/* Subroutine */ int zsytf2_rook_(char *uplo, integer *n, doublecomplex *a, integer *lda, integer *ipiv, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2; doublecomplex z__1, z__2, z__3, z__4, z__5, z__6; /* Builtin functions */ double sqrt(doublereal), d_imag(doublecomplex *); void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ integer i__, j, k, p; doublecomplex t, d11, d12, d21, d22; integer ii, kk, kp; doublecomplex wk, wkm1, wkp1; logical done; integer imax, jmax; extern /* Subroutine */ int zsyr_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); doublereal alpha; extern logical lsame_(char *, char *); doublereal dtemp, sfmin; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *); integer itemp, kstep; logical upper; extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); doublereal absakk; extern /* Subroutine */ int xerbla_(char *, integer *); doublereal colmax; extern integer izamax_(integer *, doublecomplex *, integer *); doublereal rowmax; /* -- LAPACK computational routine (version 3.5.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2013 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZSYTF2_ROOK", &i__1); return 0; } /* Initialize ALPHA for use in choosing pivot block size. */ alpha = (sqrt(17.) + 1.) / 8.; /* Compute machine safe minimum */ sfmin = dlamch_("S"); if (upper) { /* Factorize A as U*D*U**T using the upper triangle of A */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* 1 or 2 */ k = *n; L10: /* If K < 1, exit from loop */ if (k < 1) { goto L70; } kstep = 1; p = k; /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ i__1 = k + k * a_dim1; absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), abs(d__2)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value. */ /* Determine both COLMAX and IMAX. */ if (k > 1) { i__1 = k - 1; imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1); i__1 = imax + k * a_dim1; colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + k * a_dim1]), abs(d__2)); } else { colmax = 0.; } if (max(absakk,colmax) == 0.) { /* Column K is zero or underflow: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; } else { /* Test for interchange */ /* Equivalent to testing for (used to handle NaN and Inf) */ /* ABSAKK.GE.ALPHA*COLMAX */ if (! (absakk < alpha * colmax)) { /* no interchange, */ /* use 1-by-1 pivot block */ kp = k; } else { done = FALSE_; /* Loop until pivot found */ L12: /* Begin pivot search loop body */ /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value. */ /* Determine both ROWMAX and JMAX. */ if (imax != k) { i__1 = k - imax; jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) * a_dim1], lda); i__1 = imax + jmax * a_dim1; rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(& a[imax + jmax * a_dim1]), abs(d__2)); } else { rowmax = 0.; } if (imax > 1) { i__1 = imax - 1; itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1); i__1 = itemp + imax * a_dim1; dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[ itemp + imax * a_dim1]), abs(d__2)); if (dtemp > rowmax) { rowmax = dtemp; jmax = itemp; } } /* Equivalent to testing for (used to handle NaN and Inf) */ /* CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */ i__1 = imax + imax * a_dim1; if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) { /* interchange rows and columns K and IMAX, */ /* use 1-by-1 pivot block */ kp = imax; done = TRUE_; /* Equivalent to testing for ROWMAX .EQ. COLMAX, */ /* used to handle NaN and Inf */ } else if (p == jmax || rowmax <= colmax) { /* interchange rows and columns K+1 and IMAX, */ /* use 2-by-2 pivot block */ kp = imax; kstep = 2; done = TRUE_; } else { /* Pivot NOT found, set variables and repeat */ p = imax; colmax = rowmax; imax = jmax; } /* End pivot search loop body */ if (! done) { goto L12; } } /* Swap TWO rows and TWO columns */ /* First swap */ if (kstep == 2 && p != k) { /* Interchange rows and column K and P in the leading */ /* submatrix A(1:k,1:k) if we have a 2-by-2 pivot */ if (p > 1) { i__1 = p - 1; zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &c__1); } if (p < k - 1) { i__1 = k - p - 1; zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) * a_dim1], lda); } i__1 = k + k * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = k + k * a_dim1; i__2 = p + p * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = p + p * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst } /* Second swap */ kk = k - kstep + 1; if (kp != kk) { /* Interchange rows and columns KK and KP in the leading */ /* submatrix A(1:k,1:k) */ if (kp > 1) { i__1 = kp - 1; zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &c__1); } if (kk > 1 && kp < kk - 1) { i__1 = kk - kp - 1; zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + ( kp + 1) * a_dim1], lda); } i__1 = kk + kk * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = kk + kk * a_dim1; i__2 = kp + kp * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = kp + kp * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst if (kstep == 2) { i__1 = k - 1 + k * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = k - 1 + k * a_dim1; i__2 = kp + k * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = kp + k * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst } } /* Update the leading submatrix */ if (kstep == 1) { /* 1-by-1 pivot block D(k): column k now holds */ /* W(k) = U(k)*D(k) */ /* where U(k) is the k-th column of U */ if (k > 1) { /* Perform a rank-1 update of A(1:k-1,1:k-1) and */ /* store U(k) in column k */ i__1 = k + k * a_dim1; if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), abs(d__2)) >= sfmin) { /* Perform a rank-1 update of A(1:k-1,1:k-1) as */ /* A := A - U(k)*D(k)*U(k)**T */ /* = A - W(k)*1/D(k)*W(k)**T */ z_div(&z__1, &c_b1, &a[k + k * a_dim1]); d11.r = z__1.r; d11.i = z__1.i; // , expr subst i__1 = k - 1; z__1.r = -d11.r; z__1.i = -d11.i; // , expr subst zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, & a[a_offset], lda); /* Store U(k) in column k */ i__1 = k - 1; zscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1); } else { /* Store L(k) in column K */ i__1 = k + k * a_dim1; d11.r = a[i__1].r; d11.i = a[i__1].i; // , expr subst i__1 = k - 1; for (ii = 1; ii <= i__1; ++ii) { i__2 = ii + k * a_dim1; z_div(&z__1, &a[ii + k * a_dim1], &d11); a[i__2].r = z__1.r; a[i__2].i = z__1.i; // , expr subst /* L16: */ } /* Perform a rank-1 update of A(k+1:n,k+1:n) as */ /* A := A - U(k)*D(k)*U(k)**T */ /* = A - W(k)*(1/D(k))*W(k)**T */ /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */ i__1 = k - 1; z__1.r = -d11.r; z__1.i = -d11.i; // , expr subst zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, & a[a_offset], lda); } } } else { /* 2-by-2 pivot block D(k): columns k and k-1 now hold */ /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */ /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */ /* of U */ /* Perform a rank-2 update of A(1:k-2,1:k-2) as */ /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */ /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */ /* and store L(k) and L(k+1) in columns k and k+1 */ if (k > 2) { i__1 = k - 1 + k * a_dim1; d12.r = a[i__1].r; d12.i = a[i__1].i; // , expr subst z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &d12); d22.r = z__1.r; d22.i = z__1.i; // , expr subst z_div(&z__1, &a[k + k * a_dim1], &d12); d11.r = z__1.r; d11.i = z__1.i; // , expr subst z__3.r = d11.r * d22.r - d11.i * d22.i; z__3.i = d11.r * d22.i + d11.i * d22.r; // , expr subst z__2.r = z__3.r - 1.; z__2.i = z__3.i - 0.; // , expr subst z_div(&z__1, &c_b1, &z__2); t.r = z__1.r; t.i = z__1.i; // , expr subst for (j = k - 2; j >= 1; --j) { i__1 = j + (k - 1) * a_dim1; z__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i; z__3.i = d11.r * a[i__1].i + d11.i * a[i__1] .r; // , expr subst i__2 = j + k * a_dim1; z__2.r = z__3.r - a[i__2].r; z__2.i = z__3.i - a[i__2] .i; // , expr subst z__1.r = t.r * z__2.r - t.i * z__2.i; z__1.i = t.r * z__2.i + t.i * z__2.r; // , expr subst wkm1.r = z__1.r; wkm1.i = z__1.i; // , expr subst i__1 = j + k * a_dim1; z__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i; z__3.i = d22.r * a[i__1].i + d22.i * a[i__1] .r; // , expr subst i__2 = j + (k - 1) * a_dim1; z__2.r = z__3.r - a[i__2].r; z__2.i = z__3.i - a[i__2] .i; // , expr subst z__1.r = t.r * z__2.r - t.i * z__2.i; z__1.i = t.r * z__2.i + t.i * z__2.r; // , expr subst wk.r = z__1.r; wk.i = z__1.i; // , expr subst for (i__ = j; i__ >= 1; --i__) { i__1 = i__ + j * a_dim1; i__2 = i__ + j * a_dim1; z_div(&z__4, &a[i__ + k * a_dim1], &d12); z__3.r = z__4.r * wk.r - z__4.i * wk.i; z__3.i = z__4.r * wk.i + z__4.i * wk.r; // , expr subst z__2.r = a[i__2].r - z__3.r; z__2.i = a[i__2].i - z__3.i; // , expr subst z_div(&z__6, &a[i__ + (k - 1) * a_dim1], &d12); z__5.r = z__6.r * wkm1.r - z__6.i * wkm1.i; z__5.i = z__6.r * wkm1.i + z__6.i * wkm1.r; // , expr subst z__1.r = z__2.r - z__5.r; z__1.i = z__2.i - z__5.i; // , expr subst a[i__1].r = z__1.r; a[i__1].i = z__1.i; // , expr subst /* L20: */ } /* Store U(k) and U(k-1) in cols k and k-1 for row J */ i__1 = j + k * a_dim1; z_div(&z__1, &wk, &d12); a[i__1].r = z__1.r; a[i__1].i = z__1.i; // , expr subst i__1 = j + (k - 1) * a_dim1; z_div(&z__1, &wkm1, &d12); a[i__1].r = z__1.r; a[i__1].i = z__1.i; // , expr subst /* L30: */ } } } } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -p; ipiv[k - 1] = -kp; } /* Decrease K and return to the start of the main loop */ k -= kstep; goto L10; } else { /* Factorize A as L*D*L**T using the lower triangle of A */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2 */ k = 1; L40: /* If K > N, exit from loop */ if (k > *n) { goto L70; } kstep = 1; p = k; /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ i__1 = k + k * a_dim1; absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), abs(d__2)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value. */ /* Determine both COLMAX and IMAX. */ if (k < *n) { i__1 = *n - k; imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1); i__1 = imax + k * a_dim1; colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + k * a_dim1]), abs(d__2)); } else { colmax = 0.; } if (max(absakk,colmax) == 0.) { /* Column K is zero or underflow: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; } else { /* Test for interchange */ /* Equivalent to testing for (used to handle NaN and Inf) */ /* ABSAKK.GE.ALPHA*COLMAX */ if (! (absakk < alpha * colmax)) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else { done = FALSE_; /* Loop until pivot found */ L42: /* Begin pivot search loop body */ /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value. */ /* Determine both ROWMAX and JMAX. */ if (imax != k) { i__1 = imax - k; jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda); i__1 = imax + jmax * a_dim1; rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(& a[imax + jmax * a_dim1]), abs(d__2)); } else { rowmax = 0.; } if (imax < *n) { i__1 = *n - imax; itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1] , &c__1); i__1 = itemp + imax * a_dim1; dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[ itemp + imax * a_dim1]), abs(d__2)); if (dtemp > rowmax) { rowmax = dtemp; jmax = itemp; } } /* Equivalent to testing for (used to handle NaN and Inf) */ /* CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */ i__1 = imax + imax * a_dim1; if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) { /* interchange rows and columns K and IMAX, */ /* use 1-by-1 pivot block */ kp = imax; done = TRUE_; /* Equivalent to testing for ROWMAX .EQ. COLMAX, */ /* used to handle NaN and Inf */ } else if (p == jmax || rowmax <= colmax) { /* interchange rows and columns K+1 and IMAX, */ /* use 2-by-2 pivot block */ kp = imax; kstep = 2; done = TRUE_; } else { /* Pivot NOT found, set variables and repeat */ p = imax; colmax = rowmax; imax = jmax; } /* End pivot search loop body */ if (! done) { goto L42; } } /* Swap TWO rows and TWO columns */ /* First swap */ if (kstep == 2 && p != k) { /* Interchange rows and column K and P in the trailing */ /* submatrix A(k:n,k:n) if we have a 2-by-2 pivot */ if (p < *n) { i__1 = *n - p; zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p * a_dim1], &c__1); } if (p > k + 1) { i__1 = p - k - 1; zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k + 1) * a_dim1], lda); } i__1 = k + k * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = k + k * a_dim1; i__2 = p + p * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = p + p * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst } /* Second swap */ kk = k + kstep - 1; if (kp != kk) { /* Interchange rows and columns KK and KP in the trailing */ /* submatrix A(k:n,k:n) */ if (kp < *n) { i__1 = *n - kp; zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 + kp * a_dim1], &c__1); } if (kk < *n && kp > kk + 1) { i__1 = kp - kk - 1; zswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + ( kk + 1) * a_dim1], lda); } i__1 = kk + kk * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = kk + kk * a_dim1; i__2 = kp + kp * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = kp + kp * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst if (kstep == 2) { i__1 = k + 1 + k * a_dim1; t.r = a[i__1].r; t.i = a[i__1].i; // , expr subst i__1 = k + 1 + k * a_dim1; i__2 = kp + k * a_dim1; a[i__1].r = a[i__2].r; a[i__1].i = a[i__2].i; // , expr subst i__1 = kp + k * a_dim1; a[i__1].r = t.r; a[i__1].i = t.i; // , expr subst } } /* Update the trailing submatrix */ if (kstep == 1) { /* 1-by-1 pivot block D(k): column k now holds */ /* W(k) = L(k)*D(k) */ /* where L(k) is the k-th column of L */ if (k < *n) { /* Perform a rank-1 update of A(k+1:n,k+1:n) and */ /* store L(k) in column k */ i__1 = k + k * a_dim1; if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), abs(d__2)) >= sfmin) { /* Perform a rank-1 update of A(k+1:n,k+1:n) as */ /* A := A - L(k)*D(k)*L(k)**T */ /* = A - W(k)*(1/D(k))*W(k)**T */ z_div(&z__1, &c_b1, &a[k + k * a_dim1]); d11.r = z__1.r; d11.i = z__1.i; // , expr subst i__1 = *n - k; z__1.r = -d11.r; z__1.i = -d11.i; // , expr subst zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], & c__1, &a[k + 1 + (k + 1) * a_dim1], lda); /* Store L(k) in column k */ i__1 = *n - k; zscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1); } else { /* Store L(k) in column k */ i__1 = k + k * a_dim1; d11.r = a[i__1].r; d11.i = a[i__1].i; // , expr subst i__1 = *n; for (ii = k + 1; ii <= i__1; ++ii) { i__2 = ii + k * a_dim1; z_div(&z__1, &a[ii + k * a_dim1], &d11); a[i__2].r = z__1.r; a[i__2].i = z__1.i; // , expr subst /* L46: */ } /* Perform a rank-1 update of A(k+1:n,k+1:n) as */ /* A := A - L(k)*D(k)*L(k)**T */ /* = A - W(k)*(1/D(k))*W(k)**T */ /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */ i__1 = *n - k; z__1.r = -d11.r; z__1.i = -d11.i; // , expr subst zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], & c__1, &a[k + 1 + (k + 1) * a_dim1], lda); } } } else { /* 2-by-2 pivot block D(k): columns k and k+1 now hold */ /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */ /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */ /* of L */ /* Perform a rank-2 update of A(k+2:n,k+2:n) as */ /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */ /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */ /* and store L(k) and L(k+1) in columns k and k+1 */ if (k < *n - 1) { i__1 = k + 1 + k * a_dim1; d21.r = a[i__1].r; d21.i = a[i__1].i; // , expr subst z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &d21); d11.r = z__1.r; d11.i = z__1.i; // , expr subst z_div(&z__1, &a[k + k * a_dim1], &d21); d22.r = z__1.r; d22.i = z__1.i; // , expr subst z__3.r = d11.r * d22.r - d11.i * d22.i; z__3.i = d11.r * d22.i + d11.i * d22.r; // , expr subst z__2.r = z__3.r - 1.; z__2.i = z__3.i - 0.; // , expr subst z_div(&z__1, &c_b1, &z__2); t.r = z__1.r; t.i = z__1.i; // , expr subst i__1 = *n; for (j = k + 2; j <= i__1; ++j) { /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */ i__2 = j + k * a_dim1; z__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i; z__3.i = d11.r * a[i__2].i + d11.i * a[i__2] .r; // , expr subst i__3 = j + (k + 1) * a_dim1; z__2.r = z__3.r - a[i__3].r; z__2.i = z__3.i - a[i__3] .i; // , expr subst z__1.r = t.r * z__2.r - t.i * z__2.i; z__1.i = t.r * z__2.i + t.i * z__2.r; // , expr subst wk.r = z__1.r; wk.i = z__1.i; // , expr subst i__2 = j + (k + 1) * a_dim1; z__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i; z__3.i = d22.r * a[i__2].i + d22.i * a[i__2] .r; // , expr subst i__3 = j + k * a_dim1; z__2.r = z__3.r - a[i__3].r; z__2.i = z__3.i - a[i__3] .i; // , expr subst z__1.r = t.r * z__2.r - t.i * z__2.i; z__1.i = t.r * z__2.i + t.i * z__2.r; // , expr subst wkp1.r = z__1.r; wkp1.i = z__1.i; // , expr subst /* Perform a rank-2 update of A(k+2:n,k+2:n) */ i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; z_div(&z__4, &a[i__ + k * a_dim1], &d21); z__3.r = z__4.r * wk.r - z__4.i * wk.i; z__3.i = z__4.r * wk.i + z__4.i * wk.r; // , expr subst z__2.r = a[i__4].r - z__3.r; z__2.i = a[i__4].i - z__3.i; // , expr subst z_div(&z__6, &a[i__ + (k + 1) * a_dim1], &d21); z__5.r = z__6.r * wkp1.r - z__6.i * wkp1.i; z__5.i = z__6.r * wkp1.i + z__6.i * wkp1.r; // , expr subst z__1.r = z__2.r - z__5.r; z__1.i = z__2.i - z__5.i; // , expr subst a[i__3].r = z__1.r; a[i__3].i = z__1.i; // , expr subst /* L50: */ } /* Store L(k) and L(k+1) in cols k and k+1 for row J */ i__2 = j + k * a_dim1; z_div(&z__1, &wk, &d21); a[i__2].r = z__1.r; a[i__2].i = z__1.i; // , expr subst i__2 = j + (k + 1) * a_dim1; z_div(&z__1, &wkp1, &d21); a[i__2].r = z__1.r; a[i__2].i = z__1.i; // , expr subst /* L60: */ } } } } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -p; ipiv[k + 1] = -kp; } /* Increase K and return to the start of the main loop */ k += kstep; goto L40; } L70: return 0; /* End of ZSYTF2_ROOK */ }
int zsytf2_(char *uplo, int *n, doublecomplex *a, int *lda, int *ipiv, int *info) { /* System generated locals */ int a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; double d__1, d__2, d__3, d__4; doublecomplex z__1, z__2, z__3, z__4; /* Builtin functions */ double sqrt(double), d_imag(doublecomplex *); void z_div(doublecomplex *, doublecomplex *, doublecomplex *); /* Local variables */ int i__, j, k; doublecomplex t, r1, d11, d12, d21, d22; int kk, kp; doublecomplex wk, wkm1, wkp1; int imax, jmax; extern int zsyr_(char *, int *, doublecomplex *, doublecomplex *, int *, doublecomplex *, int *); double alpha; extern int lsame_(char *, char *); extern int zscal_(int *, doublecomplex *, doublecomplex *, int *); int kstep; int upper; extern int zswap_(int *, doublecomplex *, int *, doublecomplex *, int *); double absakk; extern int disnan_(double *); extern int xerbla_(char *, int *); double colmax; extern int izamax_(int *, doublecomplex *, int *); double rowmax; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZSYTF2 computes the factorization of a complex symmetric matrix A */ /* using the Bunch-Kaufman diagonal pivoting method: */ /* A = U*D*U' or A = L*D*L' */ /* where U (or L) is a product of permutation and unit upper (lower) */ /* triangular matrices, U' is the transpose of U, and D is symmetric and */ /* block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */ /* This is the unblocked version of the algorithm, calling Level 2 BLAS. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */ /* n-by-n upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n-by-n lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, the block diagonal matrix D and the multipliers used */ /* to obtain the factor U or L (see below for further details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= MAX(1,N). */ /* IPIV (output) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D. */ /* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ /* interchanged and D(k,k) is a 1-by-1 diagonal block. */ /* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ /* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ /* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ /* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ /* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -k, the k-th argument had an illegal value */ /* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */ /* has been completed, but the block diagonal matrix D is */ /* exactly singular, and division by zero will occur if it */ /* is used to solve a system of equations. */ /* Further Details */ /* =============== */ /* 09-29-06 - patch from */ /* Bobby Cheng, MathWorks */ /* Replace l.209 and l.377 */ /* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */ /* by */ /* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */ /* 1-96 - Based on modifications by J. Lewis, Boeing Computer Services */ /* Company */ /* If UPLO = 'U', then A = U*D*U', where */ /* U = P(n)*U(n)* ... *P(k)U(k)* ..., */ /* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */ /* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ /* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */ /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ /* ( I