QPSolverStats::ESolutionType QPSolverRelaxedQPKWIK::imp_solve_qp( std::ostream* out, EOutputLevel olevel, ERunTests test_what ,const Vector& g, const MatrixSymOp& G ,value_type etaL ,const Vector* dL, const Vector* dU ,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b ,const Vector* eL, const Vector* eU ,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f ,value_type* obj_d ,value_type* eta, VectorMutable* d ,VectorMutable* nu ,VectorMutable* mu, VectorMutable* Ed ,VectorMutable* lambda, VectorMutable* Fd ) { using Teuchos::dyn_cast; using DenseLinAlgPack::nonconst_tri_ele; using LinAlgOpPack::dot; using LinAlgOpPack::V_StV; using LinAlgOpPack::assign; using LinAlgOpPack::V_StV; using LinAlgOpPack::V_MtV; using AbstractLinAlgPack::EtaVector; using AbstractLinAlgPack::transVtMtV; using AbstractLinAlgPack::num_bounded; using ConstrainedOptPack::MatrixExtractInvCholFactor; // ///////////////////////// // Map to QPKWIK input // Validate that rHL is of the proper type. const MatrixExtractInvCholFactor &cG = dyn_cast<const MatrixExtractInvCholFactor>(G); // Determine the number of sparse bounds on variables and inequalities. // By default set for the dense case const value_type inf = this->infinite_bound(); const size_type nd = d->dim(), m_in = E ? b->dim() : 0, m_eq = F ? f->dim() : 0, nvarbounds = dL ? num_bounded(*dL,*dU,inf) : 0, ninequbounds = E ? num_bounded(*eL,*eU,inf) : 0, nequalities = F ? f->dim() : 0; // Determine if this is a QP with a structure different from the // one just solved. const bool same_qp_struct = ( N_ == nd && M1_ == nvarbounds && M2_ == ninequbounds && M3_ == nequalities ); ///////////////////////////////////////////////////////////////// // Set the input parameters to be sent to QPKWIKNEW // N N_ = nd; // M1 M1_ = nvarbounds; // M2 M2_ = ninequbounds; // M3 M3_ = nequalities; // GRAD GRAD_ = VectorDenseEncap(g)(); // UINV_AUG // // UINV_AUG = [ sqrt(bigM) 0 ] // [ 0 L' ] // UINV_AUG_.resize(N_+1,N_+1); cG.extract_inv_chol( &nonconst_tri_ele( UINV_AUG_(2,N_+1,2,N_+1), BLAS_Cpp::upper ) ); UINV_AUG_(1,1) = 1.0 / ::sqrt( NUMPARAM_[2] ); UINV_AUG_.col(1)(2,N_+1) = 0.0; UINV_AUG_.row(1)(2,N_+1) = 0.0; // LDUINV_AUG LDUINV_AUG_ = UINV_AUG_.rows(); // IBND, BL , BU, A, LDA, YPY IBND_INV_.resize( nd + m_in); std::fill( IBND_INV_.begin(), IBND_INV_.end(), 0 ); // Initialize the zero IBND_.resize( my_max( 1, M1_ + M2_ ) ); BL_.resize( my_max( 1, M1_ + M2_ ) ); BU_.resize( my_max( 1, M1_ + M2_ + M3_ ) ); LDA_ = my_max( 1, M2_ + M3_ ); A_.resize( LDA_, ( M2_ + M3_ > 0 ? N_ : 1 ) ); YPY_.resize( my_max( 1, M1_ + M2_ ) ); if(M1_) YPY_(1,M1_) = 0.0; // Must be for this QP interface // Initialize variable bound constraints if( dL ) { VectorDenseEncap dL_de(*dL); VectorDenseEncap dU_de(*dU); // read iterators AbstractLinAlgPack::sparse_bounds_itr dLU_itr( dL_de().begin(), dL_de().end() ,dU_de().begin(), dU_de().end() ,inf ); // written iterators IBND_t::iterator IBND_itr = IBND_.begin(), IBND_end = IBND_.begin() + M1_; DVector::iterator BL_itr = BL_.begin(), BU_itr = BU_.begin(), YPY_itr = YPY_.begin(); // Loop for( size_type ibnd_i = 1; IBND_itr != IBND_end; ++ibnd_i, ++dLU_itr ) { IBND_INV_[dLU_itr.index()-1] = ibnd_i; *IBND_itr++ = dLU_itr.index(); *BL_itr++ = dLU_itr.lbound(); *BU_itr++ = dLU_itr.ubound(); *YPY_itr++ = 0.0; // Must be zero with this QP interface } } // Initialize inequality constraints if(M2_) { VectorDenseEncap eL_de(*eL); VectorDenseEncap eU_de(*eU); VectorDenseEncap b_de(*b); AbstractLinAlgPack::sparse_bounds_itr eLU_itr( eL_de().begin(), eL_de().end() ,eU_de().begin(), eU_de().end() ,inf ); if( M2_ < m_in ) { // Initialize BL, BU, YPY and A for sparse bounds on general inequalities // written iterators DVector::iterator BL_itr = BL_.begin() + M1_, BU_itr = BU_.begin() + M1_, YPY_itr = YPY_.begin() + M1_; IBND_t::iterator ibnds_itr = IBND_.begin() + M1_; // loop for(size_type i = 1; i <= M2_; ++i, ++eLU_itr, ++ibnds_itr ) { TEST_FOR_EXCEPT( !( !eLU_itr.at_end() ) ); const size_type k = eLU_itr.index(); *BL_itr++ = eLU_itr.lbound(); *BU_itr++ = eLU_itr.ubound(); *YPY_itr++ = b_de()(k); *ibnds_itr = k; // Only for my record, not used by QPKWIK IBND_INV_[nd+k-1] = M1_ + i; // Add the corresponding row of op(E) to A // y == A.row(i)' // y' = e_k' * op(E) => y = op(E')*e_k DVectorSlice y = A_.row(i); EtaVector e_k(k,eL_de().dim()); V_MtV( &y( 1, N_ ), *E, BLAS_Cpp::trans_not(trans_E), e_k() ); // op(E')*e_k } } else { // // Initialize BL, BU, YPY and A for dense bounds on general inequalities // // Initialize BL(M1+1:M1+M2), BU(M1+1:M1+M2) // and IBND(M1+1:M1+M2) = identity (only for my record, not used by QPKWIK) DVector::iterator BL_itr = BL_.begin() + M1_, BU_itr = BU_.begin() + M1_; IBND_t::iterator ibnds_itr = IBND_.begin() + M1_; for(size_type i = 1; i <= m_in; ++i ) { if( !eLU_itr.at_end() && eLU_itr.index() == i ) { *BL_itr++ = eLU_itr.lbound(); *BU_itr++ = eLU_itr.ubound(); ++eLU_itr; } else { *BL_itr++ = -inf; *BU_itr++ = +inf; } *ibnds_itr++ = i; IBND_INV_[nd+i-1]= M1_ + i; } // A(1:M2,1:N) = op(E) assign( &A_(1,M2_,1,N_), *E, trans_E ); // YPY YPY_(M1_+1,M1_+M2_) = b_de(); } } // Initialize equalities if(M3_) { V_StV( &BU_( M1_ + M2_ + 1, M1_ + M2_ + M3_ ), -1.0, VectorDenseEncap(*f)() ); assign( &A_( M2_ + 1, M2_ + M3_, 1, N_ ), *F, trans_F ); } // IYPY IYPY_ = 1; // ??? // WARM WARM_ = 0; // Cold start by default // MAX_ITER MAX_ITER_ = static_cast<f_int>(max_qp_iter_frac() * N_); // INF INF_ = ( same_qp_struct ? 1 : 0 ); // Initilize output, internal state and workspace quantities. if(!same_qp_struct) { X_.resize(N_); NACTSTORE_ = 0; IACTSTORE_.resize(N_+1); IACT_.resize(N_+1); UR_.resize(N_+1); ISTATE_.resize( QPKWIKNEW_CppDecl::qpkwiknew_listate(N_,M1_,M2_,M3_) ); LRW_ = QPKWIKNEW_CppDecl::qpkwiknew_lrw(N_,M1_,M2_,M3_); RW_.resize(LRW_); } // ///////////////////////////////////////////// // Setup a warm start form the input arguments // // Interestingly enough, QPKWIK sorts all of the // constraints according to scaled multiplier values // and mixes equality with inequality constriants. // It seems to me that you should