S32 script_simobject_find(const char* classname, const char* name) { SimObject *object; if( Sim::findObject( name, object ) ) { // if we specified a classname do type checking if (classname && dStrlen(classname)) { AbstractClassRep* ocr = object->getClassRep(); while (ocr) { if (!dStricmp(ocr->getClassName(), classname)) return object->getId(); ocr = ocr->getParentClass(); } } // invalid type return 0; } // didn't find object return 0; }
AbstractClassRep *AbstractClassRep::getCommonParent( const AbstractClassRep *otherClass ) const { // CodeReview: This may be a noob way of doing it. There may be some kind of // super-spiffy algorithm to do what the code below does, but this appeared // to make sense to me, and it is pretty easy to see what it is doing [6/23/2007 Pat] static VectorPtr<AbstractClassRep *> thisClassHeirarchy; thisClassHeirarchy.clear(); AbstractClassRep *walk = const_cast<AbstractClassRep *>( this ); while( walk != NULL ) { thisClassHeirarchy.push_front( walk ); walk = walk->getParentClass(); } static VectorPtr<AbstractClassRep *> compClassHeirarchy; compClassHeirarchy.clear(); walk = const_cast<AbstractClassRep *>( otherClass ); while( walk != NULL ) { compClassHeirarchy.push_front( walk ); walk = walk->getParentClass(); } // Make sure we only iterate over the list the number of times we can S32 maxIterations = getMin( compClassHeirarchy.size(), thisClassHeirarchy.size() ); U32 i = 0; for( ; i < maxIterations; i++ ) { if( compClassHeirarchy[i] != thisClassHeirarchy[i] ) break; } return compClassHeirarchy[i]; }
AbstractClassRep* GuiInspectorGroup::findCommonAncestorClass() { AbstractClassRep* classRep = getInspector()->getInspectObject( 0 )->getClassRep(); const U32 numInspectObjects = getInspector()->getNumInspectObjects(); for( U32 i = 1; i < numInspectObjects; ++ i ) { SimObject* object = getInspector()->getInspectObject( i ); while( !object->getClassRep()->isClass( classRep ) ) { classRep = classRep->getParentClass(); AssertFatal( classRep, "GuiInspectorGroup::findcommonAncestorClass - Walked above ConsoleObject!" ); } } return classRep; }
void XMLExport::exportNamespaces() { // keep track of which enumTables are in use Vector < const EnumTable*> enumTables; mXML->pushNewElement("Namespaces"); for (Namespace *walk = Namespace::mNamespaceList; walk; walk = walk->mNext) { if ( walk->mName && !walk->isClass() ) continue; const char *name = walk->mName ? walk->mName : ""; mXML->pushNewElement("Namespace"); mXML->setAttribute("name", name); Namespace *p = walk->mParent; mXML->pushNewElement("Parents"); while (p) { if (p->mName == walk->mName) { p = p->mParent; continue; } const char* pname = p->mName ? p->mName : ""; mXML->pushNewElement("Parent"); mXML->setAttribute("name", pname); mXML->popElement(); // Parent p = p->mParent; } mXML->popElement(); // Parents // Entries (Engine/Script Methods/Functions) mXML->pushNewElement("Entries"); Namespace::Entry *entry; VectorPtr<Namespace::Entry *> vec; walk->getEntryList(&vec); for( NamespaceEntryListIterator compItr = vec.begin(); compItr != vec.end(); compItr++ ) { entry = *compItr; if (entry->mNamespace != walk) continue; if (entry->mNamespace->mName != walk->mName) continue; mXML->pushNewElement("Entry"); //consistently name functions char functionName[512]; dSprintf(functionName, 512, entry->mFunctionName); functionName[0] = dTolower(functionName[0]); S32 minArgs = entry->mMinArgs; S32 maxArgs = entry->mMaxArgs; if (maxArgs < minArgs) maxArgs = minArgs; mXML->setAttribute("name", functionName); mXML->setAttribute("minArgs", avar("%i", minArgs)); mXML->setAttribute("maxArgs", avar("%i", maxArgs)); const char* usage = ""; if (entry->mUsage && entry->mUsage[0]) usage = entry->mUsage; mXML->setAttribute("usage", usage); mXML->setAttribute("package", entry->mPackage ? entry->mPackage : ""); mXML->setAttribute("entryType", avar("%i", entry->mType)); mXML->popElement(); // Entry } mXML->popElement(); // Entries // Fields mXML->pushNewElement("Fields"); AbstractClassRep *rep = walk->mClassRep; Vector<U32> classFields; if (rep) { AbstractClassRep *parentRep = rep->getParentClass(); const AbstractClassRep::FieldList& flist = rep->mFieldList; for(U32 i = 0; i < flist.size(); i++) { if (parentRep) { if (parentRep->findField(flist[i].pFieldname)) continue; } classFields.push_back(i); } for(U32 i = 0; i < classFields.size(); i++) { U32 index = classFields[i]; char fieldName[256]; dSprintf(fieldName, 256, flist[index].pFieldname); //consistently name fields fieldName[0] = dToupper(fieldName[0]); mXML->pushNewElement("Field"); mXML->setAttribute("name", fieldName); mXML->setAttribute("type", avar("%i", flist[index].type)); // RD: temporarily deactivated; TypeEnum is no more; need to sync this up // if (flist[index].type == TypeEnum && flist[index].table && dStrlen(flist[index].table->name)) // { // if (!enumTables.contains(flist[index].table)) // enumTables.push_back(flist[index].table); // // mXML->setAttribute("enumTable", flist[index].table->name); // // } const char* pFieldDocs = ""; if (flist[index].pFieldDocs && flist[index].pFieldDocs[0]) pFieldDocs = flist[index].pFieldDocs; mXML->setAttribute("docs", pFieldDocs); mXML->setAttribute("elementCount", avar("%i", flist[index].elementCount)); mXML->popElement(); // Field } } mXML->popElement(); // Fields mXML->popElement(); // Namespace } mXML->popElement(); // Namespaces mXML->pushNewElement("EnumTables"); // write out the used EnumTables for (S32 i = 0; i < enumTables.size(); i++) { mXML->pushNewElement("EnumTable"); const EnumTable* table = enumTables[i]; mXML->setAttribute("name", table->name); mXML->setAttribute("firstFlag", avar("%i", table->firstFlag)); mXML->setAttribute("mask", avar("%i", table->mask)); mXML->pushNewElement("Enums"); for (S32 j = 0; j < table->size; j++) { mXML->pushNewElement("Enum"); mXML->setAttribute("name", table->table[j].label); mXML->setAttribute("index", avar("%i", table->table[j].index)); mXML->popElement(); // Enum } mXML->popElement(); //Enums mXML->popElement(); // EnumTable } mXML->popElement(); // EnumTables }