示例#1
0
文件: zerrtz.c 项目: kstraube/hysim
/* Subroutine */ int zerrtz_(char *path, integer *nunit)
{
    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsle(cilist *), e_wsle(void);

    /* Local variables */
    doublecomplex a[4]	/* was [2][2] */, w[2];
    char c2[2];
    doublecomplex tau[2];
    integer info;
    extern /* Subroutine */ int alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), ztzrqf_(integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), ztzrzf_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *, 
	     doublecomplex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___4 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZERRTZ tests the error exits for ZTZRQF and ZTZRZF. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);
    a[0].r = 1., a[0].i = -1.;
    a[2].r = 2., a[2].i = -2.;
    a[3].r = 3., a[3].i = -3.;
    a[1].r = 4., a[1].i = -4.;
    w[0].r = 0., w[0].i = 0.;
    w[1].r = 0., w[1].i = 0.;
    infoc_1.ok = TRUE_;

/*     Test error exits for the trapezoidal routines. */

    io___4.ciunit = infoc_1.nout;
    s_wsle(&io___4);
    e_wsle();
    if (lsamen_(&c__2, c2, "TZ")) {

/*        ZTZRQF */

	s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	ztzrqf_(&c_n1, &c__0, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztzrqf_(&c__1, &c__0, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztzrqf_(&c__2, &c__2, a, &c__1, tau, &info);
	chkxer_("ZTZRQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        ZTZRZF */

	s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	ztzrzf_(&c_n1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	ztzrzf_(&c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	ztzrzf_(&c__2, &c__2, a, &c__1, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	ztzrzf_(&c__2, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("ZTZRZF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of ZERRTZ */

} /* zerrtz_ */
示例#2
0
文件: zchktz.c 项目: zangel/uquad
/* Subroutine */ int zchktz_(logical *dotype, integer *nm, integer *mval, 
	integer *nn, integer *nval, doublereal *thresh, logical *tsterr, 
	doublecomplex *a, doublecomplex *copya, doublereal *s, doublereal *
	copys, doublecomplex *tau, doublecomplex *work, doublereal *rwork, 
	integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };

    /* Format strings */
    static char fmt_9999[] = "(\002 M =\002,i5,\002, N =\002,i5,\002, type"
	    " \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";

    /* System generated locals */
    integer i__1, i__2, i__3, i__4;
    doublereal d__1;

    /* Builtin functions   
       Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static integer mode, info;
    static char path[3];
    static integer nrun, i__;
    extern /* Subroutine */ int alahd_(integer *, char *);
    static integer k, m, n, nfail, iseed[4], imode, mnmin, nerrs, lwork;
    extern doublereal zqrt12_(integer *, integer *, doublecomplex *, integer *
	    , doublereal *, doublecomplex *, integer *, doublereal *), 
	    zrzt01_(integer *, integer *, doublecomplex *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *), zrzt02_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *), ztzt01_(integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *), ztzt02_(integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    extern /* Subroutine */ int zgeqr2_(integer *, integer *, doublecomplex *,
	     integer *, doublecomplex *, doublecomplex *, integer *);
    static integer im, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, 
	    integer *), alasum_(char *, integer *, integer *, integer 
	    *, integer *), zlacpy_(char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *), 
	    zlaset_(char *, integer *, integer *, doublecomplex *, 
	    doublecomplex *, doublecomplex *, integer *), zlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal result[6];
    extern /* Subroutine */ int zerrtz_(char *, integer *), ztzrqf_(
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     integer *), ztzrzf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;
    static integer lda;
    static doublereal eps;

    /* Fortran I/O blocks */
    static cilist io___21 = { 0, 0, 0, fmt_9999, 0 };



/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    ZCHKTZ tests ZTZRQF and ZTZRZF.   

    Arguments   
    =========   

    DOTYPE  (input) LOGICAL array, dimension (NTYPES)   
            The matrix types to be used for testing.  Matrices of type j   
            (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =   
            .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.   

    NM      (input) INTEGER   
            The number of values of M contained in the vector MVAL.   

    MVAL    (input) INTEGER array, dimension (NM)   
            The values of the matrix row dimension M.   

    NN      (input) INTEGER   
            The number of values of N contained in the vector NVAL.   