start with equality // constraints first. WARM_ = 0; NACTSTORE_ = 0; if( m_eq ) { // Add equality constraints first since we know these will // be part of the active set. for( size_type j = 1; j <= m_eq; ++j ) { IACTSTORE_[NACTSTORE_] = 2*M1_ + 2*M2_ + j; ++NACTSTORE_; } } if( ( nu && nu->nz() ) || ( mu && mu->nz() ) ) { // Add inequality constraints const size_type nu_nz = nu ? nu->nz() : 0, mu_nz = mu ? mu->nz() : 0; // Combine all the multipliers for the bound and general inequality // constraints and sort them from the largest to the smallest. Hopefully // the constraints with the larger multiplier values will not be dropped // from the active set. SpVector gamma( nd + 1 + m_in , nu_nz + mu_nz ); typedef SpVector::element_type ele_t; if(nu && nu_nz) { VectorDenseEncap nu_de(*nu); DVectorSlice::const_iterator nu_itr = nu_de().begin(), nu_end = nu_de().end(); index_type i = 1; while( nu_itr != nu_end ) { for( ; *nu_itr == 0.0; ++nu_itr, ++i ); gamma.add_element(ele_t(i,*nu_itr)); ++nu_itr; ++i; } } if(mu && mu_nz) { VectorDenseEncap mu_de(*mu); DVectorSlice::const_iterator mu_itr = mu_de().begin(), mu_end = mu_de().end(); index_type i = 1; while( mu_itr != mu_end ) { for( ; *mu_itr == 0.0; ++mu_itr, ++i ); gamma.add_element(ele_t(i+nd,*mu_itr)); ++mu_itr; ++i; } } std::sort( gamma.begin(), gamma.end() , AbstractLinAlgPack::SortByDescendingAbsValue() ); // Now add the inequality constraints in decreasing order const SpVector::difference_type o = gamma.offset(); for( SpVector::const_iterator itr = gamma.begin(); itr != gamma.end(); ++itr ) { const size_type j = itr->index() + o; const value_type val = itr->value(); if( j <= nd ) { // Variable bound const size_type ibnd_i = IBND_INV_[j-1]; TEST_FOR_EXCEPT( !( ibnd_i ) ); IACTSTORE_[NACTSTORE_] = (val < 0.0 ? ibnd_i // lower bound (see IACT(*)) : M1_ + M2_ + ibnd_i // upper bound (see IACT(*)) ); ++NACTSTORE_; } else if( j <= nd + m_in ) { // General inequality constraint const size_type ibnd_i = IBND_INV_[j-1]; // offset into M1_ + ibnd_j TEST_FOR_EXCEPT( !( ibnd_i ) ); IACTSTORE_[NACTSTORE_] = (val < 0.0 ? ibnd_i // lower bound (see IACT(*)) : M1_ + M2_ + ibnd_i // upper bound (see IACT(*)) ); ++NACTSTORE_; } } } if( NACTSTORE_ > 0 ) WARM_ = 1; // ///////////////////////// // Call QPKWIK if( out && olevel > PRINT_NONE ) { *out << "\nCalling QPKWIK to solve QP problem ...\n"; } QPKWIKNEW_CppDecl::qpkwiknew( N_, M1_, M2_, M3_, &GRAD_(1), &UINV_AUG_(1,1), LDUINV_AUG_, &IBND_[0] ,&BL_(1), &BU_(1), &A_(1,1), LDA_, &YPY_(1), IYPY_, WARM_, NUMPARAM_, MAX_ITER_, &X_(1) ,&NACTSTORE_, &IACTSTORE_[0], &INF_, &NACT_, &IACT_[0], &UR_[0], &EXTRA_ ,&ITER_, &NUM_ADDS_, &NUM_DROPS_, &ISTATE_[0], LRW_, &RW_[0] ); // //////////////////////// // Map from QPKWIK output // eta *eta = EXTRA_; // d (VectorDenseMutableEncap(*d))() = X_(); // nu (simple variable bounds) and mu (general inequalities) if(nu) *nu = 0.0; if(mu) *mu = 0.0; // ToDo: Create VectorDenseMutableEncap views for faster access! {for(size_type i = 1; i <= NACT_; ++i) { size_type j = IACT_[i-1]; EConstraintType type = constraint_type(M1_,M2_,M3_,j); FortranTypes::f_int idc = constraint_index(M1_,M2_,M3_,&IBND_[0],type,j); switch(type) { case NU_L: nu->set_ele( idc , -UR_(i) ); break; case GAMA_L: mu->set_ele( IBND_[ M1_ + idc - 1 ], -UR_(i) ); break; case NU_U: nu->set_ele( idc, UR_(i)) ; break; case GAMA_U: mu->set_ele( IBND_[ M1_ + idc - 1 ], UR_(i) ); break; case LAMBDA: lambda->set_ele( idc, UR_(i) ); break; } }} // obj_d (This could be updated within QPKWIK in the future) if(obj_d) { // obj_d = g'*d + 1/2 * d' * G * g *obj_d = dot(g,*d) + 0.5 * transVtMtV(*d,G,BLAS_Cpp::no_trans,*d); } // Ed (This could be updated within QPKWIK in the future) if(Ed) { V_MtV( Ed, *E, trans_E, *d ); } // Fd (This could be updated within QPKWIK in the future) if(Fd) { V_MtV( Fd, *F, trans_F, *d ); } // Set the QP statistics QPSolverStats::ESolutionType solution_type; if( INF_ >= 0 ) { solution_type = QPSolverStats::OPTIMAL_SOLUTION; } else if( INF_ == -1 ) { // Infeasible constraints TEST_FOR_EXCEPTION( true, QPSolverRelaxed::Infeasible ,"QPSolverRelaxedQPKWIK::solve_qp(...) : Error, QP is infeasible" ); } else if( INF_ == -2 ) { // LRW too small TEST_FOR_EXCEPT( !( INF_ != -2 ) ); // Local programming error? } else if( INF_ == -3 ) { // Max iterations exceeded solution_type = QPSolverStats::DUAL_FEASIBLE_POINT; } else { TEST_FOR_EXCEPT(true); // Unknown return value! } qp_stats_.set_stats( solution_type, QPSolverStats::CONVEX ,ITER_, NUM_ADDS_, NUM_DROPS_ ,WARM_==1, *eta > 0.0 ); return qp_stats_.solution_type(); }
bool ReducedHessianSecantUpdateLPBFGS_Strategy::perform_update( DVectorSlice* s_bfgs, DVectorSlice* y_bfgs, bool first_update ,std::ostream& out, EJournalOutputLevel olevel, NLPAlgo *algo, NLPAlgoState *s ,MatrixOp *rHL_k ) { using std::setw; using std::endl; using std::right; using Teuchos::dyn_cast; namespace rcp = MemMngPack; using Teuchos::RCP; using LinAlgOpPack::V_MtV; using DenseLinAlgPack::dot; using AbstractLinAlgPack::norm_inf; using AbstractLinAlgPack::transVtMtV; typedef ConstrainedOptPack::MatrixHessianSuperBasic MHSB_t; using Teuchos::Workspace; Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n*** (LPBFGS) Full limited memory BFGS to projected BFGS ...\n"; } #ifdef _WINDOWS MHSB_t &rHL_super = dynamic_cast<MHSB_t&>(*rHL_k); #else MHSB_t &rHL_super = dyn_cast<MHSB_t>(*rHL_k); #endif const size_type n = algo->nlp().n(), r = algo->nlp().r(), n_pz = n-r; bool do_projected_rHL_RR = false; // See if we still have a limited memory BFGS update matrix RCP<MatrixSymPosDefLBFGS> // We don't want this to be deleted until we are done with it lbfgs_rHL_RR = Teuchos::rcp_const_cast<MatrixSymPosDefLBFGS>( Teuchos::rcp_dynamic_cast<const MatrixSymPosDefLBFGS>(rHL_super.B_RR_ptr()) ); if( lbfgs_rHL_RR.get() && rHL_super.Q_R().is_identity() ) { // // We have a limited memory BFGS matrix and have not started projected BFGS updating // yet so lets determine if it is time to consider switching // // Check that the current update is sufficiently p.d. before we do anything const value_type sTy = dot(*s_bfgs,*y_bfgs), yTy = dot(*y_bfgs,*y_bfgs); if( !ConstrainedOptPack::BFGS_sTy_suff_p_d( *s_bfgs,*y_bfgs,&sTy , int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL ) && !proj_bfgs_updater().bfgs_update().use_dampening() ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nWarning! use_damening == false so there is no way we can perform any" " kind of BFGS update (projected or not) so we will skip it!