virtual AbstractController* operator()( int index) { AbstractController* c; c= new Sos(0.01); c->setParam("epsC",eps); c->setParam("epsA",.1); return c; }
virtual AbstractController* operator()( int index) { AbstractController* c; c= new Sox(cInit); c->setName("Sox " + itos(index)); c->setParam("epsC",epsC); c->setParam("epsA",epsA); if(epsC==0) c->setParam("creativity",0); else c->setParam("creativity",0.1); return c; }
TEST_F(testsIbpGenHandler, BasicIbpGenHandlerPutGetMemCheck) { std::string cfgFile = testsTools::InitConfig(2, WithHotData); AbstractController* ctrl = NULL; StatusCode st = Controller::create(cfgFile, ctrl); ASSERT_TRUE(st.ok()); ASSERT_TRUE(NULL != ctrl); EXPECT_EQ(cfgFile, ctrl->getConfigFile()); EXPECT_EQ(TESTUUID, ctrl->getUuid()); std::string cfgFileName = ctrl->getConfigFile(); ctrl->start(); StatusCode stPut = ctrl->put("key", "data"); EXPECT_TRUE(stPut.ok()); std::string buffer(80, 'A'); DataChunk fetched(buffer); size_t count; StatusCode stGet = ctrl->fetch("key", std::move(fetched), count); EXPECT_TRUE(stGet.ok()); EXPECT_TRUE(fetched == "data"); ctrl->stop(); ctrl->destroy(); delete ctrl; }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); // initialization global.odeConfig.setParam("noise",0.05); global.odeConfig.setParam("realtimefactor",1); global.odeConfig.setParam("drawinterval", 50); OdeRobot* robot = new ShortCircuit(odeHandle, osgHandle, channels, channels); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1; // cc.cNonDiag=0.5; // cc.someInternalParams=false; // AbstractController *controller = new InvertMotorNStep(cc); AbstractController *controller = new InvertNChannelController(10); // AbstractController *controller = new InvertNChannelController_NoBias(40); controller->setParam("eps",0.2); // controller->setParam("factor_a",0.00); // controller->setParam("eps",0.01); //AbstractController *controller = new InvertMotorSpace(10,1); // AbstractController *controller = new SineController(); //controller->setParam("nomupdate",0.001); controller->setParam("sinerate",100.0); controller->setParam("phaseshift",0.6); controller->setParam("adaptrate",0.000); controller->setParam("epsA",0.00); controller->setParam("epsC",0.06); controller->setParam("factorB",0.0); controller->setParam("noiseB",0.0); controller->setParam("steps",1); // AbstractController *controller = new InvertNChannelController(10); //AbstractController *controller = new SineController(); OdeAgent* agent = new OdeAgent(global); // sineNoise = new SineWhiteNoise(omega,2,M_PI/2); // One2OneWiring* wiring = new One2OneWiring(sineNoise, true); One2OneWiring* wiring = new One2OneWiring(new WhiteUniformNoise(), true); // One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.05), true); //AbstractWiring* wiring = new SelectiveOne2OneWiring(sineNoise, &select_firsthalf); // DerivativeWiringConf c = DerivativeWiring::getDefaultConf(); // c.useId=true; // c.useFirstD=false; // c.derivativeScale=20; // c.blindMotorSets=0; // AbstractWiring* wiring = new DerivativeWiring(c, new ColorUniformNoise(0.05)); agent->init(controller, robot, wiring); global.agents.push_back(agent); global.configs.push_back(controller); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); setCameraMode(Follow); global.odeConfig.setParam("noise",0.1); global.odeConfig.setParam("controlinterval",4); global.odeConfig.setParam("realtimefactor",4); // global.odeConfig.setParam("gravity", 0); // no gravity for(int i=0; i<0; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis orientation sensors: Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); // regular behaviour conf.motorsensor=false; conf.diameter=1.0; conf.pendularrange= 0.25; conf.motorpowerfactor = 150; // conf.diameter=1.0; // conf.pendularrange= 0.35; sphere1 = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Sphere1", 0.2); ((OdeRobot*)sphere1)->place ( Pos( 0 , 0 , 0.1 )); global.configs.push_back ( sphere1 ); controller = new Sox(.8,true); controller->setParam("epsA",0.3); // model learning rate controller->setParam("epsC",1); // controller learning rate controller->setParam("causeaware",0.4); controller->setParam("pseudo",2); global.configs.push_back ( controller ); One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , sphere1 , wiring ); if(track) agent->setTrackOptions(TrackRobot(true, true, true, false, "zaxis", 20)); global.agents.push_back ( agent ); }
