int
CentralDifferenceAlternative::newStep(double _deltaT)
{
  updateCount = 0;
  
  deltaT = _deltaT;

  if (deltaT <= 0.0) {
    opserr << "CentralDifference::newStep() - error in variable\n";
    opserr << "dT = " << deltaT << endln;
    return -2;	
  }

  AnalysisModel *theModel = this->getAnalysisModel();
  double time = theModel->getCurrentDomainTime();
  theModel->applyLoadDomain(time);

  return 0;
}
示例#2
0
int AlphaOS::commit(void)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING AlphaOS::commit() - no AnalysisModel set\n";
        return -1;
    }
    
    // set the time to be t+deltaT
    double time = theModel->getCurrentDomainTime();
    time += (1.0-alpha)*deltaT;
    theModel->setCurrentDomainTime(time);
    
    // update the displacements in the elements
    if (updElemDisp == true)
        theModel->updateDomain();
    
    return theModel->commitDomain();
}
int
CentralDifferenceAlternative::commit(void)
{
  AnalysisModel *theModel = this->getAnalysisModel();
  if (theModel == 0) {
    opserr << "WARNING CentralDifferenceAlternative::commit() - no AnalysisModel set\n";
    return -1;
  }	  
  
  *Ut = *Utp1;
  
  // update time in Domain to T + deltaT & commit the domain
  double time = theModel->getCurrentDomainTime() + deltaT;
  theModel->setCurrentDomainTime(time);

  return theModel->commitDomain();

  return 0;
}
示例#4
0
int 
TransientIntegrator::formTangent(int statFlag)
{
    int result = 0;
    statusFlag = statFlag;

    LinearSOE *theLinSOE = this->getLinearSOE();
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theLinSOE == 0 || theModel == 0) {
	opserr << "WARNING TransientIntegrator::formTangent() ";
	opserr << "no LinearSOE or AnalysisModel has been set\n";
	return -1;
    }
    
    // the loops to form and add the tangents are broken into two for 
    // efficiency when performing parallel computations
    
    theLinSOE->zeroA();

    // loop through the DOF_Groups and add the unbalance
    DOF_GrpIter &theDOFs = theModel->getDOFs();
    DOF_Group *dofPtr;
    
    while ((dofPtr = theDOFs()) != 0) {
	if (theLinSOE->addA(dofPtr->getTangent(this),dofPtr->getID()) <0) {
	    opserr << "TransientIntegrator::formTangent() - failed to addA:dof\n";
	    result = -1;
	}
    }    

    // loop through the FE_Elements getting them to add the tangent    
    FE_EleIter &theEles2 = theModel->getFEs();    
    FE_Element *elePtr;    
    while((elePtr = theEles2()) != 0)     {
	if (theLinSOE->addA(elePtr->getTangent(this),elePtr->getID()) < 0) {
	    opserr << "TransientIntegrator::formTangent() - failed to addA:ele\n";
	    result = -2;
	}
    }

    return result;
}
示例#5
0
文件: TRBDF2.cpp 项目: lge88/OpenSees
int TRBDF2::update(const Vector &deltaU)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING TRBDF2::update() - no AnalysisModel set\n";
        return -1;
    }	
    
    // check domainChanged() has been called, i.e. Ut will not be zero
    if (Ut == 0)  {
        opserr << "WARNING TRBDF2::update() - domainChange() failed or not called\n";
        return -2;
    }	
    
    // check deltaU is of correct size
    if (deltaU.Size() != U->Size())  {
        opserr << "WARNING TRBDF2::update() - Vectors of incompatible size ";
        opserr << " expecting " << U->Size() << " obtained " << deltaU.Size() << endln;
        return -3;
    }
    
    //  determine the response at t+deltaT
    if (step == 0)  {
        (*U) += deltaU;
        Udot->addVector(1.0, deltaU, c2);
        Udotdot->addVector(1.0, deltaU, c3);
    } else  {
        (*U) += deltaU;
        Udot->addVector(1.0, deltaU, c2);
        Udotdot->addVector(1.0, deltaU, c3);
    }

