示例#1
0
文件: zchkhp.c 项目: kstraube/hysim
/* Subroutine */ int zchkhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, 
	integer *nmax, doublecomplex *a, doublecomplex *afac, doublecomplex *
	ainv, doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char uplos[1*2] = "U" "L";

    /* Format strings */
    static char fmt_9999[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(\002 UPLO = '\002,a1,\002', N =\002,i5,\002, "
	    "NRHS=\002,i3,\002, type \002,i2,\002, test(\002,i2,\002) =\002,g"
	    "12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4, i__5;

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    integer i__, j, k, n, i1, i2, in, kl, ku, nt, lda, npp, ioff, mode, imat, 
	    info;
    char path[3], dist[1];
    integer irhs, nrhs;
    char uplo[1], type__[1];
    integer nrun;
    extern /* Subroutine */ int alahd_(integer *, char *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    extern logical lsame_(char *, char *);
    doublereal rcond;
    integer nimat;
    doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    integer iuplo, izero, nerrs;
    extern /* Subroutine */ int zppt02_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *), zppt03_(char *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublereal *);
    logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zppt05_(char *, integer *, integer *, 
	     doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *, 
	     doublereal *);
    char xtype[1];
    extern /* Subroutine */ int zlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), alaerh_(char *, 
	    char *, integer *, integer *, char *, integer *, integer *, 
	    integer *, integer *, integer *, integer *, integer *, integer *, 
	    integer *);
    doublereal rcondc;
    char packit[1];
    extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *, 
	     integer *);
    logical trfcon;
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zlarhs_(char *, 
	    char *, char *, char *, integer *, integer *, integer *, integer *
, integer *, doublecomplex *, integer *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, integer *, integer *), zlatms_(integer *, integer *, char *, 
	    integer *, char *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, char *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), 
	    zhprfs_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, doublereal *, integer *), zhptrf_(char *, 
	     integer *, doublecomplex *, integer *, integer *);
    doublereal result[8];
    extern /* Subroutine */ int zhptri_(char *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zhptrs_(char *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     integer *, integer *), zerrsy_(char *, integer *)
	    ;

    /* Fortran I/O blocks */
    static cilist io___38 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZCHKHP tests ZHPTRF, -TRI, -TRS, -RFS, and -CON */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NNS     (input) INTEGER */
/*          The number of values of NRHS contained in the vector NSVAL. */

/*  NSVAL   (input) INTEGER array, dimension (NNS) */
/*          The values of the number of right hand sides NRHS. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */
/*          where NSMAX is the largest entry in NSVAL. */

/*  X       (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) */

/*  WORK    (workspace) COMPLEX*16 array, dimension */
/*                      (NMAX*max(2,NSMAX)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, */
/*                                 dimension (NMAX+2*NSMAX) */

/*  IWORK   (workspace) INTEGER array, dimension (NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nsval;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrsy_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	izero = 0;
	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L160;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L160;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		*(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1];
		if (lsame_(uplo, "U")) {
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with ZLATB4 and generate a test matrix */
/*              with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L150;
		}

/*              For types 3-6, zero one or more rows and columns of */
/*              the matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

/*              Compute the L*D*L' or U*D*U' factorization of the matrix. */

		npp = n * (n + 1) / 2;
		zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
		s_copy(srnamc_1.srnamt, "ZHPTRF", (ftnlen)6, (ftnlen)6);
		zhptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*              Adjust the expected value of INFO to account for */
/*              pivoting. */

		k = izero;
		if (k > 0) {
L100:
		    if (iwork[k] < 0) {
			if (iwork[k] != -k) {
			    k = -iwork[k];
			    goto L100;
			}
		    } else if (iwork[k] != k) {
			k = iwork[k];
			goto L100;
		    }
		}

/*              Check error code from ZHPTRF. */

		if (info != k) {
		    alaerh_(path, "ZHPTRF", &info, &k, uplo, &n, &n, &c_n1, &
			    c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}
		if (info != 0) {
		    trfcon = TRUE_;
		} else {
		    trfcon = FALSE_;
		}

/* +    TEST 1 */
/*              Reconstruct matrix from factors and compute residual. */

		zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1], &lda, 
			&rwork[1], result);
		nt = 1;

/* +    TEST 2 */
/*              Form the inverse and compute the residual. */

		if (! trfcon) {
		    zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
		    s_copy(srnamc_1.srnamt, "ZHPTRI", (ftnlen)6, (ftnlen)6);
		    zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &info);