// add own key handling stuff here, just insert some case values virtual bool command(const OdeHandle&, const OsgHandle&, GlobalData& globalData, int key, bool down) { if (down) { // only when key is pressed, not when released switch ( (char) key ) { case 'y' : dBodyAddForce ( sphere1->getMainPrimitive()->getBody() , 30 ,0 , 0 ); break; case 'Y' : dBodyAddForce ( sphere1->getMainPrimitive()->getBody() , -30 , 0 , 0 ); break; case 'x' : dBodyAddTorque ( sphere1->getMainPrimitive()->getBody() , 0 , 10 , 0 ); break; case 'X' : dBodyAddTorque ( sphere1->getMainPrimitive()->getBody() , 0 , -10 , 0 ); break; case 'S' : controller->setParam("sinerate", controller->getParam("sinerate")*1.2); printf("sinerate : %g\n", controller->getParam("sinerate")); break; case 's' : controller->setParam("sinerate", controller->getParam("sinerate")/1.2); printf("sinerate : %g\n", controller->getParam("sinerate")); break; default: return false; break; } } return false; }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(5.2728, 7.2112, 3.31768), Pos(140.539, -13.1456, 0)); // initialization // - set global noise sensor to 0.05 global.odeConfig.setParam("noise",0.05); // global.odeConfig.setParam("gravity", 0); // no gravity // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting initial position of the playground: setPosition(osg::Vec3(double x, double y, double z)) // - push playground to the global list of obstacles (global list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(10, 0.2, 1), 12); playground->setPosition(osg::Vec3(0,0,0)); // place and create playground global.obstacles.push_back(playground); // add passive spheres as obstacles // - create pointer to sphere (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere // - add sphere to list of obstacles for(int i=0; i<8; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(0.0,1.0,0.0)), 0.5); s->setPosition(osg::Vec3(5,0,i*3)); global.obstacles.push_back(s); } // Spherical Robot with axis (gyro) sensors: // - get default configuration for robot // - create pointer to spherical robot (with odeHandle, osgHandle and configuration) // - place robot (unfortunatelly there is a type cast necessary, which is not quite understandable) Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection)); conf.diameter=1.0; conf.pendularrange= 0.35; robot = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(1.0,0.0,0)), conf, "Spherical", 0.2); (robot)->place ( Pos( 0 , 0 , 0.1 )); // Selforg - Controller (Note there are several: use Sos or Sox now) // create pointer to controller // set some parameters // push controller in global list of configurables controller = new InvertMotorSpace(10); controller->setParam("epsA",0.05); // model learning rate controller->setParam("epsC",0.2); // controller learning rate controller->setParam("rootE",3); // model and contoller learn with square rooted error global.configs.push_back ( controller ); // SineController (produces just sine waves) // controller = new SineController(); // controller->setParam("sinerate", 40); // controller->setParam("phaseshift", 0.0); // create pointer to one2onewiring which uses colored-noise One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); // create pointer to agent // initialize pointer with controller, robot and wiring // push agent in globel list of agents OdeAgent* agent = new OdeAgent ( global ); agent->init ( controller , robot , wiring ); if(track){ // the following line will enables a position tracking of the robot, which is written into a file // you can customize what is logged with the TrackRobotConf TrackRobotConf tc = TrackRobot::getDefaultConf(); tc.scene = "zaxis"; tc.displayTrace = true; agent->setTrackOptions(TrackRobot(tc)); } global.agents.push_back ( agent ); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-1.64766, 4.48823, 1.71381), Pos(-158.908, -10.5863, 0)); // initialization // - set noise to 0.0 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.setParam("controlinterval",1); global.odeConfig.setParam("noise",0.01); global.odeConfig.setParam("realtimefactor",1); global.odeConfig.setParam("gravity", -6); // global.odeConfig.setParam("cameraspeed", 250); // int chessTexture = dsRegisterTexture("chess.ppm"); bool useDerivativeWiring=false; // environemnt (type is set in constructor) env.numSpheres = 0; env.numBoxes = 0; env.numCapsules = 0; env.numSeeSaws = 0; env.roughness = 1.0; // use Playground as boundary: if(barriers){ env.widthground = 4; env.distance = 6; env.numgrounds = 5; env.height = 0.1; env.heightincrease =0.1; }else { env.widthground = 32; env.height = 1.0; } env.create(odeHandle, osgHandle, global); global.configs.push_back(&env); // Boxpile* boxpile = new Boxpile(odeHandle, osgHandle, Pos(10,10,0.2), // 100,0, Pos(0.3,0.3,0.05), Pos(0.3,0.3,0.05) // ); // boxpile->setColor("wall"); // boxpile->setPose(ROTM(M_PI/5.0,0,0,1)*TRANSM(0, 0 ,0.2)); // global.obstacles.push_back(boxpile); for (int i=0; i< 1/*2*/; i++){ //Several dogs // VierBeinerConf conf = VierBeiner::getDefaultConf(); VierBeinerConf conf = VierBeiner::getDefaultConfVelServos(); conf.dampingFactor = .0; conf.powerFactor = 1.3; if(air) conf.powerFactor = 0.3; if (hippo) conf.powerFactor = 1.5; conf.hipJointLimit = M_PI/3.0; if ( barriers) conf.hipJointLimit = M_PI/2.5; conf.kneeJointLimit = M_PI/3; conf.legNumber = 4; /* for the dog's sake use only even numbers */ conf.useBigBox = false; if(hippo) conf.useBigBox = false; conf.drawstupidface=true; conf.hippo = hippo; // conf.onlyMainParameters = false; // all parameters OdeHandle doghandle = odeHandle; doghandle.substance.toRubber(10); VierBeiner* dog = new VierBeiner(doghandle, osgHandle,conf, "Dog"); std::list<Sensor*> sensors; sensors.push_back(new