    // update the response at the DOFs
    theModel->setResponse(*U,*Udot,*Udotdot);
    if (theModel->updateDomain() < 0)  {
      opserr << "TRBDF2::update() - failed to update the domain\n";
      return -4;
    }
    
    return 0;
}    
示例#6
0
int PFEMIntegrator::newStep(double deltaT)
{

    if (deltaT <= 0.0)  {
        opserr << "PFEMIntegrator::newStep() - error in variable\n";
        opserr << "dT = " << deltaT << endln;
        return -2;	
    }

    // get a pointer to the AnalysisModel and Domain
    AnalysisModel *theModel = this->getAnalysisModel();
    if(theModel == 0) {
        opserr << "Analysis model has not been linked - PFEMIntegrator::newStep()\n";
        return -1;
    }
    Domain* theDomain = theModel->getDomainPtr();
    if(theDomain == 0) {
        opserr<<"WARNING: no domain is set for the model";
        opserr<<" -- PFEMIntegrator::newStep()\n";
        return -1;
    }
    
    // set the constants
    c1 = deltaT;
    c2 = 1.0;
    c3 = 1.0/deltaT;

    c4 = deltaT*deltaT;
    c5 = deltaT;
    c6 = 1.0;

    // check if domainchange() is called
    if (U == 0)  {
        opserr << "PFEMIntegrator::newStep() - domainChange() failed or hasn't been called\n";
        return -3;	
    }
    
    // set response at t to be that at t+deltaT of previous step
    (*Ut) = *U;        
    (*Utdot) = *Udot;  
    (*Utdotdot) = *Udotdot;
    
    // determinte new disps and accels
    U->addVector(1.0, *Utdot, deltaT);
    Udotdot->Zero();

    // set states
    theModel->setDisp(*U);
    theModel->setAccel(*Udotdot);
    
    // increment the time to t+deltaT and apply the load
    double time = theModel->getCurrentDomainTime();
    time += deltaT;
    if (theModel->updateDomain(time, deltaT) < 0)  {
        opserr << "PFEMIntegrator::newStep() - failed to update the domain\n";
        return -4;
    }
    
    return 0;
}
int CollocationHSIncrReduct::update(const Vector &deltaU)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING CollocationHSIncrReduct::update() - no AnalysisModel set\n";
        return -1;
    }
    
    // check domainChanged() has been called, i.e. Ut will not be zero
    if (Ut == 0)  {
        opserr << "WARNING CollocationHSIncrReduct::update() - domainChange() failed or not called\n";
        return -2;
    }
    
    // check deltaU is of correct size
    if (deltaU.Size() != U->Size())  {
        opserr << "WARNING CollocationHSIncrReduct::update() - Vectors of incompatible size ";
        opserr << " expecting " << U->Size() << " obtained " << deltaU.Size() << endln;
        return -3;
    }
    
    // get scaled increment
    (*scaledDeltaU) = reduct*deltaU;
    
    // determine the response at t+theta*deltaT
    U->addVector(1.0, *scaledDeltaU, c1);
    
    Udot->addVector(1.0, *scaledDeltaU, c2);
    
    Udotdot->addVector(1.0, *scaledDeltaU, c3);
    
    // update the response at the DOFs
    theModel->setResponse(*U, *Udot, *Udotdot);
    if (theModel->updateDomain() < 0)  {
        opserr << "CollocationHSIncrReduct::update() - failed to update the domain\n";
        return -4;
    }
    
    return 0;
}
示例#8
0
int NewmarkHSFixedNumIter::commit(void)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING NewmarkHSFixedNumIter::commit() - no AnalysisModel set\n";
        return -1;
    }

    LinearSOE *theSOE = this->getLinearSOE();
    if (theSOE == 0)  {
        opserr << "WARNING NewmarkHSFixedNumIter::commit() - no LinearSOE set\n";
        return -2;
    }

    if (this->formTangent(statusFlag) < 0)  {
        opserr << "WARNING NewmarkHSFixedNumIter::commit() - "
               << "the Integrator failed in formTangent()\n";
        return -3;
    }

    if (theSOE->solve() < 0)  {
        opserr << "WARNING NewmarkHSFixedNumIter::commit() - "
               << "the LinearSysOfEqn failed in solve()\n";
        return -4;
    }
    const Vector &deltaU = theSOE->getX();