\n"; } quasi_newton_stats_(*s).set_k(0).set_updated_stats( QuasiNewtonStats::INDEF_SKIPED ); return true; } // Consider if we can even look at the active set yet. const bool consider_switch = lbfgs_rHL_RR->num_secant_updates() >= min_num_updates_proj_start(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nnum_previous_updates = " << lbfgs_rHL_RR->num_secant_updates() << ( consider_switch ? " >= " : " < " ) << "min_num_updates_proj_start = " << min_num_updates_proj_start() << ( consider_switch ? "\nConsidering if we should switch to projected BFGS updating of superbasics ...\n" : "\nNot time to consider switching to projected BFGS updating of superbasics yet!" ); } if( consider_switch ) { // // Our job here is to determine if it is time to switch to projected projected // BFGS updating. // if( act_set_stats_(*s).updated_k(-1) ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nDetermining if projected BFGS updating of superbasics should begin ...\n"; } // Determine if the active set has calmed down enough const SpVector &nu_km1 = s->nu().get_k(-1); const SpVectorSlice nu_indep = nu_km1(s->var_indep()); const bool act_set_calmed_down = PBFGSPack::act_set_calmed_down( act_set_stats_(*s).get_k(-1) ,proj_bfgs_updater().act_set_frac_proj_start() ,olevel,out ), max_num_updates_exceeded = lbfgs_rHL_RR->m_bar() >= max_num_updates_proj_start(); do_projected_rHL_RR = act_set_calmed_down || max_num_updates_exceeded; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { if( act_set_calmed_down ) { out << "\nThe active set has calmed down enough so lets further consider switching to\n" << "projected BFGS updating of superbasic variables ...\n"; } else if( max_num_updates_exceeded ) { out << "\nThe active set has not calmed down enough but num_previous_updates = " << lbfgs_rHL_RR->m_bar() << " >= max_num_updates_proj_start = " << max_num_updates_proj_start() << "\nso we will further consider switching to projected BFGS updating of superbasic variables ...\n"; } else { out << "\nIt is not time to switch to projected BFGS so just keep performing full limited memory BFGS for now ...\n"; } } if( do_projected_rHL_RR ) { // // Determine the set of initially fixed and free independent variables. // typedef Workspace<size_type> i_x_t; typedef Workspace<ConstrainedOptPack::EBounds> bnd_t; i_x_t i_x_free(wss,n_pz); i_x_t i_x_fixed(wss,n_pz); bnd_t bnd_fixed(wss,n_pz); i_x_t l_x_fixed_sorted(wss,n_pz); size_type n_pz_X = 0, n_pz_R = 0; // rHL = rHL_scale * I value_type rHL_scale = sTy > 0.0 ? yTy/sTy : 1.0; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nScaling for diagonal intitial rHL = rHL_scale*I, rHL_scale = " << rHL_scale << std::endl; } value_type sRTBRRsR = 0.0, sRTyR = 0.0, sXTBXXsX = 0.0, sXTyX = 0.0; // Get the elements in i_x_free[] for variables that are definitely free // and initialize s_R'*B_RR*s_R and s_R'*y_R PBFGSPack::init_i_x_free_sRTsR_sRTyR( nu_indep, *s_bfgs, *y_bfgs , &n_pz_R, &i_x_free[0], &sRTBRRsR, &sRTyR ); sRTBRRsR *= rHL_scale; Workspace<value_type> rHL_XX_diag_ws(wss,nu_indep.nz()); DVectorSlice rHL_XX_diag(&rHL_XX_diag_ws[0],rHL_XX_diag_ws.size()); rHL_XX_diag = rHL_scale; // Sort fixed variables according to |s_X(i)^2*B_XX(i,i)|/|sRTBRRsR| + |s_X(i)*y_X(i)|/|sRTyR| // and initialize s_X'*B_XX*s_X and s_X*y_X PBFGSPack::sort_fixed_max_cond_viol( nu_indep,*s_bfgs,*y_bfgs,rHL_XX_diag,sRTBRRsR,sRTyR ,&sXTBXXsX,&sXTyX,&l_x_fixed_sorted[0]); // Pick initial set of i_x_free[] and i_x_fixed[] (sorted!) PBFGSPack::choose_fixed_free( proj_bfgs_updater().project_error_tol() ,proj_bfgs_updater().super_basic_mult_drop_tol(),nu_indep ,*s_bfgs,*y_bfgs,rHL_XX_diag,&l_x_fixed_sorted[0] ,olevel,out,&sRTBRRsR,&sRTyR,&sXTBXXsX,&sXTyX ,&n_pz_X,&n_pz_R,&i_x_free[0],&i_x_fixed[0],&bnd_fixed[0] ); if( n_pz_R < n_pz ) { // // We are ready to transition to projected BFGS updating! // // Determine if we are be using dense or limited memory BFGS? const bool low_num_super_basics = n_pz_R <= num_superbasics_switch_dense(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_BASIC_ALGORITHM_INFO) ) { out << "\nSwitching to projected BFGS updating ..." << "\nn_pz_R = " << n_pz_R << ( low_num_super_basics ? " <= " : " > " ) << " num_superbasics_switch_dense = " << num_superbasics_switch_dense() << ( low_num_super_basics ? "\nThere are not too many superbasic variables so use dense projected BFGS ...\n" : "\nThere are too many superbasic variables so use limited memory projected BFGS ...\n" ); } // Create new matrix to use for rHL_RR initialized to rHL_RR = rHL_scale*I RCP<MatrixSymSecant> rHL_RR = NULL; if( low_num_super_basics ) { rHL_RR = new MatrixSymPosDefCholFactor( NULL // Let it allocate its own memory ,NULL // ... ,n_pz // maximum size ,lbfgs_rHL_RR->maintain_original() ,lbfgs_rHL_RR->maintain_inverse() ); } else { rHL_RR = new MatrixSymPosDefLBFGS( n_pz, lbfgs_rHL_RR->m() ,lbfgs_rHL_RR->maintain_original() ,lbfgs_rHL_RR->maintain_inverse() ,lbfgs_rHL_RR->auto_rescaling() ); } rHL_RR->init_identity( n_pz_R, rHL_scale ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nrHL_RR after intialized to rHL_RR = rHL_scale*I but before performing current BFGS update:\nrHL_RR =\n" << dynamic_cast<MatrixOp&>(*rHL_RR); // I know this is okay! } // Initialize rHL_XX = rHL_scale*I #ifdef _WINDOWS MatrixSymInitDiag &rHL_XX = dynamic_cast<MatrixSymInitDiag&>( const_cast<MatrixSymOp&>(*rHL_super.B_XX_ptr())); #else MatrixSymInitDiag &rHL_XX = dyn_cast<MatrixSymInitDiag>( const_cast<MatrixSymOp&>(*rHL_super.B_XX_ptr())); #endif rHL_XX.init_identity( n_pz_X, rHL_scale ); // Reinitialize rHL rHL_super.initialize( n_pz, n_pz_R, &i_x_free[0], &i_x_fixed[0], &bnd_fixed[0] ,Teuchos::rcp_const_cast<const