SpeedSensor(1,SpeedSensor::TranslationalRel)); AddSensors2RobotAdapter* robot = new AddSensors2RobotAdapter(odeHandle,osgHandle,dog, sensors); //dog->place(osg::Matrix::translate(0,0,0.15)); robot->place(osg::Matrix::translate(0,0,.5 + 4*i)); if(air || barriers){ Primitive* trunk = dog->getMainPrimitive(); fixator = new FixedJoint(trunk, global.environment); fixator->init(odeHandle, osgHandle); } // create pointer to one2onewiring //AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); double booster = 0.05; if(air) booster=0; AbstractWiring* wiring; if(!useDerivativeWiring){ wiring = new ForceBoostWiring(new ColorUniformNoise(0.1), booster); }else{ //////////////// AbstractWiring* fbw = new ForceBoostWiring(new NoNoise(), booster); DerivativeWiringConf dc = DerivativeWiring::getDefaultConf(); dc.useId=true; dc.useFirstD=true; // dc.derivativeScale = 1.0; AbstractWiring* drw = new DerivativeWiring(dc, new ColorUniformNoise(0.1)); if(!useDerivativeWiring){ wiring = new WiringSequence(fbw, drw); // TODO booster bei derivative wiring ??? } } AbstractController *controller = new Sox(.7, false); //AbstractController *controller = new SineController(); controller->setParam("Logarithmic", 1); controller->setParam("epsC",0.05); if ( hippo) controller->setParam("epsC",0.1); controller->setParam("epsA",0.01); controller->setParam("damping",0.0001); controller->setParam("period",300); controller->setParam("phaseshift",0); AbstractController* cont= new GroupController(controller,3); // 3 context sensor OdeAgent* agent = new OdeAgent(global); agent->init(cont, robot, wiring); if(!hippo){ // add an operator to keep robot from falling over agent->addOperator(new LimitOrientationOperator(Axis(0,0,1), Axis(0,0,1), M_PI*0.35, 10)); } //agent->setTrackOptions(TrackRobot(true,true,false,true,"bodyheight",20)); // position and speed tracking every 20 steps global.agents.push_back(agent); global.configs.push_back(agent); }// Several dogs end }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(6.5701, 17.3534, 11.7749), Pos(159.449, -30.0839, 0)); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.noise=0.1; // global.odeConfig.setParam("gravity", 0); // int chessTexture = dsRegisterTexture("chess.ppm"); // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting geometry for each wall of playground: // setGeometry(double length, double width, double height) // - setting initial position of the playground: setPosition(double x, double y, double z) // - push playground in the global list of obstacles(globla list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(8.0f, 0.2, 6.0f), 12, // number of corners true); // if ground is created (only create one) // true); // if ground is created (only create one) // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground->setColor(Color(1.0,0.5,0.0,0.2)); // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground->setTexture("Images/really_white.rgb"); playground->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren global.obstacles.push_back(playground); OctaPlayground* playground2 = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(1.0f, 0.2, 2.5f), 12, // number of corners false); // if ground is created (only create one) playground2->setColor(Color(1.0,0.5,0.0,0.1)); // when you not set this texture, a brown wooden texture // is used, the setColor would overlay with the wooden texture playground2->setTexture("Images/really_white.rgb"); playground2->setPosition(osg::Vec3(0.0,0.0,0)); // playground positionieren und generieren global.obstacles.push_back(playground2); // Creation of passive boxes // add passive spheres, boxes and capsules as obstacles // - create pointer to sphere, box or capsule (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere, box or capsule // - set a texture for the sphere, box or capsule // - add sphere, box or capsule to list of obstacles // note that the dependent header file has to be include above // ("passivesphere.h", "passivebox.h" and/or "passivecapsule.h" int n=10; int m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveSphere* s = new PassiveSphere(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), /*Diameter=*/.2+i*0.03,/*Mass=*/.5); s->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n)+0.05f))*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n)+0.05f))*(3.0f+2.0f*j), 0.8f+2.0f*j)); s->setTexture("Images/dusty.rgb"); global.obstacles.push_back(s); } } n=8; m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), osg::Vec3(0.4+i*0.1, 0.8-i*0.03, 0.4), 0.2+i*0.1); if (i==1) b->setTexture("Images/light_chess.rgb"); else b->setTexture("Images/dusty.rgb"); b->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n))+0.1f)*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n))+0.1f)*(3.0f+2.0f*j), 3.0f+2.0f*j)); global.obstacles.push_back(b); } } n=15; m=3; for (int j=0;j<m;j++) { for(int i=0; i<n; i++){ PassiveCapsule* b = new PassiveCapsule(odeHandle, osgHandle.changeColor(Color(184 / 255.0, 233 / 255.0, 237 / 255.0)), 