    NVAL    (input) INTEGER array, dimension (NN)   
            The values of the matrix column dimension N.   

    THRESH  (input) DOUBLE PRECISION   
            The threshold value for the test ratios.  A result is   
            included in the output file if RESULT >= THRESH.  To have   
            every test ratio printed, use THRESH = 0.   

    TSTERR  (input) LOGICAL   
            Flag that indicates whether error exits are to be tested.   

    A       (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   
            where MMAX is the maximum value of M in MVAL and NMAX is the   
            maximum value of N in NVAL.   

    COPYA   (workspace) COMPLEX*16 array, dimension (MMAX*NMAX)   

    S       (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    COPYS   (workspace) DOUBLE PRECISION array, dimension   
                        (min(MMAX,NMAX))   

    TAU     (workspace) COMPLEX*16 array, dimension (MMAX)   

    WORK    (workspace) COMPLEX*16 array, dimension   
                        (MMAX*NMAX + 4*NMAX + MMAX)   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (2*NMAX)   

    NOUT    (input) INTEGER   
            The unit number for output.   

    =====================================================================   

       Parameter adjustments */
    --rwork;
    --work;
    --tau;
    --copys;
    --s;
    --copya;
    --a;
    --nval;
    --mval;
    --dotype;

    /* Function Body   

       Initialize constants and the random number seed. */

    s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17);
    s_copy(path + 1, "TZ", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
    eps = dlamch_("Epsilon");

/*     Test the error exits */

    if (*tsterr) {
	zerrtz_(path, nout);
    }
    infoc_1.infot = 0;

    i__1 = *nm;
    for (im = 1; im <= i__1; ++im) {

/*        Do for each value of M in MVAL. */

	m = mval[im];
	lda = max(1,m);

	i__2 = *nn;
	for (in = 1; in <= i__2; ++in) {

/*           Do for each value of N in NVAL for which M .LE. N. */

	    n = nval[in];
	    mnmin = min(m,n);
/* Computing MAX */
	    i__3 = 1, i__4 = n * n + (m << 2) + n;
	    lwork = max(i__3,i__4);

	    if (m <= n) {
		for (imode = 1; imode <= 3; ++imode) {

/*                 Do for each type of singular value distribution.   
                      0:  zero matrix   
                      1:  one small singular value   
                      2:  exponential distribution */

		    mode = imode - 1;

/*                 Test ZTZRQF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L20: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRQF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRQF", (ftnlen)6, (ftnlen)6);
		    ztzrqf_(&m, &n, &a[1], &lda, &tau[1], &info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[0] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[1] = ztzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[2] = ztzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Test ZTZRZF   

                   Generate test matrix of size m by n using   
                   singular value distribution indicated by `mode'. */

		    if (mode == 0) {
			zlaset_("Full", &m, &n, &c_b10, &c_b10, &a[1], &lda);
			i__3 = mnmin;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    copys[i__] = 0.;
/* L30: */
			}
		    } else {
			d__1 = 1. / eps;
			zlatms_(&m, &n, "Uniform", iseed, "Nonsymmetric", &
				copys[1], &imode, &d__1, &c_b15, &m, &n, 
				"No packing", &a[1], &lda, &work[1], &info);
			zgeqr2_(&m, &n, &a[1], &lda, &work[1], &work[mnmin + 
				1], &info);
			i__3 = m - 1;
			zlaset_("Lower", &i__3, &n, &c_b10, &c_b10, &a[2], &
				lda);
			dlaord_("Decreasing", &mnmin, &copys[1], &c__1);
		    }

/*                 Save A and its singular values */

		    zlacpy_("All", &m, &n, &a[1], &lda, &copya[1], &lda);

/*                 Call ZTZRZF to reduce the upper trapezoidal matrix to   
                   upper triangular form. */

		    s_copy(srnamc_1.srnamt, "ZTZRZF", (ftnlen)6, (ftnlen)6);
		    ztzrzf_(&m, &n, &a[1], &lda, &tau[1], &work[1], &lwork, &
			    info);

/*                 Compute norm(svd(a) - svd(r)) */

		    result[3] = zqrt12_(&m, &m, &a[1], &lda, &copys[1], &work[
			    1], &lwork, &rwork[1]);