v 0 ) k-s */ /* U(k) = ( 0 I 0 ) s */ /* ( 0 0 I ) n-k */ /* k-s s n-k */ /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */ /* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */ /* and A(k,k), and v overwrites A(1:k-2,k-1:k). */ /* If UPLO = 'L', then A = L*D*L', where */ /* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */ /* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */ /* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ /* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ /* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */ /* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ /* ( I 0 0 ) k-1 */ /* L(k) = ( 0 I 0 ) s */ /* ( 0 v I ) n-k-s+1 */ /* k-1 s n-k-s+1 */ /* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */ /* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */ /* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < MAX(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZSYTF2", &i__1); return 0; } /* Initialize ALPHA for use in choosing pivot block size. */ alpha = (sqrt(17.) + 1.) / 8.; if (upper) { /* Factorize A as U*D*U' using the upper triangle of A */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* 1 or 2 */ k = *n; L10: /* If K < 1, exit from loop */ if (k < 1) { goto L70; } kstep = 1; /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ i__1 = k + k * a_dim1; absakk = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), ABS(d__2)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value */ if (k > 1) { i__1 = k - 1; imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1); i__1 = imax + k * a_dim1; colmax = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[imax + k * a_dim1]), ABS(d__2)); } else { colmax = 0.; } if (MAX(absakk,colmax) == 0. || disnan_(&absakk)) { /* Column K is zero or contains a NaN: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; } else { if (absakk >= alpha * colmax) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else { /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value */ i__1 = k - imax; jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) * a_dim1], lda); i__1 = imax + jmax * a_dim1; rowmax = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[ imax + jmax * a_dim1]), ABS(d__2)); if (imax > 1) { i__1 = imax - 1; jmax = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1); /* Computing MAX */ i__1 = jmax + imax * a_dim1; d__3 = rowmax, d__4 = (d__1 = a[i__1].r, ABS(d__1)) + ( d__2 = d_imag(&a[jmax + imax * a_dim1]), ABS(d__2) ); rowmax = MAX(d__3,d__4); } if (absakk >= alpha * colmax * (colmax / rowmax)) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else /* if(complicated condition) */ { i__1 = imax + imax * a_dim1; if ((d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[ imax + imax * a_dim1]), ABS(d__2)) >= alpha * rowmax) { /* interchange rows and columns K and IMAX, use 1-by-1 */ /* pivot block */ kp = imax; } else { /* interchange rows and columns K-1 and IMAX, use 2-by-2 */ /* pivot block */ kp = imax; kstep = 2; } } } kk = k - kstep + 1; if (kp != kk) { /* Interchange rows and columns KK and KP in the leading */ /* submatrix A(1:k,1:k) */ i__1 = kp - 1; zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &c__1); i__1 = kk - kp - 1; zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 1) * a_dim1], lda); i__1 = kk + kk * a_dim1; t.r = a[i__1].r, t.i = a[i__1].i; i__1 = kk + kk * a_dim1; i__2 = kp + kp * a_dim1; a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = kp + kp * a_dim1; a[i__1].r = t.r, a[i__1].i = t.i; if (kstep == 2) { i__1 = k - 1 + k * a_dim1; t.r = a[i__1].r, t.i = a[i__1].i; i__1 = k - 1 + k * a_dim1; i__2 = kp + k * a_dim1; a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = kp + k * a_dim1; a[i__1].r = t.r, a[i__1].i = t.i; } } /* Update the leading submatrix */ if (kstep == 1) { /* 1-by-1 pivot block D(k): column k now holds */ /* W(k) = U(k)*D(k) */ /* where U(k) is the k-th column of U */ /* Perform a rank-1 update of A(1:k-1,1:k-1) as */ /* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */ z_div(&z__1, &c_b1, &a[k + k * a_dim1]); r1.r = z__1.r, r1.i = z__1.i; i__1 = k - 1; z__1.r = -r1.r, z__1.i = -r1.i; zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &a[ a_offset], lda); /* Store U(k) in column k */ i__1 = k - 1; zscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1); } else { /* 2-by-2 pivot block D(k): columns k and k-1 now hold */ /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */ /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */ /* of U */ /* Perform a rank-2 update of A(1:k-2,1:k-2) as */ /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */ /* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */ if (k > 2) { i__1 = k - 1 + k * a_dim1; d12.r = a[i__1].r, d12.i = a[i__1].i; z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &d12); d22.r = z__1.r, d22.i = z__1.i; z_div(&z__1, &a[k + k * a_dim1], &d12); d11.r = z__1.r, d11.i = z__1.i; z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r * d22.i + d11.i * d22.r; z__2.r = z__3.r - 1., z__2.i = z__3.i - 0.; z_div(&z__1, &c_b1, &z__2); t.r = z__1.r, t.i = z__1.i; z_div(&z__1, &t, &d12); d12.r = z__1.r, d12.i = z__1.i; for (j = k - 2; j >= 1; --j) { i__1 = j + (k - 1) * a_dim1; z__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i, z__3.i = d11.r * a[i__1].i + d11.i * a[i__1] .r; i__2 = j + k * a_dim1; z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2] .i; z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i = d12.r * z__2.i + d12.i * z__2.r; wkm1.r = z__1.r, wkm1.i = z__1.i; i__1 = j + k * a_dim1; z__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i, z__3.i = d22.r * a[i__1].i + d22.i * a[i__1] .r; i__2 = j + (k - 1) * a_dim1; z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2] .i; z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i = d12.r * z__2.i + d12.i * z__2.r; wk.r = z__1.r, wk.i = z__1.i; for (i__ = j; i__ >= 1; --i__) { i__1 = i__ + j * a_dim1; i__2 = i__ + j * a_dim1; i__3 = i__ + k * a_dim1; z__3.r = a[i__3].r * wk.r - a[i__3].i * wk.i, z__3.i = a[i__3].r * wk.i + a[i__3].i * wk.r; z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i - z__3.i; i__4 = i__ + (k - 1) * a_dim1; z__4.r = a[i__4].r * wkm1.r - a[i__4].i * wkm1.i, z__4.i = a[i__4].r * wkm1.i + a[i__4].i * wkm1.r; z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i; a[i__1].r = z__1.r, a[i__1].i = z__1.i; /* L20: */ } i__1 = j + k * a_dim1; a[i__1].r = wk.r, a[i__1].i = wk.i; i__1 = j + (k - 1) * a_dim1; a[i__1].r = wkm1.r, a[i__1].i = wkm1.i; /* L30: */ } } } } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -kp; ipiv[k - 1] = -kp; } /* Decrease K and return to the start of the main loop */ k -= kstep; goto L10; } else { /* Factorize A as L*D*L' using the lower triangle of A */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2 */ k = 1; L40: /* If K > N, exit from loop */ if (k > *n) { goto L70; } kstep = 1; /* Determine rows and columns to be interchanged and whether */ /* a 1-by-1 or 2-by-2 pivot block will be used */ i__1 = k + k * a_dim1; absakk = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[k + k * a_dim1]), ABS(d__2)); /* IMAX is the row-index of the largest off-diagonal element in */ /* column K, and COLMAX is its absolute value */ if (k < *n) { i__1 = *n - k; imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1); i__1 = imax + k * a_dim1; colmax = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[imax + k * a_dim1]), ABS(d__2)); } else { colmax = 0.; } if (MAX(absakk,colmax) == 0. || disnan_(&absakk)) { /* Column K is zero or contains a NaN: set INFO and continue */ if (*info == 0) { *info = k; } kp = k; } else { if (absakk >= alpha * colmax) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else { /* JMAX is the column-index of the largest off-diagonal */ /* element in row IMAX, and ROWMAX is its absolute value */ i__1 = imax - k; jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda); i__1 = imax + jmax * a_dim1; rowmax = (d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[ imax + jmax * a_dim1]), ABS(d__2)); if (imax < *n) { i__1 = *n - imax; jmax = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1); /* Computing MAX */ i__1 = jmax + imax * a_dim1; d__3 = rowmax, d__4 = (d__1 = a[i__1].r, ABS(d__1)) + ( d__2 = d_imag(&a[jmax + imax * a_dim1]), ABS(d__2) ); rowmax = MAX(d__3,d__4); } if (absakk >= alpha * colmax * (colmax / rowmax)) { /* no interchange, use 