0.2f+0.03*i,1.0f-i*0.04); b->setPosition(Pos(sin(2*M_PI*(((float)i)/((float)n)))*(3.0f+2.0f*j), cos(2*M_PI*(((float)i)/((float)n)))*(3.0f+2.0f*j), 5.0f+2.0f*j)); b->setTexture("Images/dusty.rgb"); global.obstacles.push_back(b); } } // Creation of spherical robots: for(int i=0; i<0; i++){ OdeRobot* sphere1; Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.diameter=2; conf.irAxis1=true; conf.irAxis2=true; conf.irAxis3=true; sphere1 = new Sphererobot3Masses ( odeHandle, osgHandle.changeColor(Color(0.0+.1*i,0.0,1.0)), conf, "Sphere1", 0.4); // sphere1 = new ForcedSphere(odeHandle, osgHandle, "FSphere"); // sphere1->place ( Pos(-3,1/2,3+2*i)); sphere1->place ( Pos(0,0,7+2*i)); AbstractController* controller = new InvertMotorNStep(); controller->setParam("steps", 2); controller->setParam("adaptrate", 0.005); controller->setParam("nomupdate", 0.01); controller->setParam("epsC", 0.01); controller->setParam("epsA", 0.005); controller->setParam("rootE", 3); DerivativeWiringConf c = DerivativeWiring::getDefaultConf(); c.useId = true; c.useFirstD = true; DerivativeWiring* wiring = new DerivativeWiring ( c , new ColorUniformNoise() ); // One2OneWiring* wiring = new One2OneWiring ( new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent ( plotoptions ); agent->init ( controller , sphere1 , wiring ); // agent->setTrackOptions(TrackRobot(true, false, false, "ZSens_Ring10_11", 50)); global.agents.push_back ( agent ); global.configs.push_back ( controller ); } //creation of snakes for(int i=0; i<1; i++){ //****************/ SchlangeConf conf = Schlange::getDefaultConf(); conf.motorPower=.3; conf.segmNumber =10-i/2; conf.segmDia = 0.15; // diameter of a snake element // conf.jointLimit=conf.jointLimit*3; conf.jointLimit=conf.jointLimit*2.0; conf.frictionJoint=0.002; SchlangeServo2* schlange1 = //new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(0.8, 0.3, 0.5)), new SchlangeServo2 ( odeHandle, osgHandle.changeColor(Color(1.0, 1.0, 1.0)), conf, "S1"); //Positionieren und rotieren schlange1->place(osg::Matrix::rotate(M_PI/2, 0, 1, 0)* osg::Matrix::translate(2*i,i,conf.segmNumber/2+2)); if (i==0) { // schlange1->setTexture("Images/whitemetal_tiefgruen.rgb"); // schlange1->setHeadTexture("Images/whitemetal_tiefrot.rgb"); } else { // schlange1->setTexture("Images/whitemetal_tiefrot.rgb"); // schlange1->setHeadTexture("Images/whitemetal_tiefgruen.rgb"); } //AbstractController *controller = new InvertNChannelController(100/*,true*/); // AbstractController *controller = new InvertMotorSpace(100/*,true*/); AbstractController *controller = new InvertMotorNStep(); // AbstractController *controller = new invertmotornstep(); //AbstractController *controller = new SineController(); // AbstractController *controller = new InvertMotorNStep(); // AbstractController *controller = new SineController(); // AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.05)); //Only this line for one2Onewiring // AbstractWiring* wiring = new DerivativeWiring(c, new ColorUniformNoise(0.1)); DerivativeWiringConf c = DerivativeWiring::getDefaultConf(); c.useId = true; c.useFirstD = true; // c.derivativeScale=10; DerivativeWiring* wiring = new DerivativeWiring ( c , new ColorUniformNoise() ); OdeAgent* agent = new OdeAgent(global); agent->init(controller, schlange1, wiring); global.agents.push_back(agent); global.configs.push_back(controller); global.configs.push_back(schlange1); global.odeConfig.setParam("controlinterval",2); global.odeConfig.setParam("gravity", -2); controller->setParam("steps",2); controller->setParam("epsC",0.01); controller->setParam("epsA",0.01); controller->setParam("adaptrate",0.005); controller->setParam("logaE",3); // controller->setParam("desens",0.0); controller->setParam("s4delay",3.0); // controller->setParam("s4avg",1.0); controller->setParam("factorB",0.0); // controller->setParam("zetaupdate",0.1); }//creation of snakes End }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(-6.32561, 5.12705, 3.17278), Pos(-130.771, -17.7744, 0)); global.odeConfig.setParam("noise", 0.05); global.odeConfig.setParam("controlinterval", 2); global.odeConfig.setParam("cameraspeed", 250); global.odeConfig.setParam("gravity", -6); setParam("UseQMPThread", false); // use Playground as boundary: AbstractGround* playground = new Playground(odeHandle, osgHandle, osg::Vec3(8, 0.2, 1), 1); // // playground->setColor(Color(0,0,0,0.8)); playground->setGroundColor(Color(2,2,2,1)); playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren global.obstacles.push_back(playground); Boxpile* boxpile = new Boxpile(odeHandle, osgHandle); boxpile->setColor("wall"); boxpile->setPose(ROTM(M_PI/5.0,0,0,1)*TRANSM(0, 0,0.2)); global.obstacles.push_back(boxpile); // global.obstacles.push_back(playground); // double diam = .90; // OctaPlayground* playground3 = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(/*Diameter*/4.0*diam, 5,/*Height*/ .3), 12, // false); // // playground3->setColor(Color(.0,0.2,1.0,1)); // playground3->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren // global.obstacles.push_back(playground3); controller=0; // addParameter("gamma_s",&teacher); global.configs.push_back(this); for(int