/*                 Compute norm( A - R*Q ) */

		    result[4] = zrzt01_(&m, &n, &copya[1], &a[1], &lda, &tau[
			    1], &work[1], &lwork);

/*                 Compute norm(Q'*Q - I). */

		    result[5] = zrzt02_(&m, &n, &a[1], &lda, &tau[1], &work[1]
			    , &lwork);

/*                 Print information about the tests that did not pass   
                   the threshold. */

		    for (k = 1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				alahd_(nout, path);
			    }
			    io___21.ciunit = *nout;
			    s_wsfe(&io___21);
			    do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imode, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L40: */
		    }
		    nrun += 6;
/* L50: */
		}
	    }
/* L60: */
	}
/* L70: */
    }

/*     Print a summary of the results. */

    alasum_(path, nout, &nfail, &nrun, &nerrs);


/*     End if ZCHKTZ */

    return 0;
} /* zchktz_ */
示例#3
0
/* Subroutine */ int zgelsy_(integer *m, integer *n, integer *nrhs, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	integer *jpvt, doublereal *rcond, integer *rank, doublecomplex *work, 
	integer *lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2;
    doublecomplex z__1;

    /* Builtin functions */
    double z_abs(doublecomplex *);

    /* Local variables */
    static integer i__, j;
    static doublecomplex c1, c2, s1, s2;
    static integer nb, mn, nb1, nb2, nb3, nb4;
    static doublereal anrm, bnrm, smin, smax;
    static integer iascl, ibscl, ismin, ismax;
    static doublereal wsize;
    extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), ztrsm_(char *, char *, char *, char *
	    , integer *, integer *, doublecomplex *, doublecomplex *, integer 
	    *, doublecomplex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), 
	    zlaic1_(integer *, integer *, doublecomplex *, doublereal *, 
	    doublecomplex *, doublecomplex *, doublereal *, doublecomplex *, 
	    doublecomplex *), dlabad_(doublereal *, doublereal *), zgeqp3_(
	    integer *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, doublecomplex *, integer *, doublereal *, 
	    integer *);
    extern doublereal dlamch_(char *, ftnlen);
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
	    integer *, doublereal *, ftnlen);
    static doublereal bignum;
    extern /* Subroutine */ int zlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublecomplex *,
	     integer *, integer *, ftnlen), zlaset_(char *, integer *, 
	    integer *, doublecomplex *, doublecomplex *, doublecomplex *, 
	    integer *, ftnlen);
    static doublereal sminpr, smaxpr, smlnum;
    static integer lwkopt;
    static logical lquery;
    extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *,
	     ftnlen, ftnlen), zunmrz_(char *, char *, integer *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
	    , ftnlen, ftnlen), ztzrzf_(integer *, integer *, doublecomplex *, 
	    integer *, doublecomplex *, doublecomplex *, integer *, integer *)
	    ;


/*  -- LAPACK driver routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     June 30, 1999 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGELSY computes the minimum-norm solution to a complex linear least */
/*  squares problem: */
/*      minimize || A * X - B || */
/*  using a complete orthogonal factorization of A.  A is an M-by-N */
/*  matrix which may be rank-deficient. */

/*  Several right hand side vectors b and solution vectors x can be */
/*  handled in a single call; they are stored as the columns of the */
/*  M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/*  matrix X. */

/*  The routine first computes a QR factorization with column pivoting: */
/*      A * P = Q * [ R11 R12 ] */
/*                  [  0  R22 ] */
/*  with R11 defined as the largest leading submatrix whose estimated */
/*  condition number is less than 1/RCOND.  The order of R11, RANK, */
/*  is the effective rank of A. */

/*  Then, R22 is considered to be negligible, and R12 is annihilated */
/*  by unitary transformations from the right, arriving at the */
/*  complete orthogonal factorization: */
/*     A * P = Q * [ T11 0 ] * Z */
/*                 [  0  0 ] */
/*  The minimum-norm solution is then */
/*     X = P * Z' [ inv(T11)*Q1'*B ] */
/*                [        0       ] */
/*  where Q1 consists of the first RANK columns of Q. */