    //  determine the response at t+deltaT
    U->addVector(1.0, deltaU, c1);

    Udot->addVector(1.0, deltaU, c2);

    Udotdot->addVector(1.0, deltaU, c3);

    // update the response at the DOFs
    theModel->setResponse(*U,*Udot,*Udotdot);

    return theModel->commitDomain();
}
示例#9
0
文件: Collocation.cpp 项目: lcpt/xc
int XC::Collocation::commit(void)
{
    
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    if (theModel == 0)  {
        std::cerr << "WARNING XC::Collocation::commit() - no XC::AnalysisModel set\n";
        return -1;
    }	  
        
    // determine response quantities at t+deltaT
    U.getDotDot().addVector(1.0/theta, Ut.getDotDot(), (theta-1.0)/theta);
    
    (U.getDot()) = Ut.getDot();
    double a1 = deltaT*(1.0 - gamma);
    double a2 = deltaT*gamma;
    U.getDot().addVector(1.0, Ut.getDotDot(), a1);
    U.getDot().addVector(1.0, U.getDotDot(), a2);
    
    U.get()= Ut.get();
    U.get().addVector(1.0, Ut.getDot(), deltaT);
    double a3 = deltaT*deltaT*(0.5 - beta);
    double a4 = deltaT*deltaT*beta;
    U.get().addVector(1.0, Ut.getDotDot(), a3);
    U.get().addVector(1.0, U.getDotDot(), a4);

    // update the response at the DOFs
    theModel->setResponse(U.get(),U.getDot(),U.getDotDot());        
//    if (theModel->updateDomain() < 0)  {
//        std::cerr << "XC::Collocation::commit() - failed to update the domain\n";
//        return -4;
//    }
    
    // set the time to be t+delta t
    double time= getCurrentModelTime();
    time += (1.0-theta)*deltaT;
    setCurrentModelTime(time);
    return commitModel();
  }
示例#10
0
int XC::HHTHybridSimulation::commit(void)
  {
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    if(theModel == 0)
      {
        std::cerr << "WARNING XC::HHTHybridSimulation::commit() - no XC::AnalysisModel set\n";
        return -1;
      }
    
    // update the response at the DOFs
    theModel->setResponse(U.get(),U.getDot(),U.getDotDot());
//    if (theModel->updateDomain() < 0)  {
//        std::cerr << "XC::HHTHybridSimulation::commit() - failed to update the domain\n";
//        return -4;
//    }
    
    // set the time to be t+deltaT
    double time = getCurrentModelTime();
    time+= (1.0-alphaF)*deltaT;
    setCurrentModelTime(time);

    return commitModel();
  }
示例#11
0
文件: Collocation.cpp 项目: lcpt/xc
int XC::Collocation::update(const Vector &deltaU)
  {
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    if (theModel == 0)  {
        std::cerr << "WARNING XC::Collocation::update() - no XC::AnalysisModel set\n";
        return -1;
    }	
    
    // check domainChanged() has been called, i.e. Ut will not be zero
    if (Ut.get().Size() == 0)  {
        std::cerr << "WARNING XC::Collocation::update() - domainChange() failed or not called\n";
        return -2;
    }	
    
    // check deltaU is of correct size
    if (deltaU.Size() != U.get().Size())  {
        std::cerr << "WARNING XC::Collocation::update() - Vectors of incompatible size ";
        std::cerr << " expecting " << U.get().Size() << " obtained " << deltaU.Size() << std::endl;
        return -3;
    }
    
    // determine the response at t+theta*deltaT
    (U.get()) += deltaU;

    U.getDot().addVector(1.0, deltaU, c2);
    
    U.getDotDot().addVector(1.0, deltaU, c3);
    