/*              Check error code from ZHPTRI. */

		    if (info != 0) {
			alaerh_(path, "ZHPTRI", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zppt03_(uplo, &n, &a[1], &ainv[1], &work[1], &lda, &rwork[
			    1], &rcondc, &result[1]);
		    nt = 2;
		}

/*              Print information about the tests that did not pass */
/*              the threshold. */

		i__3 = nt;
		for (k = 1; k <= i__3; ++k) {
		    if (result[k - 1] >= *thresh) {
			if (nfail == 0 && nerrs == 0) {
			    alahd_(nout, path);
			}
			io___38.ciunit = *nout;
			s_wsfe(&io___38);
			do_fio(&c__1, uplo, (ftnlen)1);
			do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer));
			do_fio(&c__1, (char *)&result[k - 1], (ftnlen)sizeof(
				doublereal));
			e_wsfe();
			++nfail;
		    }
/* L110: */
		}
		nrun += nt;

/*              Do only the condition estimate if INFO is not 0. */

		if (trfcon) {
		    rcondc = 0.;
		    goto L140;
		}

		i__3 = *nns;
		for (irhs = 1; irhs <= i__3; ++irhs) {
		    nrhs = nsval[irhs];

/* +    TEST 3 */
/*              Solve and compute residual for  A * X = B. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, &nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';
		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda);

		    s_copy(srnamc_1.srnamt, "ZHPTRS", (ftnlen)6, (ftnlen)6);
		    zhptrs_(uplo, &n, &nrhs, &afac[1], &iwork[1], &x[1], &lda, 
			     &info);

/*              Check error code from ZHPTRS. */

		    if (info != 0) {
			alaerh_(path, "ZHPTRS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zlacpy_("Full", &n, &nrhs, &b[1], &lda, &work[1], &lda);
		    zppt02_(uplo, &n, &nrhs, &a[1], &x[1], &lda, &work[1], &
			    lda, &rwork[1], &result[2]);

/* +    TEST 4 */
/*              Check solution from generated exact solution. */

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[3]);

/* +    TESTS 5, 6, and 7 */
/*              Use iterative refinement to improve the solution. */

		    s_copy(srnamc_1.srnamt, "ZHPRFS", (ftnlen)6, (ftnlen)6);
		    zhprfs_(uplo, &n, &nrhs, &a[1], &afac[1], &iwork[1], &b[1]
, &lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], 
			    &work[1], &rwork[(nrhs << 1) + 1], &info);

/*              Check error code from ZHPRFS. */

		    if (info != 0) {
			alaerh_(path, "ZHPRFS", &info, &c__0, uplo, &n, &n, &
				c_n1, &c_n1, &nrhs, &imat, &nfail, &nerrs, 
				nout);
		    }

		    zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, &rcondc, &
			    result[4]);
		    zppt05_(uplo, &n, &nrhs, &a[1], &b[1], &lda, &x[1], &lda, 
			    &xact[1], &lda, &rwork[1], &rwork[nrhs + 1], &
			    result[5]);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = 3; k <= 7; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___41.ciunit = *nout;
			    s_wsfe(&io___41);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L120: */
		    }
		    nrun += 5;
/* L130: */
		}

/* +    TEST 8 */
/*              Get an estimate of RCOND = 1/CNDNUM. */

L140:
		anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);
		s_copy(srnamc_1.srnamt, "ZHPCON", (ftnlen)6, (ftnlen)6);
		zhpcon_(uplo, &n, &afac[1], &iwork[1], &anorm, &rcond, &work[
			1], &info);

/*              Check error code from ZHPCON. */

		if (info != 0) {
		    alaerh_(path, "ZHPCON", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		}

		result[7] = dget06_(&rcond, &rcondc);

/*              Print the test ratio if it is .GE. THRESH. */

		if (result[7] >= *thresh) {
		    if (nfail == 0 && nerrs == 0) {
			alahd_(nout, path);
		    }
		    io___43.ciunit = *nout;
		    s_wsfe(&io___43);
		    do_fio(&c__1, uplo, (ftnlen)1);
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof(
			    doublereal));
		    e_wsfe();
		    ++nfail;
		}
		++nrun;
L150:
		;
	    }
L160:
	    ;
	}
/* L170: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZCHKHP */

} /* zchkhp_ */
示例#2
0
/* Subroutine */ int zhpsvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, doublecomplex *ap, doublecomplex *afp, integer *ipiv, 
	doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx, 
	doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex *
	work, doublereal *rwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or   
    A = L*D*L**H to compute the solution to a complex system of linear   
    equations A * X = B, where A is an N-by-N Hermitian matrix stored   
    in packed format and X and B are N-by-NRHS matrices.   