/*  This routine is basically identical to the original xGELSX except */
/*  three differences: */
/*    o The permutation of matrix B (the right hand side) is faster and */
/*      more simple. */
/*    o The call to the subroutine xGEQPF has been substituted by the */
/*      the call to the subroutine xGEQP3. This subroutine is a Blas-3 */
/*      version of the QR factorization with column pivoting. */
/*    o Matrix B (the right hand side) is updated with Blas-3. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of */
/*          columns of matrices B and X. NRHS >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, A has been overwritten by details of its */
/*          complete orthogonal factorization. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the M-by-NRHS right hand side matrix B. */
/*          On exit, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B. LDB >= max(1,M,N). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted */
/*          to the front of AP, otherwise column i is a free column. */
/*          On exit, if JPVT(i) = k, then the i-th column of A*P */
/*          was the k-th column of A. */

/*  RCOND   (input) DOUBLE PRECISION */
/*          RCOND is used to determine the effective rank of A, which */
/*          is defined as the order of the largest leading triangular */
/*          submatrix R11 in the QR factorization with pivoting of A, */
/*          whose estimated condition number < 1/RCOND. */

/*  RANK    (output) INTEGER */
/*          The effective rank of A, i.e., the order of the submatrix */
/*          R11.  This is the same as the order of the submatrix T11 */
/*          in the complete orthogonal factorization of A. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. */
/*          The unblocked strategy requires that: */
/*            LWORK >= MN + MAX( 2*MN, N+1, MN+NRHS ) */
/*          where MN = min(M,N). */
/*          The block algorithm requires that: */
/*            LWORK >= MN + MAX( 2*MN, NB*(N+1), MN+MN*NB, MN+NB*NRHS ) */
/*          where NB is an upper bound on the blocksize returned */
/*          by ILAENV for the routines ZGEQP3, ZTZRZF, CTZRQF, ZUNMQR, */
/*          and ZUNMRZ. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/*    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
/*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --jpvt;
    --work;
    --rwork;

    /* Function Body */
    mn = min(*m,*n);
    ismin = mn + 1;
    ismax = (mn << 1) + 1;

/*     Test the input arguments. */

    *info = 0;
    nb1 = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb2 = ilaenv_(&c__1, "ZGERQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    nb3 = ilaenv_(&c__1, "ZUNMQR", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
    nb4 = ilaenv_(&c__1, "ZUNMRQ", " ", m, n, nrhs, &c_n1, (ftnlen)6, (ftnlen)
	    1);
/* Computing MAX */
    i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
    nb = max(i__1,nb4);
/* Computing MAX */
    i__1 = 1, i__2 = mn + (*n << 1) + nb * (*n + 1), i__1 = max(i__1,i__2), 
	    i__2 = (mn << 1) + nb * *nrhs;
    lwkopt = max(i__1,i__2);
    z__1.r = (doublereal) lwkopt, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = max(1,*m);
	if (*ldb < max(i__1,*n)) {
	    *info = -7;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = mn << 1, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = mn + 
		    *nrhs;
	    if (*lwork < mn + max(i__1,i__2) && ! lquery) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGELSY", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

/* Computing MIN */
    i__1 = min(*m,*n);
    if (min(i__1,*nrhs) == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters */

    smlnum = dlamch_("S", (ftnlen)1) / dlamch_("P", (ftnlen)1);
    bignum = 1. / smlnum;
    dlabad_(&smlnum, &bignum);

/*     Scale A, B if max entries outside range [SMLNUM,BIGNUM] */

    anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1], (ftnlen)1);
    iascl = 0;
    if (anrm > 0. && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info, (ftnlen)1);
	iascl = 2;
    } else if (anrm == 0.) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1);
	*rank = 0;
	goto L70;
    }

    bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1], (ftnlen)1);
    ibscl = 0;
    if (bnrm > 0. && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM */

	zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	ibscl = 2;
    }

/*     Compute QR factorization with column pivoting of A: */
/*        A * P = Q * R */

    i__1 = *lwork - mn;
    zgeqp3_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &i__1,
	     &rwork[1], info);
    i__1 = mn + 1;
    wsize = mn + work[i__1].r;

/*     complex workspace: MN+NB*(N+1). real workspace 2*N. */
/*     Details of Householder rotations stored in WORK(1:MN). */