    // update the response at the DOFs
    theModel->setResponse(U.get(),U.getDot(),U.getDotDot());        
    if(updateModel() < 0)
      {
        std::cerr << "XC::Collocation::update() - failed to update the domain\n";
        return -4;
      }
    return 0;
  }
示例#12
0
int
LoadControl::update(const Vector &deltaU)
{
    AnalysisModel *myModel = this->getAnalysisModel();
    LinearSOE *theSOE = this->getLinearSOE();
    if (myModel == 0 || theSOE == 0) {
	opserr << "WARNING LoadControl::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }

    myModel->incrDisp(deltaU);    
    if (myModel->updateDomain() < 0) {
      opserr << "LoadControl::update - model failed to update for new dU\n";
      return -1;
    }

    // Set deltaU for the convergence test
    theSOE->setX(deltaU);

    numIncrLastStep++;

    return 0;
}
示例#13
0
//! @brief Constructor.
//!
//! The constructor is responsible for constructing the graph given {\em
//! theModel}. It creates the vertices of the graph, one for every
//! equation  (each DOF that has not been constrained out by the
//! constraint handler)  in the model and adds all edges based on the
//! FE\_Element connectivity. For this reason the model must be fully
//! populated with the DOF\_Group and FE\_Element objects before
// the constructor is called.
XC::DOF_GroupGraph::DOF_GroupGraph(const AnalysisModel &theModel)
  :ModelGraph(theModel.getNumDOF_Groups()+START_VERTEX_NUM,theModel)
  {
    assert(myModel);
    const int numVertex= myModel->getNumDOF_Groups();

    if(numVertex>0)
      {
	
        const DOF_Group *dofGroupPtr= nullptr;

        // now create the vertices with a reference equal to the DOF_Group number.
        // and a tag which ranges from 0 through numVertex-1
        DOF_GrpConstIter &dofIter2 = myModel->getConstDOFs();
        while((dofGroupPtr = dofIter2()) != 0)
          {
	    const int DOF_GroupTag = dofGroupPtr->getTag();
            const int DOF_GroupNodeTag = dofGroupPtr->getNodeTag();
	    const int numDOF = dofGroupPtr->getNumFreeDOF();
            Vertex vrt(DOF_GroupTag, DOF_GroupNodeTag, 0, numDOF);
            this->addVertex(vrt);
          }


        // now add the edges, by looping over the Elements, getting their
        // IDs and adding edges between DOFs for equation numbers >= START_EQN_NUM
    
        const FE_Element *elePtr= nullptr;
        FE_EleConstIter &eleIter = myModel->getConstFEs();
        while((elePtr = eleIter()) != 0)
          {
	    const ID &id= elePtr->getDOFtags();
	    const int size = id.Size();
            for(int i=0; i<size; i++)
              {
	        int dof1 = id(i);
	        for(int j=0; j<size; j++)
                  if(i != j)
                    {
		      const int dof2 = id(j);
		      this->addEdge(dof1,dof2);
		    }
	      }
          }
      }
  }
示例#14
0
int GeneralizedAlpha::commit(void)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING GeneralizedAlpha::commit() - no AnalysisModel set\n";
        return -1;
    }	  
    
    // update the response at the DOFs
    theModel->setResponse(*U,*Udot,*Udotdot);
    if (theModel->updateDomain() < 0)  {
        opserr << "GeneralizedAlpha::commit() - failed to update the domain\n";
        return -4;
    }
    
    // set the time to be t+deltaT
    double time = theModel->getCurrentDomainTime();
    time += (1.0-alphaF)*deltaT;
    theModel->setCurrentDomainTime(time);