    Error bounds on the solution and a condition estimate are also   
    provided.   

    Description   
    ===========   

    The following steps are performed:   

    1. If FACT = 'N', the diagonal pivoting method is used to factor A as   
          A = U * D * U**H,  if UPLO = 'U', or   
          A = L * D * L**H,  if UPLO = 'L',   
       where U (or L) is a product of permutation and unit upper (lower)   
       triangular matrices and D is Hermitian and block diagonal with   
       1-by-1 and 2-by-2 diagonal blocks.   

    2. If some D(i,i)=0, so that D is exactly singular, then the routine   
       returns with INFO = i. Otherwise, the factored form of A is used   
       to estimate the condition number of the matrix A.  If the   
       reciprocal of the condition number is less than machine precision,   
       INFO = N+1 is returned as a warning, but the routine still goes on   
       to solve for X and compute error bounds as described below.   

    3. The system of equations is solved for X using the factored form   
       of A.   

    4. Iterative refinement is applied to improve the computed solution   
       matrix and calculate error bounds and backward error estimates   
       for it.   

    Arguments   
    =========   

    FACT    (input) CHARACTER*1   
            Specifies whether or not the factored form of A has been   
            supplied on entry.   
            = 'F':  On entry, AFP and IPIV contain the factored form of   
                    A.  AFP and IPIV will not be modified.   
            = 'N':  The matrix A will be copied to AFP and factored.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X.  NRHS >= 0.   

    AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)   
            The upper or lower triangle of the Hermitian matrix A, packed   
            columnwise in a linear array.  The j-th column of A is stored   
            in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

    AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            If FACT = 'F', then AFP is an input argument and on entry   
            contains the block diagonal matrix D and the multipliers used   
            to obtain the factor U or L from the factorization   
            A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as   
            a packed triangular matrix in the same storage format as A.   

            If FACT = 'N', then AFP is an output argument and on exit   
            contains the block diagonal matrix D and the multipliers used   
            to obtain the factor U or L from the factorization   
            A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as   
            a packed triangular matrix in the same storage format as A.   

    IPIV    (input or output) INTEGER array, dimension (N)   
            If FACT = 'F', then IPIV is an input argument and on entry   
            contains details of the interchanges and the block structure   
            of D, as determined by ZHPTRF.   
            If IPIV(k) > 0, then rows and columns k and IPIV(k) were   
            interchanged and D(k,k) is a 1-by-1 diagonal block.   
            If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and   
            columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)   
            is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =   
            IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were   
            interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.   

            If FACT = 'N', then IPIV is an output argument and on exit   
            contains details of the interchanges and the block structure   
            of D, as determined by ZHPTRF.   

    B       (input) COMPLEX*16 array, dimension (LDB,NRHS)   
            The N-by-NRHS right hand side matrix B.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    X       (output) COMPLEX*16 array, dimension (LDX,NRHS)   
            If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.   

    LDX     (input) INTEGER   
            The leading dimension of the array X.  LDX >= max(1,N).   

    RCOND   (output) DOUBLE PRECISION   
            The estimate of the reciprocal condition number of the matrix   
            A.  If RCOND is less than the machine precision (in   
            particular, if RCOND = 0), the matrix is singular to working   
            precision.  This condition is indicated by a return code of   
            INFO > 0.   

    FERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The estimated forward error bound for each solution vector   
            X(j) (the j-th column of the solution matrix X).   
            If XTRUE is the true solution corresponding to X(j), FERR(j)   
            is an estimated upper bound for the magnitude of the largest   
            element in (X(j) - XTRUE) divided by the magnitude of the   
            largest element in X(j).  The estimate is as reliable as   
            the estimate for RCOND, and is almost always a slight   
            overestimate of the true error.   

    BERR    (output) DOUBLE PRECISION array, dimension (NRHS)   
            The componentwise relative backward error of each solution   
            vector X(j) (i.e., the smallest relative change in   
            any element of A or B that makes X(j) an exact solution).   