MatrixSymWithOpFactorized>( Teuchos::rcp_dynamic_cast<MatrixSymWithOpFactorized>(rHL_RR)) ,NULL,BLAS_Cpp::no_trans,rHL_super.B_XX_ptr() ); // // Perform the current BFGS update first // MatrixSymOp &rHL_RR_op = dynamic_cast<MatrixSymOp&>(*rHL_RR); const GenPermMatrixSlice &Q_R = rHL_super.Q_R(), &Q_X = rHL_super.Q_X(); // Get projected BFGS update vectors y_bfgs_R, s_bfgs_R Workspace<value_type> y_bfgs_R_ws(wss,Q_R.cols()), s_bfgs_R_ws(wss,Q_R.cols()), y_bfgs_X_ws(wss,Q_X.cols()), s_bfgs_X_ws(wss,Q_X.cols()); DVectorSlice y_bfgs_R(&y_bfgs_R_ws[0],y_bfgs_R_ws.size()); DVectorSlice s_bfgs_R(&s_bfgs_R_ws[0],s_bfgs_R_ws.size()); DVectorSlice y_bfgs_X(&y_bfgs_X_ws[0],y_bfgs_X_ws.size()); DVectorSlice s_bfgs_X(&s_bfgs_X_ws[0],s_bfgs_X_ws.size()); V_MtV( &y_bfgs_R, Q_R, BLAS_Cpp::trans, *y_bfgs ); // y_bfgs_R = Q_R'*y_bfgs V_MtV( &s_bfgs_R, Q_R, BLAS_Cpp::trans, *s_bfgs ); // s_bfgs_R = Q_R'*s_bfgs V_MtV( &y_bfgs_X, Q_X, BLAS_Cpp::trans, *y_bfgs ); // y_bfgs_X = Q_X'*y_bfgs V_MtV( &s_bfgs_X, Q_X, BLAS_Cpp::trans, *s_bfgs ); // s_bfgs_X = Q_X'*s_bfgs // Update rHL_RR if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nPerform current BFGS update on " << n_pz_R << " x " << n_pz_R << " projected " << "reduced Hessian for the superbasic variables where B = rHL_RR...\n"; } QuasiNewtonStats quasi_newton_stats; proj_bfgs_updater().bfgs_update().perform_update( &s_bfgs_R(),&y_bfgs_R(),false,out,olevel,algo->algo_cntr().check_results() ,&rHL_RR_op, &quasi_newton_stats ); // Perform previous updates if possible if( lbfgs_rHL_RR->m_bar() ) { const size_type num_add_updates = std::_MIN(num_add_recent_updates(),lbfgs_rHL_RR->m_bar()); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nAdd the min(num_previous_updates,num_add_recent_updates) = min(" << lbfgs_rHL_RR->m_bar() << "," << num_add_recent_updates() << ") = " << num_add_updates << " most recent BFGS updates if possible ...\n"; } // Now add previous update vectors const value_type project_error_tol = proj_bfgs_updater().project_error_tol(); const DMatrixSlice S = lbfgs_rHL_RR->S(), Y = lbfgs_rHL_RR->Y(); size_type k = lbfgs_rHL_RR->k_bar(); // Location in S and Y of most recent update vectors for( size_type l = 1; l <= num_add_updates; ++l, --k ) { if(k == 0) k = lbfgs_rHL_RR->m_bar(); // see MatrixSymPosDefLBFGS // Check to see if this update satisfies the required conditions. // Start with the condition on s'*y since this are cheap to check. V_MtV( &s_bfgs_X(), Q_X, BLAS_Cpp::trans, S.col(k) ); // s_bfgs_X = Q_X'*s_bfgs V_MtV( &y_bfgs_X(), Q_X, BLAS_Cpp::trans, Y.col(k) ); // y_bfgs_X = Q_X'*y_bfgs sRTyR = dot( s_bfgs_R, y_bfgs_R ); sXTyX = dot( s_bfgs_X, y_bfgs_X ); bool sXTyX_cond = ::fabs(sXTyX/sRTyR) <= project_error_tol, do_update = sXTyX_cond, sXTBXXsX_cond = false; if( sXTyX_cond ) { // Check the second more expensive condition V_MtV( &s_bfgs_R(), Q_R, BLAS_Cpp::trans, S.col(k) ); // s_bfgs_R = Q_R'*s_bfgs V_MtV( &y_bfgs_R(), Q_R, BLAS_Cpp::trans, Y.col(k) ); // y_bfgs_R = Q_R'*y_bfgs sRTBRRsR = transVtMtV( s_bfgs_R, rHL_RR_op, BLAS_Cpp::no_trans, s_bfgs_R ); sXTBXXsX = rHL_scale * dot( s_bfgs_X, s_bfgs_X ); sXTBXXsX_cond = sXTBXXsX/sRTBRRsR <= project_error_tol; do_update = sXTBXXsX_cond && sXTyX_cond; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n---------------------------------------------------------------------" << "\nprevious update " << l << "\n\nChecking projection error:\n" << "\n|s_X'*y_X|/|s_R'*y_R| = |" << sXTyX << "|/|" << sRTyR << "| = " << ::fabs(sXTyX/sRTyR) << ( sXTyX_cond ? " <= " : " > " ) << " project_error_tol = " << project_error_tol; if( sXTyX_cond ) { out << "\n(s_X'*rHL_XX*s_X/s_R'*rHL_RR*s_R) = (" << sXTBXXsX << ") = " << (sXTBXXsX/sRTBRRsR) << ( sXTBXXsX_cond ? " <= " : " > " ) << " project_error_tol = " << project_error_tol; } out << ( do_update ? "\n\nAttemping to add this previous update where B = rHL_RR ...\n" : "\n\nCan not add this previous update ...\n" ); } if( do_update ) { // ( rHL_RR, s_bfgs_R, y_bfgs_R ) -> rHL_RR (this should not throw an exception!) try { proj_bfgs_updater().bfgs_update().perform_update( &s_bfgs_R(),&y_bfgs_R(),false,out,olevel,algo->algo_cntr().check_results() ,&rHL_RR_op, &quasi_newton_stats ); } catch( const MatrixSymSecant::UpdateSkippedException& excpt ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nOops! The " << l << "th most recent BFGS update was rejected?:\n" << excpt.what() << std::endl; } } } } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n---------------------------------------------------------------------\n"; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nrHL_RR after adding previous BFGS updates:\nrHL_BRR =\n" << dynamic_cast<MatrixOp&>(*rHL_RR); } } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nThere were no previous update vectors to add!\n"; } } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nFull rHL after complete reinitialization:\nrHL =\n" << *rHL_k; } quasi_newton_stats_(*s).set_k(0).set_updated_stats( QuasiNewtonStats::REINITIALIZED ); return true; } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nn_pz_R == n_pz = " << n_pz_R << ", No variables would be removed from " << "the superbasis so just keep on performing limited memory BFGS for now ...\n"; } do_projected_rHL_RR = false; } } } } // If we have not switched to PBFGS then just update the full limited memory BFGS matrix if(!do_projected_rHL_RR) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nPerform current BFGS update on " << n_pz << " x " << n_pz << " full " << "limited memory reduced Hessian B = rHL ...\n"; } proj_bfgs_updater().bfgs_update().perform_update( s_bfgs,y_bfgs,first_update,out,olevel,algo->algo_cntr().check_results() ,lbfgs_rHL_RR.get() ,&quasi_newton_stats_(*s).set_k(0) ); return true; } } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nWe have already switched to projected BFGS updating ...\n"; } } // // If we get here then we must have switched to // projected updating so lets just pass it on! // return proj_bfgs_updater().perform_update( s_bfgs,y_bfgs,first_update,out,olevel,algo,s,rHL_k); }