/*     Determine RANK using incremental condition estimation */

    i__1 = ismin;
    work[i__1].r = 1., work[i__1].i = 0.;
    i__1 = ismax;
    work[i__1].r = 1., work[i__1].i = 0.;
    smax = z_abs(&a[a_dim1 + 1]);
    smin = smax;
    if (z_abs(&a[a_dim1 + 1]) == 0.) {
	*rank = 0;
	i__1 = max(*m,*n);
	zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1);
	goto L70;
    } else {
	*rank = 1;
    }

L10:
    if (*rank < mn) {
	i__ = *rank + 1;
	zlaic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
		i__ + i__ * a_dim1], &sminpr, &s1, &c1);
	zlaic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
		i__ + i__ * a_dim1], &smaxpr, &s2, &c2);

	if (smaxpr * *rcond <= sminpr) {
	    i__1 = *rank;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		i__2 = ismin + i__ - 1;
		i__3 = ismin + i__ - 1;
		z__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, z__1.i = 
			s1.r * work[i__3].i + s1.i * work[i__3].r;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
		i__2 = ismax + i__ - 1;
		i__3 = ismax + i__ - 1;
		z__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, z__1.i = 
			s2.r * work[i__3].i + s2.i * work[i__3].r;
		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
/* L20: */
	    }
	    i__1 = ismin + *rank;
	    work[i__1].r = c1.r, work[i__1].i = c1.i;
	    i__1 = ismax + *rank;
	    work[i__1].r = c2.r, work[i__1].i = c2.i;
	    smin = sminpr;
	    smax = smaxpr;
	    ++(*rank);
	    goto L10;
	}
    }

/*     complex workspace: 3*MN. */

/*     Logically partition R = [ R11 R12 ] */
/*                             [  0  R22 ] */
/*     where R11 = R(1:RANK,1:RANK) */

/*     [R11,R12] = [ T11, 0 ] * Y */

    if (*rank < *n) {
	i__1 = *lwork - (mn << 1);
	ztzrzf_(rank, n, &a[a_offset], lda, &work[mn + 1], &work[(mn << 1) + 
		1], &i__1, info);
    }

/*     complex workspace: 2*MN. */
/*     Details of Householder rotations stored in WORK(MN+1:2*MN) */

/*     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */

    i__1 = *lwork - (mn << 1);
    zunmqr_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
	    work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], &i__1, info, (
	    ftnlen)4, (ftnlen)19);
/* Computing MAX */
    i__1 = (mn << 1) + 1;
    d__1 = wsize, d__2 = (mn << 1) + work[i__1].r;
    wsize = max(d__1,d__2);

/*     complex workspace: 2*MN+NB*NRHS. */

/*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */

    ztrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
	    a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (ftnlen)5, (ftnlen)
	    12, (ftnlen)8);

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = *rank + 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    b[i__3].r = 0., b[i__3].i = 0.;
/* L30: */
	}
/* L40: */
    }

/*     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */

    if (*rank < *n) {
	i__1 = *n - *rank;
	i__2 = *lwork - (mn << 1);
	zunmrz_("Left", "Conjugate transpose", n, nrhs, rank, &i__1, &a[
		a_offset], lda, &work[mn + 1], &b[b_offset], ldb, &work[(mn <<
		 1) + 1], &i__2, info, (ftnlen)4, (ftnlen)19);
    }

/*     complex workspace: 2*MN+NRHS. */

/*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = jpvt[i__];
	    i__4 = i__ + j * b_dim1;
	    work[i__3].r = b[i__4].r, work[i__3].i = b[i__4].i;
/* L50: */
	}
	zcopy_(n, &work[1], &c__1, &b[j * b_dim1 + 1], &c__1);
/* L60: */
    }

/*     complex workspace: N. */

/*     Undo scaling */

    if (iascl == 1) {
	zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	zlascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], 
		lda, info, (ftnlen)1);
    } else if (iascl == 2) {
	zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
	zlascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], 
		lda, info, (ftnlen)1);
    }
    if (ibscl == 1) {
	zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
    } else if (ibscl == 2) {
	zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info, (ftnlen)1);
    }

L70:
    z__1.r = (doublereal) lwkopt, z__1.i = 0.;
    work[1].r = z__1.r, work[1].i = z__1.i;

    return 0;

/*     End of ZGELSY */

} /* zgelsy_ */