1-by-1 pivot block */ kp = k; } else /* if(complicated condition) */ { i__1 = imax + imax * a_dim1; if ((d__1 = a[i__1].r, ABS(d__1)) + (d__2 = d_imag(&a[ imax + imax * a_dim1]), ABS(d__2)) >= alpha * rowmax) { /* interchange rows and columns K and IMAX, use 1-by-1 */ /* pivot block */ kp = imax; } else { /* interchange rows and columns K+1 and IMAX, use 2-by-2 */ /* pivot block */ kp = imax; kstep = 2; } } } kk = k + kstep - 1; if (kp != kk) { /* Interchange rows and columns KK and KP in the trailing */ /* submatrix A(k:n,k:n) */ if (kp < *n) { i__1 = *n - kp; zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 + kp * a_dim1], &c__1); } i__1 = kp - kk - 1; zswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 1) * a_dim1], lda); i__1 = kk + kk * a_dim1; t.r = a[i__1].r, t.i = a[i__1].i; i__1 = kk + kk * a_dim1; i__2 = kp + kp * a_dim1; a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = kp + kp * a_dim1; a[i__1].r = t.r, a[i__1].i = t.i; if (kstep == 2) { i__1 = k + 1 + k * a_dim1; t.r = a[i__1].r, t.i = a[i__1].i; i__1 = k + 1 + k * a_dim1; i__2 = kp + k * a_dim1; a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i; i__1 = kp + k * a_dim1; a[i__1].r = t.r, a[i__1].i = t.i; } } /* Update the trailing submatrix */ if (kstep == 1) { /* 1-by-1 pivot block D(k): column k now holds */ /* W(k) = L(k)*D(k) */ /* where L(k) is the k-th column of L */ if (k < *n) { /* Perform a rank-1 update of A(k+1:n,k+1:n) as */ /* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */ z_div(&z__1, &c_b1, &a[k + k * a_dim1]); r1.r = z__1.r, r1.i = z__1.i; i__1 = *n - k; z__1.r = -r1.r, z__1.i = -r1.i; zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &c__1, & a[k + 1 + (k + 1) * a_dim1], lda); /* Store L(k) in column K */ i__1 = *n - k; zscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1); } } else { /* 2-by-2 pivot block D(k) */ if (k < *n - 1) { /* Perform a rank-2 update of A(k+2:n,k+2:n) as */ /* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */ /* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */ /* where L(k) and L(k+1) are the k-th and (k+1)-th */ /* columns of L */ i__1 = k + 1 + k * a_dim1; d21.r = a[i__1].r, d21.i = a[i__1].i; z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &d21); d11.r = z__1.r, d11.i = z__1.i; z_div(&z__1, &a[k + k * a_dim1], &d21); d22.r = z__1.r, d22.i = z__1.i; z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r * d22.i + d11.i * d22.r; z__2.r = z__3.r - 1., z__2.i = z__3.i - 0.; z_div(&z__1, &c_b1, &z__2); t.r = z__1.r, t.i = z__1.i; z_div(&z__1, &t, &d21); d21.r = z__1.r, d21.i = z__1.i; i__1 = *n; for (j = k + 2; j <= i__1; ++j) { i__2 = j + k * a_dim1; z__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i, z__3.i = d11.r * a[i__2].i + d11.i * a[i__2] .r; i__3 = j + (k + 1) * a_dim1; z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3] .i; z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = d21.r * z__2.i + d21.i * z__2.r; wk.r = z__1.r, wk.i = z__1.i; i__2 = j + (k + 1) * a_dim1; z__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i, z__3.i = d22.r * a[i__2].i + d22.i * a[i__2] .r; i__3 = j + k * a_dim1; z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3] .i; z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = d21.r * z__2.i + d21.i * z__2.r; wkp1.r = z__1.r, wkp1.i = z__1.i; i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; i__5 = i__ + k * a_dim1; z__3.r = a[i__5].r * wk.r - a[i__5].i * wk.i, z__3.i = a[i__5].r * wk.i + a[i__5].i * wk.r; z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i - z__3.i; i__6 = i__ + (k + 1) * a_dim1; z__4.r = a[i__6].r * wkp1.r - a[i__6].i * wkp1.i, z__4.i = a[i__6].r * wkp1.i + a[i__6].i * wkp1.r; z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - z__4.i; a[i__3].r = z__1.r, a[i__3].i = z__1.i; /* L50: */ } i__2 = j + k * a_dim1; a[i__2].r = wk.r, a[i__2].i = wk.i; i__2 = j + (k + 1) * a_dim1; a[i__2].r = wkp1.r, a[i__2].i = wkp1.i; /* L60: */ } } } } /* Store details of the interchanges in IPIV */ if (kstep == 1) { ipiv[k] = kp; } else { ipiv[k] = -kp; ipiv[k + 1] = -kp; } /* Increase K and return to the start of the main loop */ k += kstep; goto L40; } L70: return 0; /* End of ZSYTF2 */ } /* zsytf2_ */