    WORK    (workspace) COMPLEX*16 array, dimension (2*N)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, and i is   
                  <= N:  D(i,i) is exactly zero.  The factorization   
                         has been completed but the factor D is exactly   
                         singular, so the solution and error bounds could   
                         not be computed. RCOND = 0 is returned.   
                  = N+1: D is nonsingular, but RCOND is less than machine   
                         precision, meaning that the matrix is singular   
                         to working precision.  Nevertheless, the   
                         solution and error bounds are computed because   
                         there are a number of situations where the   
                         computed solution can be more accurate than the   
                         value of RCOND would suggest.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    static doublereal anorm;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    static logical nofact;
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int zhpcon_(char *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, integer *), zhprfs_(char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublecomplex *, doublereal *, 
	    integer *), zhptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zhptrs_(char *, integer *, integer 
	    *, doublecomplex *, integer *, doublecomplex *, integer *, 
	    integer *);


    --ap;
    --afp;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1 * 1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    if (! nofact && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldx < max(1,*n)) {
	*info = -11;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPSVX", &i__1);
	return 0;
    }

    if (nofact) {

/*        Compute the factorization A = U*D*U' or A = L*D*L'. */

	i__1 = *n * (*n + 1) / 2;
	zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
	zhptrf_(uplo, n, &afp[1], &ipiv[1], info);

/*        Return if INFO is non-zero. */

	if (*info != 0) {
	    if (*info > 0) {
		*rcond = 0.;
	    }
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = zlanhp_("I", uplo, n, &ap[1], &rwork[1]);

/*     Compute the reciprocal of the condition number of A. */

    zhpcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info);

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
    }

/*     Compute the solution vectors X. */

    zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    zhptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solutions and   
       compute error bounds and backward error estimates for them. */

    zhprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
	    x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);

    return 0;

/*     End of ZHPSVX */

} /* zhpsvx_ */
示例#3
0
文件: zhpsv.c 项目: MichaelH13/sdkpub
/* Subroutine */ int zhpsv_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *ap, integer *ipiv, doublecomplex *b, integer *ldb, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZHPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N Hermitian matrix stored in packed format and X   
    and B are N-by-NRHS matrices.   

    The diagonal pivoting method is used to factor A as   
       A = U * D * U**H,  if UPLO = 'U', or   
       A = L * D * L**H,  if UPLO = 'L',   
    where U (or L) is a product of permutation and unit upper (lower)   
    triangular matrices, D is Hermitian and block diagonal with 1-by-1   
    and 2-by-2 diagonal blocks.  The factored form of A is then used to   
    solve the system of equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, the block diagonal matrix D and the multipliers used   
            to obtain the factor U or L from the factorization   
            A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as   
            a packed triangular matrix in the same storage format as A.   

    IPIV    (output) INTEGER array, dimension (N)   
            Details of the interchanges and the block structure of D, as   
            determined by ZHPTRF.  If IPIV(k) > 0, then rows and columns   
            k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1   
            diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,   
            then rows and columns k-1 and -IPIV(k) were interchanged and   
            D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and   
            IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and   
            -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2   
            diagonal block.   

    B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization   
                  has been completed, but the block diagonal matrix D is   
                  exactly singular, so the solution could not be   
                  computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), zhptrf_(
	    char *, integer *, doublecomplex *, integer *, integer *),
	     zhptrs_(char *, integer *, integer *, doublecomplex *, integer *,
	     doublecomplex *, integer *, integer *);

    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPSV ", &i__1);
	return 0;
    }

/*     Compute the factorization A = U*D*U' or A = L*D*L'. */

    zhptrf_(uplo, n, &ap[1], &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	zhptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of ZHPSV */

} /* zhpsv_ */
示例#4
0
文件: zdrvhp.c 项目: zangel/uquad
/* Subroutine */ int zdrvhp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublecomplex *a, doublecomplex *afac, doublecomplex *ainv, 
	doublecomplex *b, doublecomplex *x, doublecomplex *xact, 
	doublecomplex *work, doublereal *rwork, integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5, i__6[2];
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    static char fact[1];
    static integer ioff, mode, imat, info;
    static char path[3], dist[1], uplo[1], type__[1];
    static integer nrun, i__, j, k, n, ifact, nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    static integer nbmin;
    static doublereal rcond;
    static integer nimat;
    static doublereal anorm;
    extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, integer *, doublereal *, doublereal *
	    ), zhpt01_(char *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, integer *, doublereal *, doublereal *);
    static integer iuplo, izero, i1, i2, k1, nerrs;
    extern /* Subroutine */ int zppt02_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    integer *, doublereal *, doublereal *), zppt05_(char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *);
    static logical zerot;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    static char xtype[1];
    extern /* Subroutine */ int zhpsv_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *), zlatb4_(char *, integer *, integer *, integer *, char *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    char *), aladhd_(integer *, char *);
    static integer nb, in, kl;
    extern /* Subroutine */ int alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    static integer ku, nt;
    static doublereal rcondc;
    static char packit[1];
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    static doublereal cndnum;
    extern /* Subroutine */ int zlaipd_(integer *, doublecomplex *, integer *,
	     integer *);
    static doublereal ainvnm;
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    extern /* Subroutine */ int xlaenv_(integer *, integer *), zlacpy_(char *,
	     integer *, integer *, doublecomplex *, integer *, doublecomplex *
	    , integer *), zlarhs_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, integer *, integer *), zlaset_(char *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlatms_(integer *, integer *, char *, integer *, char *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *, char *, doublecomplex *, integer *, doublecomplex *, 
	    integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zhptrf_(char *, integer *, doublecomplex *, 
	    integer *, integer *), zhptri_(char *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zerrvx_(char *, integer *), zhpsvx_(char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
	     doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
	    doublereal *, integer *);
    static integer lda, npp;

