value of the matrix */ /* or vector Z. If the i-th component of the denominator is less */ /* than SAFE2, then SAFE1 is added to the i-th components of the */ /* numerator and denominator before dividing. */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * b_dim1; rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[ i__ + j * b_dim1]), abs(d__2)); /* L30: */ } /* Compute abs(op(A))*abs(X) + abs(B). */ if (notran) { i__2 = *n; for (k = 1; k <= i__2; ++k) { i__3 = k + j * x_dim1; xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j * x_dim1]), abs(d__2)); i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + k * a_dim1; rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + k * a_dim1]), abs(d__2))) * xk; /* L40: */ } /* L50: */ } } else { i__2 = *n; for (k = 1; k <= i__2; ++k) { s = 0.; i__3 = *n; for (i__ = 1; i__ <= i__3; ++i__) { i__4 = i__ + k * a_dim1; i__5 = i__ + j * x_dim1; s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 = d_imag(&a[ i__ + k * a_dim1]), abs(d__2))) * ((d__3 = x[i__5] .r, abs(d__3)) + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4))); /* L60: */ } rwork[k] += s; /* L70: */ } } s = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (rwork[i__] > safe2) { /* Computing MAX */ i__3 = i__; d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 = d_imag(&work[i__]), abs(d__2))) / rwork[i__]; s = max(d__3,d__4); } else { /* Computing MAX */ i__3 = i__; d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 = d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__] + safe1); s = max(d__3,d__4); } /* L80: */ } berr[j] = s; /* Test stopping criterion. Continue iterating if */ /* 1) The residual BERR(J) is larger than machine epsilon, and */ /* 2) BERR(J) decreased by at least a factor of 2 during the */ /* last iteration, and */ /* 3) At most ITMAX iterations tried. */ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) { /* Update solution and try again. */ zgetrs_(trans, n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info, (ftnlen)1); zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1); lstres = berr[j]; ++count; goto L20; } /* Bound error from formula */ /* norm(X - XTRUE) / norm(X) .le. FERR = */ /* norm( abs(inv(op(A)))* */ /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */ /* where */ /* norm(Z) is the magnitude of the largest component of Z */ /* inv(op(A)) is the inverse of op(A) */ /* abs(Z) is the componentwise absolute value of the matrix or */ /* vector Z */ /* NZ is the maximum number of nonzeros in any row of A, plus 1 */ /* EPS is machine epsilon */ /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */ /* is incremented by SAFE1 if the i-th component of */ /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */ /* Use ZLACON to estimate the infinity-norm of the matrix */ /* inv(op(A)) * diag(W), */ /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { if (rwork[i__] > safe2) { i__3 = i__; rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 = d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__] ; } else { i__3 = i__; rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 = d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__] + safe1; } /* L90: */ } kase = 0; L100: zlacon_(n, &work[*n + 1], &work[1], &ferr[j], &kase); if (kase != 0) { if (kase == 1) { /* Multiply by diag(W)*inv(op(A)**H). */ zgetrs_(transt, n, &c__1, &af[af_offset], ldaf, &ipiv[1], & work[1], n, info, (ftnlen)1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = i__; z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4] * work[i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L110: */ } } else { /* Multiply by inv(op(A))*diag(W). */ i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__; i__4 = i__; i__5 = i__; z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4] * work[i__5].i; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L120: */ } zgetrs_(transn, n, &c__1, &af[af_offset], ldaf, &ipiv[1], & work[1], n, info, (ftnlen)1); } goto L100; } /* Normalize error. */ lstres = 0.; i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ i__3 = i__ + j * x_dim1; d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[i__ + j * x_dim1]), abs(d__2)); lstres = max(d__3,d__4); /* L130: */ } if (lstres != 0.) { ferr[j] /= lstres; } /* L140: */ } return 0; /* End of ZGERFS */ } /* zgerfs_ */