i=0; i< bars; i++) { PassiveBox* b = new PassiveBox(odeHandle, osgHandle.changeColor(Color(0.,0.,0.)), osg::Vec3(1,10,0.3+i*.1),10); b->setPosition(osg::Vec3(10+i*7,0,0)); global.obstacles.push_back(b); } /******* H E X A P O D *********/ int numhexapods = 1; for ( int ii = 0; ii< numhexapods; ii++) { HexapodConf myHexapodConf = Hexapod::getDefaultConf(); myHexapodConf.coxaPower = 1.5; myHexapodConf.tebiaPower = 0.8; myHexapodConf.coxaJointLimitV = .9; // M_PI/8; // angle range for vertical dir. of legs myHexapodConf.coxaJointLimitH = 1.3; //M_PI/4; myHexapodConf.tebiaJointLimit = 1.8; // M_PI/4; // +- 45 degree myHexapodConf.percentageBodyMass = .5; myHexapodConf.useBigBox = false; myHexapodConf.tarsus = true; myHexapodConf.numTarsusSections = 1; myHexapodConf.useTarsusJoints = true; // myHexapodConf.numTarsusSections = 2; OdeHandle rodeHandle = odeHandle; rodeHandle.substance.toRubber(20); vehicle = new Hexapod(rodeHandle, osgHandle.changeColor("Green"), myHexapodConf, "Hexapod_" + std::itos(teacher*10000)); // on the top vehicle->place(osg::Matrix::rotate(M_PI*1,1,0,0)*osg::Matrix::translate(0,0,1.5+ 2*ii)); // normal position // vehicle->place(osg::Matrix::translate(0,0,0)); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1.0; // cc.useS=false; // cc.someInternalParams=true; // InvertMotorNStep *semox = new InvertMotorNStep(cc); // semox->setParam("steps", 1); // semox->setParam("continuity", 0.005); // semox->setParam("teacher", teacher); SoMLConf sc = SoML::getDefaultConf(); sc.useHiddenContr=true; sc.useHiddenModel=false; sc.someInternalParams=false; sc.useS=false; SoML* soml = new SoML(sc); soml->setParam("epsC",0.105); soml->setParam("epsA",0.05); Sox* sox = new Sox(1.2, false); sox->setParam("epsC",0.105); sox->setParam("epsA",0.05); sox->setParam("Logarithmic",1); SeMoXConf cc = SeMoX::getDefaultConf(); //cc.cInit=.95; cc.cInit=.99; cc.modelExt=false; cc.someInternalParams=true; SeMoX* semox = new SeMoX(cc); DerInfConf dc = DerInf::getDefaultConf(); dc.cInit=.599; dc.someInternalParams=false; AbstractController* derinf = new DerInf(dc); derinf->setParam("epsC",0.1); derinf->setParam("epsA",0.05); AbstractController* sine = 0; if(useSineController) { // sine = new SineController(~0, SineController::Sine); sine = new SineController(~0, SineController::Impulse); // // // // // motorpower 20 sine->setParam("period", 30); sine->setParam("phaseshift", 0.5); sine->setParam("amplitude", 0.5); } semox->setParam("epsC", 0.1); semox->setParam("epsA", 0.1); semox->setParam("rootE", 3); semox->setParam("s4avg", 1); semox->setParam("gamma_cont", 0.005); semox->setParam("gamma_teach", teacher); if(useSineController) { controller = sine; } else { // controller = semox; controller = sox; // controller = soml; // controller = derinf; } One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); // the feedbackwiring feeds here 75% of the motor actions as inputs and only 25% of real inputs // AbstractWiring* wiring = new FeedbackWiring(new ColorUniformNoise(0.1), // FeedbackWiring::Motor, 0.75); //global.plotoptions.push_back(PlotOption(GuiLogger,Robot,5)); OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); // add an operator to keep robot from falling over agent->addOperator(new LimitOrientationOperator(Axis(0,0,1), Axis(0,0,1), M_PI*0.5, 30)); if(track) { TrackRobotConf c = TrackRobot::getDefaultConf(); c.displayTrace = true; c.scene = ""; c.interval = 1; c.trackSpeed = false; c.displayTraceThickness = 0.01; agent->setTrackOptions(TrackRobot(c)); } if(tracksegm) { TrackRobotConf c = TrackRobot::getDefaultConf(); Color col = osgHandle.getColor("joint"); c.displayTrace = true; c.scene = "segm"; c.interval = 1; c.displayTraceThickness = 0.02; col.alpha() = 0.5; agent->addTracking(5, TrackRobot(c), col); agent->addTracking(8, TrackRobot(c), col); } global.agents.push_back(agent); global.configs.push_back(agent); //agent->startMotorBabblingMode(5000); // this->getHUDSM()->setColor(Color(1.0,1.0,0)); // this->getHUDSM()->setFontsize(18); // this->getHUDSM()->addMeasure(teacher,"gamma_s",ID,1); } }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { int num_barrels=1; int num_barrels_test=0; sensor=0; setCameraMode(Follow); bool normalplayground=false; // setCameraHomePos(Pos(-0.497163, 11.6358, 3.67419), Pos(-179.213, -11.6718, 0)); setCameraHomePos(Pos(-2.60384, 13.1299, 2.64348), Pos(-179.063, -9.7594, 0)); // initialization global.odeConfig.setParam("noise",0.1); // global.odeConfig.setParam("gravity",-10); global.odeConfig.setParam("controlinterval",4); global.odeConfig.setParam("realtimefactor",5); // add a new parameter to be configured on the console global.odeConfig.addParameterDef("friction", &friction, 0.1, "rolling friction coefficient"); if(normalplayground){ Playground* playground = new Playground(odeHandle, osgHandle,osg::Vec3(20, 0.01, 0.01 ), 1); playground->setGroundColor(Color(255/255.0,200/255.0,0/255.0)); playground->setGroundTexture("Images/really_white.rgb"); playground->setColor(Color(255/255.0,200/255.0,21/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.05)); global.obstacles.push_back(playground); } /* * * * BARRELS * * * */ for(int i=0; i< num_barrels; i++){ //**************** Sphererobot3MassesConf conf = Barrel2Masses::getDefaultConf(); conf.pendularrange = 0.3;//0.15; conf.motorpowerfactor = 200;//150; conf.motorsensor=false; conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::ZProjection, Sensor::X | Sensor::Y)); conf.spheremass = 1; conf.addSensor(new SpeedSensor(10, SpeedSensor::Translational, Sensor::X )); conf.irAxis1=false; conf.irAxis2=false; conf.irAxis3=false; conf.axesShift = 0; // conf.axesShift = conf.diameter/2 - conf.pendularrange/2; sphere1 = new Barrel2Masses ( odeHandle, osgHandle.changeColor(Color(0.0,0.0,1.0)), conf, "Barrel1", 0.4); sphere1->place (osg::Matrix::rotate(M_PI/2, 1,0,0)*osg::Matrix::translate(0,0,0.2)); // InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); // cc.cInit=1; // // cc.useSD=true; // controller = new InvertMotorNStep(cc); // controller->setParam("steps", 2); // controller->setParam("adaptrate", 0.0); // controller->setParam("nomupdate", 0.00); // controller->setParam("epsC", 0.03); // controller->setParam("epsA", 0.05); // controller->setParam("rootE", 0); // controller->setParam("logaE", 0); //controller = new PiMax(); //controller->setParam("epsC", 0.001); // controller = new Sox(); // controller->setParam("epsC", 0.5); controller = new ROSController("Test"); AbstractWiring* wiring = new SelectiveOne2OneWiring(new ColorUniformNoise(), new select_from_to(0,1)); // OdeAgent* agent = new OdeAgent ( PlotOption(File, Robot, 1) ); OdeAgent* agent = new OdeAgent (); agent->init ( controller , sphere1 , wiring ); // agent->setTrackOptions(TrackRobot(true, false, false, "ZSens_Ring10_11", 50)); global.agents.push_back ( agent ); global.configs.push_back ( controller ); } /* * * * TEST BARRELS * * * */ for(int i=0; i< num_barrels_test; i++){ global.odeConfig.setParam("realtimefactor",1); //**************** Sphererobot3MassesConf conf = Sphererobot3Masses::getDefaultConf(); conf.pendularrange = 0.15; conf.motorsensor=true; conf.irAxis1=false; conf.irAxis2=false; conf.irAxis3=false; conf.spheremass = 1; sphere1 = new Barrel2Masses ( odeHandle, osgHandle.changeColor(Color(0.0,0.0,1.0)), conf, "Barrel1", 0.4); sphere1->place ( osg::Matrix::rotate(M_PI/2, 1,0,0)); controller = new SineController(); controller->setParam("sinerate", 15); controller->setParam("phaseshift", 0.45); // DerivativeWiringConf dc = DerivativeWiring::getDefaultConf(); // dc.useId=true; // dc.useFirstD=false; // AbstractWiring* wiring = new DerivativeWiring(dc,new ColorUniformNoise()); AbstractWiring* wiring = new One2OneWiring(new ColorUniformNoise()); OdeAgent* agent = new OdeAgent (); agent->init ( controller , sphere1 , wiring ); // agent->setTrackOptions(TrackRobot(true, false, false, "ZSens_Ring10_11", 50)); global.agents.push_back ( agent ); global.configs.push_back ( controller ); } }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos(Pos(46.8304, -1.4434, 19.3963), Pos(88.9764, -26.2964, 0)); OdeHandle elast = odeHandle; elast.substance.toMetal(0.8); // initialization // - set global noise to 0.1 global.odeConfig.setParam("noise",0.01); // global.odeConfig.setParam("gravity", 0); // no gravity Playground* playground1 = new Playground(elast, osgHandle, osg::Vec3(30.0, 0.2, 1.0), 1, true); playground1->setColor(Color(0.88f,0.4f,0.26f,0.2f)); playground1->setTexture("Images/really_white.rgb"); playground1->setGroundColor(Color(200/255.0,174.0/255.0,21.0/255.0)); playground1->setGroundTexture("Images/really_white.rgb"); playground1->setPosition(osg::Vec3(0,0,0.0)); // playground positionieren und generieren global.obstacles.push_back(playground1); // Agents numrobots = 2; ForcedSphereConf conf; ForcedSphere** spheres = new ForcedSphere*[numrobots]; Sensor** sensors = new Sensor*[numrobots]; controllers = new AbstractController*[numrobots]; AbstractWiring* wiring; OdeAgent* agent; for(int i=0; i<numrobots; i++){ conf = ForcedSphere::getDefaultConf(); // conf.addSensor(new AxisOrientationSensor(AxisOrientationSensor::OnlyZAxis)); // RelativePositionSensor* s = new RelativePositionSensor(4,1,Sensor::X | Sensor::Y); // s->setReference(playground1->getMainPrimitive()); SpeedSensor* s = new SpeedSensor(5,SpeedSensor::Translational, Sensor::X | Sensor::Y); conf.addSensor(s); conf.addSensor(new SoundSensor()); conf.addMotor(new Speaker(-1)); conf.maxForce = 10; conf.speedDriven = true; conf.maxSpeed = 5; conf.radius = 0.5; conf.cylinderBody=true; ForcedSphere* sphere1; sphere1 = new ForcedSphere ( elast, osgHandle.changeColor(Color(i==0,i==1,i==2)), conf, "Agent1"); ((OdeRobot*)sphere1)->place ( Pos( 2*i , 0 , 0.1 )); InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); cc.useSD=true; controller = new InvertMotorNStep(cc); controller->setParam("epsA",0.03); // model learning rate controller->setParam("epsC",0.01); // controller learning rate controller->setParam("rootE",3); // model and contoller learn with square rooted