    /* Fortran I/O blocks */
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___45 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    ZDRVHP tests the driver routines ZHPSV and -SVX.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix dimension N.   

    NRHS    (input) INTEGER   
            The number of right hand side vectors to be generated for   
            each linear system.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    NMAX    (input) INTEGER   
            The maximum value permitted for N, used in dimensioning the   
            work arrays.   

    A       (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AFAC    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    AINV    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*(NMAX+1)/2)   

    B       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    X       (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    XACT    (workspace) COMPLEX*16 array, dimension (NMAX*NRHS)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (NMAX*max(2,NRHS))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS)   

    IWORK   (workspace) INTEGER array, dimension (NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    *(unsigned char *)path = 'Z';
    s_copy(path + 1, "HP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }

/*     Test the error exits */

    if (*tsterr) {
	zerrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Set the block size and minimum block size for testing. */

    nb = 1;
    nbmin = 2;
    xlaenv_(&c__1, &nb);
    xlaenv_(&c__2, &nbmin);

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with ZLATB4 and generate a test matrix   
                with ZLATMS. */

		zlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "ZLATMS", (ftnlen)6, (ftnlen)6);
		zlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from ZLATMS. */

		if (info != 0) {
		    alaerh_(path, "ZLATMS", &info, &c__0, uplo, &n, &n, &c_n1,
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the   
                matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				i__4 = ioff;
				a[i__4].r = 0., a[i__4].i = 0.;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				i__4 = ioff + i__;
				a[i__4].r = 0., a[i__4].i = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    i__5 = ioff + i__;
				    a[i__5].r = 0., a[i__5].i = 0.;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

/*              Set the imaginary part of the diagonals. */

		if (iuplo == 1) {
		    zlaipd_(&n, &a[1], &c__2, &c__1);
		} else {
		    zlaipd_(&n, &a[1], &n, &c_n1);
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with   
                   the value returned by ZHPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = zlanhp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zhptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			zcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			zhptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = zlanhp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen)6);
		    zlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test ZHPSV  --- */

		    if (ifact == 2) {
			zcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			zlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using ZHPSV. */

			s_copy(srnamc_1.srnamt, "ZHPSV ", (ftnlen)6, (ftnlen)
				6);
			zhpsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for   
                      pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from ZHPSV . */

			if (info != k) {
			    alaerh_(path, "ZHPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute   
                      residual. */

			zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
				, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass   
                      the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___42.ciunit = *nout;
				s_wsfe(&io___42);
				do_fio(&c__1, "ZHPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test ZHPSVX --- */

		    if (ifact == 2 && npp > 0) {
			zlaset_("Full", &npp, &c__1, &c_b64, &c_b64, &afac[1],
				 &npp);
		    }
		    zlaset_("Full", &n, nrhs, &c_b64, &c_b64, &x[1], &lda);

/*                 Solve the system and compute the condition number and   
                   error bounds using ZHPSVX. */

		    s_copy(srnamc_1.srnamt, "ZHPSVX", (ftnlen)6, (ftnlen)6);
		    zhpsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &rwork[(*nrhs << 1) + 
			    1], &info);

/*                 Adjust the expected value of INFO to account for   
                   pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from ZHPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__6[0] = 1, a__1[0] = fact;
			i__6[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__6, &c__2, (ftnlen)2);
			alaerh_(path, "ZHPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute   
                         residual. */

			    zhpt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			zlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			zppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			zget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			zppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from ZHPSVX with the computed value   
                   in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___45.ciunit = *nout;
			    s_wsfe(&io___45);
			    do_fio(&c__1, "ZHPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of ZDRVHP */

} /* zdrvhp_ */