/* Subroutine */ int zgesv_(integer *n, integer *nrhs, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *b, integer *ldb, integer * info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; /* Local variables */ extern /* Subroutine */ int xerbla_(char *, integer *), zgetrf_( integer *, integer *, doublecomplex *, integer *, integer *, integer *), zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGESV computes the solution to a complex system of linear equations */ /* A * X = B, */ /* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */ /* The LU decomposition with partial pivoting and row interchanges is */ /* used to factor A as */ /* A = P * L * U, */ /* where P is a permutation matrix, L is unit lower triangular, and U is */ /* upper triangular. The factored form of A is then used to solve the */ /* system of equations A * X = B. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the N-by-N coefficient matrix A. */ /* On exit, the factors L and U from the factorization */ /* A = P*L*U; the unit diagonal elements of L are not stored. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (output) INTEGER array, dimension (N) */ /* The pivot indices that define the permutation matrix P; */ /* row i of the matrix was interchanged with row IPIV(i). */ /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ /* On entry, the N-by-NRHS matrix of right hand side matrix B. */ /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly */ /* singular, so the solution could not be computed. */ /* ===================================================================== */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*nrhs < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("ZGESV ", &i__1); return 0; } /* Compute the LU factorization of A. */ zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ b_offset], ldb, info); } return 0; /* End of ZGESV */ } /* zgesv_ */
/* Subroutine */ int zgesvxx_(char *fact, char *trans, integer *n, integer * nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer * ldaf, integer *ipiv, char *equed, doublereal *r__, doublereal *c__, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw, doublereal *berr, integer * n_err_bnds__, doublereal *err_bnds_norm__, doublereal * err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex * work, doublereal *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, err_bnds_comp_dim1, err_bnds_comp_offset, i__1; doublereal d__1, d__2; /* Local variables */ integer j; extern doublereal zla_rpvgrw__(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal amax; extern logical lsame_(char *, char *); doublereal rcmin, rcmax; logical equil; extern doublereal dlamch_(char *); doublereal colcnd; logical nofact; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern /* Subroutine */ int zlaqge_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublereal * , doublereal *, char *); integer infequ; logical colequ; doublereal rowcnd; logical notran; extern /* Subroutine */ int zgetrf_(integer *, integer *, doublecomplex *, integer *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal smlnum; extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); logical rowequ; extern /* Subroutine */ int zlascl2_(integer *, integer *, doublereal *, doublecomplex *, integer *), zgeequb_(integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *), zgerfsx_( char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublecomplex *, doublereal *, integer * ); /* -- LAPACK driver routine (version 3.2) -- */ /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */ /* -- Jason Riedy of Univ. of California Berkeley. -- */ /* -- November 2008 -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley and NAG Ltd. -- */ /* .. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGESVXX uses the LU factorization to compute the solution to a */ /* complex*16 system of linear equations A * X = B, where A is an */ /* N-by-N matrix and X and B are N-by-NRHS matrices. */ /* If requested, both normwise and maximum componentwise error bounds */ /* are returned. ZGESVXX will return a solution with a tiny */ /* guaranteed error (O(eps) where eps is the working machine */ /* precision) unless the matrix is very ill-conditioned, in which */ /* case a warning is returned. Relevant condition numbers also are */ /* calculated and returned. */ /* ZGESVXX accepts user-provided factorizations and equilibration */ /* factors; see the definitions of the FACT and EQUED options. */ /* Solving with refinement and using a factorization from a previous */ /* ZGESVXX call will also produce a solution with either O(eps) */ /* errors or warnings, but we cannot make that claim for general */ /* user-provided factorizations and equilibration factors if they */ /* differ from what ZGESVXX would itself produce. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */ /* the system: */ /* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */ /* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */ /* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */ /* Whether or not the system will be equilibrated depends on the */ /* scaling of the matrix A, but if equilibration is used, A is */ /* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */ /* or diag(C)*B (if TRANS = 'T' or 'C'). */ /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */ /* the matrix A (after equilibration if FACT = 'E') as */ /* A = P * L * U, */ /* where P is a permutation matrix, L is a unit lower triangular */ /* matrix, and U is upper triangular. */ /* 3. If some U(i,i)=0, so that U is exactly singular, then the */ /* routine returns with INFO = i. Otherwise, the factored form of A */ /* is used to estimate the condition number of the matrix A (see */ /* argument RCOND). If the reciprocal of the condition number is less */ /* than machine precision, the routine still goes on to solve for X */ /* and compute error bounds as described below. */ /* 4. The system of equations is solved for X using the factored form */ /* of A. */ /* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */ /* the routine will use iterative refinement to try to get a small */ /* error and error bounds. Refinement calculates the residual to at */ /* least twice the working precision. */ /* 6. If equilibration was used, the matrix X is premultiplied by */ /* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */ /* that it solves the original system before equilibration. */ /* Arguments */ /* ========= */ /* Some optional parameters are bundled in the PARAMS array. These */ /* settings determine how refinement is performed, but often the */ /* defaults are acceptable. If the defaults are acceptable, users */ /* can pass NPARAMS = 0 which prevents the source code from accessing */ /* the PARAMS argument. */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of the matrix A is */ /* supplied on entry, and if not, whether the matrix A should be */ /* equilibrated before it is factored. */ /* = 'F': On entry, AF and IPIV contain the factored form of A. */ /* If EQUED is not 'N', the matrix A has been */ /* equilibrated with scaling factors given by R and C. */ /* A, AF, and IPIV are not modified. */ /* = 'N': The matrix A will be copied to AF and factored. */ /* = 'E': The matrix A will be equilibrated if necessary, then */ /* copied to AF and factored. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate Transpose) */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrices B and X. NRHS >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is */ /* not 'N', then A must have been equilibrated by the scaling */ /* factors in R and/or C. A is not modified if FACT = 'F' or */ /* 'N', or if FACT = 'E' and EQUED = 'N' on exit. */ /* On exit, if EQUED .ne. 'N', A is scaled as follows: */ /* EQUED = 'R': A := diag(R) * A */ /* EQUED = 'C': A := A * diag(C) */ /* EQUED = 'B': A := diag(R) * A * diag(C). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* AF (input or output) COMPLEX*16 array, dimension (LDAF,N) */ /* If FACT = 'F', then AF is an input argument and on entry */ /* contains the factors L and U from the factorization */ /* A = P*L*U as computed by ZGETRF. If EQUED .ne. 'N', then */ /* AF is the factored form of the equilibrated matrix A. */ /* If FACT = 'N', then AF is an output argument and on exit */ /* returns the factors L and U from the factorization A = P*L*U */ /* of the original matrix A. */ /* If FACT = 'E', then AF is an output argument and on exit */ /* returns the factors L and U from the factorization A = P*L*U */ /* of the equilibrated matrix A (see the description of A for */ /* the form of the equilibrated matrix). */ /* LDAF (input) INTEGER */ /* The leading dimension of the array AF. LDAF >= max(1,N). */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains the pivot indices from the factorization A = P*L*U */ /* as computed by ZGETRF; row i of the matrix was interchanged */ /* with row IPIV(i). */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains the pivot indices from the factorization A = P*L*U */ /* of the original matrix A. */ /* If FACT = 'E', then IPIV is an output argument and on exit */ /* contains the pivot indices from the factorization A = P*L*U */ /* of the equilibrated matrix A. */ /* EQUED (input or output) CHARACTER*1 */ /* Specifies the form of equilibration that was done. */ /* = 'N': No equilibration (always true if FACT = 'N'). */ /* = 'R': Row