error controller->setParam("factorB",0.2); controller->setParam("noiseB",0.01); controller->setParam("s4avg",10); controller->setParam("adaptrate",0.000); controller->setParam("nomupdate",0.001); controller->setParam("noiseY",0.0); // controller = new SineController(); // controller = new InvertNChannelController(10,1.2); // controller->setParam("eps",0.2); global.configs.push_back ( controller ); wiring = new One2OneWiring ( new ColorUniformNoise() ); // DerivativeWiringConf wc = DerivativeWiring::getDefaultConf(); // wc.useId=false; // wc.useSecondD=true; // wc.eps=1; // wc.derivativeScale=100; // wiring = new DerivativeWiring ( wc, new ColorUniformNoise()); agent = new OdeAgent ( i==0 ? plotoptions : std::list<PlotOption>() ); agent->init ( controller , sphere1 , wiring ); global.agents.push_back ( agent ); spheres[i]=sphere1; sensors[i]=s; controllers[i]=controller; } // connect them // let robot 2 actually persive robot 1 // sensors[1]->init(spheres[0]->getMainPrimitive()); myspeaker=0; // myspeaker = new Speaker(1); // myspeaker->init(playground1->getMainPrimitive()); }
// starting function (executed once at the beginning of the simulation loop) void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { // first: position(x,y,z) second: view(alpha,beta,gamma) // gamma=0; // alpha == horizontal angle // beta == vertical angle setCameraHomePos(Pos(-0.18, 20.36, 13.63), Pos(-179.93, -34.37, 0)); // initialization // - set noise to 0.1 global.odeConfig.noise=0.1; global.odeConfig.setParam("controlinterval", 10); // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting geometry for each wall of playground: // setGeometry(double length, double width, double height) // - setting initial position of the playground: setPosition(double x, double y, double z) // - push playground in the global list of obstacles(globla list comes from simulation.cpp) bool labyrint=false; bool squarecorridor=false; bool normalplayground=true; bool boxes = true; if(normalplayground){ // Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(12, 0.2, 0.5)); Playground* playground = new Playground(odeHandle, osgHandle, osg::Vec3(17, 0.2, 1.0)); playground->setPosition(osg::Vec3(0,0,0.05)); // playground positionieren und generieren // register playground in obstacles list global.obstacles.push_back(playground); } if(squarecorridor){ Playground* playground = new Playground(odeHandle, osgHandle,osg::Vec3(15, 0.2, 1.2 ), 1); playground->setGroundColor(Color(255/255.0,200/255.0,0/255.0)); playground->setGroundTexture("Images/really_white.rgb"); playground->setColor(Color(255/255.0,200/255.0,21/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); // // inner playground playground = new Playground(odeHandle, osgHandle,osg::Vec3(10, 0.2, 1.2), 1, false); playground->setColor(Color(255/255.0,200/255.0,0/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); } if(labyrint){ double radius=7.5; Playground* playground = new Playground(odeHandle, osgHandle,osg::Vec3(radius*2+1, 0.2, 5 ), 1); playground->setGroundColor(Color(255/255.0,200/255.0,0/255.0)); playground->setGroundTexture("Images/really_white.rgb"); playground->setColor(Color(255/255.0,200/255.0,21/255.0, 0.1)); playground->setPosition(osg::Vec3(0,0,0.1)); playground->setTexture(""); global.obstacles.push_back(playground); int obstanz=30; OsgHandle rotOsgHandle = osgHandle.changeColor(Color(255/255.0, 47/255.0,0/255.0)); OsgHandle gruenOsgHandle = osgHandle.changeColor(Color(0,1,0)); for(int i=0; i<obstanz; i++){ PassiveBox* s = new PassiveBox(odeHandle, (i%2)==0 ? rotOsgHandle : gruenOsgHandle, osg::Vec3(random_minusone_to_one(0)+1.2, random_minusone_to_one(0)+1.2 ,1),5); s->setPose(osg::Matrix::translate(radius/(obstanz+10)*(i+10),0,i) * osg::Matrix::rotate(2*M_PI/obstanz*i,0,0,1)); global.obstacles.push_back(s); } } if(boxes) { for (int i=0; i<= 2; i+=2){ PassiveBox* s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-5+i*5,0,0)); global.obstacles.push_back(s1); Joint* fixator; Primitive* p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(0,-5+i*5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-3.5+i*3.5,-3.5+i*3.5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); s1 = new PassiveBox(odeHandle, osgHandle, osg::Vec3(1,1,1), 0.4); s1->setTexture("Images/dusty.rgb"); s1->setPosition(osg::Vec3(-3.5+i*3.5,3.5-i*3.5,0)); global.obstacles.push_back(s1); p = s1->getMainPrimitive(); fixator = new FixedJoint(p, global.environment); fixator->init(odeHandle, osgHandle); } } // add passive spheres as obstacles // - create pointer to sphere (with odehandle, osghandle and // optional parameters radius and mass,where the latter is not used here) ) // - set Pose(Position) of sphere // - set a texture for the sphere // - add sphere to list of obstacles for (int i=0; i < 0/*2*/; i++){ PassiveSphere* s1 = new PassiveSphere(odeHandle, osgHandle, 0.5); s1->setPosition(osg::Vec3(-4.5+i*4.5,0,0)); s1->setTexture("Images/dusty.rgb"); global.obstacles.push_back(s1); } // use Nimm2 vehicle as robot: // - get default configuration for nimm2 // - activate bumpers, cigar mode and infrared front sensors of the nimm2 robot // - create pointer to nimm2 (with odeHandle, osg Handle and configuration) // - place robot Nimm2Conf c = Nimm2::getDefaultConf(); c.bumper = false;//true; c.cigarMode = false;//true; c.irFront = true; c.irBack = true; //c.irSide = true; c.irRange = 1.2;//2;//3; c.force=2; c.speed=8; OdeRobot* vehicle = new Nimm2(odeHandle, osgHandle, c, "Nimm2"); vehicle->place(Pos(0,0,0.5)); // vehicle->place(Pos(0,6.25,0)); // use Nimm4 vehicle as robot: // - create pointer to nimm4 (with odeHandle and osg Handle and possible other settings, see nimm4.h) // - place robot //OdeRobot* vehicle = new Nimm4(odeHandle, osgHandle, "Nimm4"); //vehicle->place(Pos(0,1,0)); // create pointer to controller // push controller in global list of configurables AbstractController *controller = new LayeredController(10); controller->setParam("eps",0.1); controller->setParam("factor_a",0.1); controller->setParam("eps_hebb",0.03); global.configs.push_back(controller); // create pointer to one2onewiring One2OneWiring* wiring = new One2OneWiring(new ColorUniformNoise(0.1)); // create pointer to agent // initialize pointer with controller, robot and wiring // push agent in globel list of agents OdeAgent* agent = new OdeAgent(global); agent->init(controller, vehicle, wiring); agent->setTrackOptions(TrackRobot(true, false, false, false, "hebbh" ,1)); global.agents.push_back(agent); }
void start(const OdeHandle& odeHandle, const OsgHandle& osgHandle, GlobalData& global) { setCameraHomePos ( Pos ( 0, 0, 7), Pos ( -0.0828247 , -89.9146 , 0) ); // initialization // - set noise to 0.1 // - register file chess.ppm as a texture called chessTexture (used for the wheels) global.odeConfig.noise=0.1; // global.odeConfig.setParam("gravity", 0); // int chessTexture = dsRegisterTexture("chess.ppm"); // use Playground as boundary: // - create pointer to playground (odeHandle contains things like world and space the // playground should be created in; odeHandle is generated in simulation.cpp) // - setting geometry for each wall of playground: // setGeometry(double length, double width, double height) // - setting initial position of the playground: setPosition(double x, double y, double z) // - push playground in the global list of obstacles(globla list comes from simulation.cpp) OctaPlayground* playground = new OctaPlayground(odeHandle, osgHandle, osg::Vec3(11, 0.2, 1), 12); playground->setPosition(osg::Vec3(0,0,0)); // playground positionieren und generieren global.obstacles.push_back(playground); //**************** ComponentConf cConf = Component::getDefaultConf (); cConf.max_force = 2; cConf.speed = 10; //adding the controller for the component-connections InvertMotorNStepConf cc = InvertMotorNStep::getDefaultConf(); cc.cInit=1.2; AbstractController* controller; DerivativeWiringConf c = DerivativeWiring::getDefaultConf (); DerivativeWiring* wiring; OdeAgent* agent; body = new SimpleComponent ( odeHandle , osgHandle , cConf ); wheel[0] = new SimpleComponent ( odeHandle , osgHandle , cConf ); wheel[1] = new SimpleComponent ( odeHandle , osgHandle , cConf ); wheel[2] = new SimpleComponent ( odeHandle , osgHandle , cConf ); wheel[3] = new SimpleComponent ( odeHandle , osgHandle , cConf ); body->setSimplePrimitive ( new Capsule ( 0.1 , 1 ) ); body->getMainPrimitive ()->init ( odeHandle , 0.5 , osgHandle.changeColor ( Color ( 2, 156/255.0, 0, 1.0f ) ) ); body->getMainPrimitive()->getOSGPrimitive()->setTexture("Images/wood.rgb"); for ( int n = 0; n < 4; n++ ) { wheel[n]->setSimplePrimitive ( (Primitive*) new Sphere ( 0.3 ) ); wheel[n]->getMainPrimitive ()->init ( odeHandle , 0.2 , osgHandle.changeColor ( Color ( 0.8,0.8,0.8 )) ); wheel[n]->getMainPrimitive()->getOSGPrimitive()->setTexture("Images/wood.rgb"); } body->place ( osg::Matrix::rotate ( M_PI/2 , osg::Vec3 (1 , 0 , 0 ))*osg::Matrix::translate ( 0 , 0 , 0.5 ) ); wheel[0]->place ( Pos ( -0.45 , -0.5 , 0.5 ) ); wheel[1]->place ( Pos ( 0.45 , -0.5 , 0.5 ) ); wheel[2]->place ( Pos ( -0.45 , 0.5 , 0.5 ) ); wheel[3]->place ( Pos ( 0.45 , 0.5 , 0.5 ) ); for ( int n = 0; n < 4; n++ ) { Axis axis = Axis ( ( wheel[n<2?0:2]->getPosition () - wheel[n<2?1:3]->getPosition ()).toArray() ); HingeJoint* j1 = new HingeJoint ( body->getMainPrimitive () , wheel[n]->getMainPrimitive () , osg::Vec3 (0,0.5*( n<2?-1:1),0.5) , axis ); j1->init ( odeHandle , osgHandle , true , 1 ); body->addSubcomponent ( wheel[n] , j1 , false ); } //controller controller = new InvertMotorNStep ( cc ); controller->setParam ("adaptrate", 0.0); controller->setParam ("epsC", 0.1); controller->setParam ("epsA", 0.01); controller->setParam ("rootE", 3); controller->setParam ("steps", 2); controller->setParam ("s4avg", 2); controller->setParam ("factorB",0); // controller = new SineController ( 18 ); //wiring wiring = new DerivativeWiring ( c , new ColorUniformNoise () ); //agent agent = new OdeAgent ( plotoptions ); agent->init ( controller , body , wiring ); global.agents.push_back ( agent ); global.configs.push_back ( controller ); }