equilibration, i.e., A has been premultiplied by */ /* diag(R). */ /* = 'C': Column equilibration, i.e., A has been postmultiplied */ /* by diag(C). */ /* = 'B': Both row and column equilibration, i.e., A has been */ /* replaced by diag(R) * A * diag(C). */ /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */ /* output argument. */ /* R (input or output) DOUBLE PRECISION array, dimension (N) */ /* The row scale factors for A. If EQUED = 'R' or 'B', A is */ /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */ /* is not accessed. R is an input argument if FACT = 'F'; */ /* otherwise, R is an output argument. If FACT = 'F' and */ /* EQUED = 'R' or 'B', each element of R must be positive. */ /* If R is output, each element of R is a power of the radix. */ /* If R is input, each element of R should be a power of the radix */ /* to ensure a reliable solution and error estimates. Scaling by */ /* powers of the radix does not cause rounding errors unless the */ /* result underflows or overflows. Rounding errors during scaling */ /* lead to refining with a matrix that is not equivalent to the */ /* input matrix, producing error estimates that may not be */ /* reliable. */ /* C (input or output) DOUBLE PRECISION array, dimension (N) */ /* The column scale factors for A. If EQUED = 'C' or 'B', A is */ /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */ /* is not accessed. C is an input argument if FACT = 'F'; */ /* otherwise, C is an output argument. If FACT = 'F' and */ /* EQUED = 'C' or 'B', each element of C must be positive. */ /* If C is output, each element of C is a power of the radix. */ /* If C is input, each element of C should be a power of the radix */ /* to ensure a reliable solution and error estimates. Scaling by */ /* powers of the radix does not cause rounding errors unless the */ /* result underflows or overflows. Rounding errors during scaling */ /* lead to refining with a matrix that is not equivalent to the */ /* input matrix, producing error estimates that may not be */ /* reliable. */ /* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ /* On entry, the N-by-NRHS right hand side matrix B. */ /* On exit, */ /* if EQUED = 'N', B is not modified; */ /* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */ /* diag(R)*B; */ /* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */ /* overwritten by diag(C)*B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */ /* If INFO = 0, the N-by-NRHS solution matrix X to the original */ /* system of equations. Note that A and B are modified on exit */ /* if EQUED .ne. 'N', and the solution to the equilibrated system is */ /* inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */ /* inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) DOUBLE PRECISION */ /* Reciprocal scaled condition number. This is an estimate of the */ /* reciprocal Skeel condition number of the matrix A after */ /* equilibration (if done). If this is less than the machine */ /* precision (in particular, if it is zero), the matrix is singular */ /* to working precision. Note that the error may still be small even */ /* if this number is very small and the matrix appears ill- */ /* conditioned. */ /* RPVGRW (output) DOUBLE PRECISION */ /* Reciprocal pivot growth. On exit, this contains the reciprocal */ /* pivot growth factor norm(A)/norm(U). The "max absolute element" */ /* norm is used. If this is much less than 1, then the stability of */ /* the LU factorization of the (equilibrated) matrix A could be poor. */ /* This also means that the solution X, estimated condition numbers, */ /* and error bounds could be unreliable. If factorization fails with */ /* 0<INFO<=N, then this contains the reciprocal pivot growth factor */ /* for the leading INFO columns of A. In ZGESVX, this quantity is */ /* returned in WORK(1). */ /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ /* Componentwise relative backward error. This is the */ /* componentwise relative backward error of each solution vector X(j) */ /* (i.e., the smallest relative change in any element of A or B that */ /* makes X(j) an exact solution). */ /* N_ERR_BNDS (input) INTEGER */ /* Number of error bounds to return for each right hand side */ /* and each type (normwise or componentwise). See ERR_BNDS_NORM and */ /* ERR_BNDS_COMP below. */ /* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* normwise relative error, which is defined as follows: */ /* Normwise relative error in the ith solution vector: */ /* max_j (abs(XTRUE(j,i) - X(j,i))) */ /* ------------------------------ */ /* max_j abs(X(j,i)) */ /* The array is indexed by the type of error information as described */ /* below. There currently are up to three pieces of information */ /* returned. */ /* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_NORM(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * dlamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated normwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * dlamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*A, where S scales each row by a power of the */ /* radix so all absolute row sums of Z are approximately 1. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */ /* For each right-hand side, this array contains information about */ /* various error bounds and condition numbers corresponding to the */ /* componentwise relative error, which is defined as follows: */ /* Componentwise relative error in the ith solution vector: */ /* abs(XTRUE(j,i) - X(j,i)) */ /* max_j ---------------------- */ /* abs(X(j,i)) */ /* The array is indexed by the right-hand side i (on which the */ /* componentwise relative error depends), and the type of error */ /* information as described below. There currently are up to three */ /* pieces of information returned for each right-hand side. If */ /* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */ /* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */ /* the first (:,N_ERR_BNDS) entries are returned. */ /* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */ /* right-hand side. */ /* The second index in ERR_BNDS_COMP(:,err) contains the following */ /* three fields: */ /* err = 1 "Trust/don't trust" boolean. Trust the answer if the */ /* reciprocal condition number is less than the threshold */ /* sqrt(n) * dlamch('Epsilon'). */ /* err = 2 "Guaranteed" error bound: The estimated forward error, */ /* almost certainly within a factor of 10 of the true error */ /* so long as the next entry is greater than the threshold */ /* sqrt(n) * dlamch('Epsilon'). This error bound should only */ /* be trusted if the previous boolean is true. */ /* err = 3 Reciprocal condition number: Estimated componentwise */ /* reciprocal condition number. Compared with the threshold */ /* sqrt(n) * dlamch('Epsilon') to determine if the error */ /* estimate is "guaranteed". These reciprocal condition */ /* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */ /* appropriately scaled matrix Z. */ /* Let Z = S*(A*diag(x)), where x is the solution for the */ /* current right-hand side and S scales each row of */ /* A*diag(x) by a power of the radix so all absolute row */ /* sums of Z are approximately 1. */ /* See Lapack Working Note 165 for further details and extra */ /* cautions. */ /* NPARAMS (input) INTEGER */ /* Specifies the number of parameters set in PARAMS. If .LE. 0, the */ /* PARAMS array is never referenced and default values are used. */ /* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */ /* Specifies algorithm parameters. If an entry is .LT. 0.0, then */ /* that entry will be filled with default value used for that */ /* parameter. Only positions up to NPARAMS are accessed; defaults */ /* are used for higher-numbered parameters. */ /* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */ /* refinement or not. */ /* Default: 1.0D+0 */ /* = 0.0 : No refinement is performed, and no error bounds are */ /* computed. */ /* = 1.0 : Use the extra-precise refinement algorithm. */ /* (other values are reserved for future use) */ /* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */ /* computations allowed for refinement. */ /* Default: 10 */ /* Aggressive: Set to 100 to permit convergence using approximate */ /* factorizations or factorizations other than LU. If */ /* the factorization uses a technique other than */ /* Gaussian elimination, the guarantees in */ /* err_bnds_norm and err_bnds_comp may no longer be */ /* trustworthy. */ /* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */ /* will attempt to find a solution with small componentwise */ /* relative error in the double-precision algorithm. Positive */ /* is true, 0.0 is false. */ /* Default: 1.0 (attempt componentwise convergence) */ /* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (3*N) */ /* INFO (output) INTEGER */ /* = 0: Successful exit. The solution to every right-hand side is */ /* guaranteed. */ /* < 0: If INFO = -i, the i-th argument had an illegal value */ /* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */ /* has been completed, but the factor U is exactly singular, so */ /* the solution and error bounds could not be computed. RCOND = 0 */ /* is returned. */ /* = N+J: The solution corresponding to the Jth right-hand side is */ /* not guaranteed. The solutions corresponding to other right- */ /* hand sides K with K > J may not be guaranteed as well, but */ /* only the first such right-hand side is reported. If a small */ /* componentwise error is not requested (PARAMS(3) = 0.0) then */ /* the Jth right-hand side is the first with a normwise error */ /* bound that is not guaranteed (the smallest J such */ /* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */ /* the Jth right-hand side is the first with either a normwise or */ /* componentwise error bound that is not guaranteed (the smallest */ /* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */ /* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */ /* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */ /* about all of the right-hand sides check ERR_BNDS_NORM or */ /* ERR_BNDS_COMP. */ /* ================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ err_bnds_comp_dim1 = *nrhs; err_bnds_comp_offset = 1 + err_bnds_comp_dim1; err_bnds_comp__ -= err_bnds_comp_offset; err_bnds_norm_dim1 = *nrhs; err_bnds_norm_offset = 1 + err_bnds_norm_dim1; err_bnds_norm__ -= err_bnds_norm_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --r__; --c__; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --berr; --params; --work; --rwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); equil = lsame_(fact, "E"); notran = lsame_(trans, "N"); smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; if (nofact || equil) { *(unsigned char *)equed = 'N'; rowequ = FALSE_; colequ = FALSE_; } else { rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); } /* Default is failure. If an input parameter is wrong or */ /* factorization fails, make everything look horrible. Only the */ /* pivot growth is set here, the rest is initialized in ZGERFSX. */ *rpvgrw = 0.; /* Test the input parameters. PARAMS is not tested until ZGERFSX. */ if (! nofact && ! equil && ! lsame_(fact, "F")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*lda < max(1,*n)) { *info = -6; } else if (*ldaf < max(1,*n)) { *info = -8; } else if (lsame_(fact, "F") && ! (rowequ || colequ || lsame_(equed, "N"))) { *info = -10; } else { if (rowequ) { rcmin = bignum; rcmax = 0.; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ d__1 = rcmin, d__2 = r__[j]; rcmin = min(d__1,d__2); /* Computing MAX */ d__1 = rcmax, d__2 = r__[j]; rcmax = max(d__1,d__2); /* L10: */ } if (rcmin <= 0.) { *info = -11; } else if (*n > 0) { rowcnd = max(rcmin,smlnum) / min(rcmax,bignum); } else { rowcnd = 1.; } } if (colequ && *info == 0) { rcmin = bignum; rcmax = 0.; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ d__1 = rcmin, d__2 = c__[j]; rcmin = min(d__1,d__2); /* Computing MAX */ d__1 = rcmax, d__2 = c__[j]; rcmax = max(d__1,d__2); /* L20: */ } if (rcmin <= 0.) { *info = -12; } else if (*n > 0) { colcnd = max(rcmin,smlnum) / min(rcmax,bignum); } else { colcnd = 1.; } } if (*info == 0) { if (*ldb < max(1,*n)) { *info = -14; } else if (*ldx < max(1,*n)) { *info = -16; } } } if (*info != 0) { i__1 = -(*info); xerbla_("ZGESVXX", &i__1); return 0; } if (equil) { /* Compute row and column scalings to equilibrate the matrix A. */ zgeequb_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, &amax, &infequ); if (infequ == 0) { /* Equilibrate the matrix. */ zlaqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, & colcnd, &amax, equed); rowequ = lsame_(equed, "R") || lsame_(equed, "B"); colequ = lsame_(equed, "C") || lsame_(equed, "B"); } /* If the scaling factors are not applied, set them to 1.0. */ if (! rowequ) { i__1 = *n; for (j = 1; j <= i__1; ++j) { r__[j] = 1.; } } if (! colequ) { i__1 = *n; for (j = 1; j <= i__1; ++j) { c__[j] = 1.; } } } /* Scale the right-hand side. */ if (notran) { if (rowequ) { zlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb); } } else { if (colequ) { zlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb); } } if (nofact || equil) { /* Compute the LU factorization of A. */ zlacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf); zgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info); /* Return if INFO is non-zero. */ if (*info > 0) { /* Pivot in column INFO is exactly 0 */ /* Compute the reciprocal pivot growth factor of the */ /* leading rank-deficient INFO columns of A. */ *rpvgrw = zla_rpvgrw__(n, info, &a[a_offset], lda, &af[af_offset], ldaf); return 0; } } /* Compute the reciprocal pivot growth factor RPVGRW. */ *rpvgrw = zla_rpvgrw__(n, n, &a[a_offset], lda, &af[af_offset], ldaf); /* Compute the solution matrix X. */ zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); zgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, info); /* Use iterative refinement to improve the computed solution and */ /* compute error bounds and backward error estimates for it. */ zgerfsx_(trans, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, & ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, &err_bnds_norm__[ err_bnds_norm_offset], &err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[1], &rwork[1], info); /* Scale solutions. */ if (colequ && notran) { zlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx); } else if (rowequ && ! notran) { zlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx); } return 0; /* End of ZGESVXX */ } /* zgesvxx_ */
/* ===================================================================== */ doublereal zla_gercond_x_(char *trans, integer *n, doublecomplex *a, integer *lda, doublecomplex *af, integer *ldaf, integer *ipiv, doublecomplex * x, integer *info, doublecomplex *work, doublereal *rwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; doublereal ret_val, d__1, d__2; doublecomplex z__1, z__2; /* Builtin functions */ double d_imag(doublecomplex *); void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j; doublereal tmp; integer kase; extern logical lsame_(char *, char *); integer isave[3]; doublereal anorm; extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *), xerbla_( char *, integer *); doublereal ainvnm; extern /* Subroutine */ int zgetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); logical notrans; /* -- LAPACK computational routine (version 3.4.2) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* September 2012 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function Definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; af_dim1 = *ldaf; af_offset = 1 + af_dim1; af -= af_offset; --ipiv; --x; --work; --rwork; /* Function Body */ ret_val = 0.; *info = 0; notrans = lsame_(trans, "N"); if (! notrans && ! lsame_(trans, "T") && ! lsame_( trans, "C")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*ldaf < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("ZLA_GERCOND_X", &i__1); return ret_val; } /* Compute norm of op(A)*op2(C). */ anorm = 0.; if (notrans) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * a_dim1; i__4 = j; z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i; z__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4] .r; // , expr subst z__1.r = z__2.r; z__1.i = z__2.i; // , expr subst tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), abs(d__2)); } rwork[i__] = tmp; anorm = max(anorm,tmp); } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { tmp = 0.; i__2 = *n; for (j = 1; j <= i__2; ++j) { i__3 = j + i__ * a_dim1; i__4 = j; z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4].i; z__2.i = a[i__3].r * x[i__4].i + a[i__3].i * x[i__4] .r; // , expr subst z__1.r = z__2.r; z__1.i = z__2.i; // , expr subst tmp += (d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1), abs(d__2)); } rwork[i__] = tmp; anorm = max(anorm,tmp); } } /* Quick return if possible. */ if (*n == 0) { ret_val = 1.; return ret_val; } else if (anorm == 0.) { return ret_val; } /* Estimate the norm of inv(op(A)). */ ainvnm = 0.; kase = 0; L10: zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == 2) { /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = rwork[i__4] * work[i__3].r; z__1.i = rwork[i__4] * work[i__3].i; // , expr subst work[i__2].r = z__1.r; work[i__2].i = z__1.i; // , expr subst } if (notrans) { zgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } else { zgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } /* Multiply by inv(X). */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; z_div(&z__1, &work[i__], &x[i__]); work[i__2].r = z__1.r; work[i__2].i = z__1.i; // , expr subst } } else { /* Multiply by inv(X**H). */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; z_div(&z__1, &work[i__], &x[i__]); work[i__2].r = z__1.r; work[i__2].i = z__1.i; // , expr subst } if (notrans) { zgetrs_("Conjugate transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[1], n, info); } else { zgetrs_("No transpose", n, &c__1, &af[af_offset], ldaf, &ipiv[ 1], &work[1], n, info); } /* Multiply by R. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__; i__3 = i__; i__4 = i__; z__1.r = rwork[i__4] * work[i__3].r; z__1.i = rwork[i__4] * work[i__3].i; // , expr subst work[i__2].r = z__1.r; work[i__2].i = z__1.i; // , expr subst } } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { ret_val = 1. / ainvnm; } return ret_val; }