    return theModel->commitDomain();
}
示例#15
0
文件: PlainHandler.cpp 项目: lcpt/xc
//! @brief Handle the constraints.
//! 
//! Determines the number of FE\_Elements and DOF\_Groups needed from the
//! Domain (a one to one mapping between Elements and FE\_Elements and
//! Nodes and DOF\_Groups) Creates two arrays of pointers to store the
//! FE\_elements and DOF\_Groups, returning a warning message and a \f$-2\f$
//! or \f$-3\f$ if not enough memory is available for these arrays. Then the
//! object will iterate through the Nodes of the Domain, creating a
//! DOF\_Group for each node and setting the initial id for each dof to
//! \f$-2\f$ if no SFreedom\_Constraint exists for the dof, or \f$-1\f$ if a
//! SFreedom\_Constraint exists or \f$-3\f$ if the node identifier is in {\em
//! nodesToBeNumberedLast}. The object then iterates through the Elements
//! of the Domain creating a FE\_Element for each Element, if the Element
//! is a Subdomain setFE\_ElementPtr() is invoked on the Subdomain
//! with the new FE\_Element as the argument. If not enough memory is
//! available for any DOF\_Group or FE\_element a warning message is
//! printed and a \f$-4\f$ or \f$-5\f$ is returned. If any MFreedom\_Constraint
//! objects exist in the Domain a warning message is printed and \f$-6\f$ is
//! returned. If all is successful, the method returns the number of
//! degrees-of-freedom associated with the DOF\_Groups in {\em
//! nodesToBeNumberedLast}.
int XC::PlainHandler::handle(const ID *nodesLast)
  {
    // first check links exist to a Domain and an AnalysisModel object
    Domain *theDomain = this->getDomainPtr();
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    Integrator *theIntegrator = this->getIntegratorPtr();    
    
    if((!theDomain) || (!theModel) || (!theIntegrator))
      {
        std::cerr << getClassName() << "::" << __FUNCTION__
                  << "; domain, model or integrator was not set.\n";
        return -1;
      }

    // initialse the DOF_Groups and add them to the AnalysisModel.
    //    : must of course set the initial IDs
    NodeIter &theNod= theDomain->getNodes();
    Node *nodPtr= nullptr;
    SFreedom_Constraint *spPtr= nullptr;
    DOF_Group *dofPtr= nullptr;

    int numDOF = 0;
    int count3 = 0;
    int countDOF =0;
    while((nodPtr = theNod()) != nullptr)
      {
        dofPtr= theModel->createDOF_Group(numDOF++, nodPtr);
        // initially set all the ID value to -2
        countDOF+= dofPtr->inicID(-2);

        // loop through the SFreedom_Constraints to see if any of the
        // DOFs are constrained, if so set initial XC::ID value to -1
        int nodeID = nodPtr->getTag();
        SFreedom_ConstraintIter &theSPs = theDomain->getConstraints().getDomainAndLoadPatternSPs();
        while((spPtr = theSPs()) != 0)
            if(spPtr->getNodeTag() == nodeID)
              {
                if(spPtr->isHomogeneous() == false)
                  std::cerr << getClassName() << "::" << __FUNCTION__
                            << ";  non-homogeneos constraint"
                            << " for node " << spPtr->getNodeTag()
                            << " h**o assumed\n";
                const ID &id = dofPtr->getID();
                int dof = spPtr->getDOF_Number();                
                if(id(dof) == -2)
                  {
                        dofPtr->setID(spPtr->getDOF_Number(),-1);
                        countDOF--;        
                  }
                else
                  std::cerr << getClassName() << "::" << __FUNCTION__
                            << "; multiple single pointconstraints at DOF "
                            << dof << " for node " << spPtr->getNodeTag()
                            << std::endl;
              }

        // loop through the MFreedom_Constraints to see if any of the
        // DOFs are constrained, note constraint matrix must be diagonal
        // with 1's on the diagonal
        MFreedom_ConstraintIter &theMPs = theDomain->getConstraints().getMPs();
        MFreedom_Constraint *mpPtr;
        while((mpPtr = theMPs()) != 0)
          {
            if(mpPtr->getNodeConstrained() == nodeID)
              {
                if(mpPtr->isTimeVarying() == true)
                  std::cerr << getClassName() << "::" << __FUNCTION__
                            << ";  time-varying constraint"
                            << " for node " << nodeID
                            << " non-varying assumed\n";
                const Matrix &C = mpPtr->getConstraint();
                int numRows = C.noRows();
                int numCols = C.noCols();
                if(numRows != numCols)
                  std::cerr << getClassName() << "::" << __FUNCTION__
                            << " constraint matrix not diagonal,"
                            << " ignoring constraint for node "
                            << nodeID << std::endl;
                else
                  {
                    int ok = 0;
                    for(int i=0; i<numRows; i++)
                      {
                        if(C(i,i) != 1.0) ok = 1;
                        for(int j=0; j<numRows; j++)
                          if(i != j)
                            if(C(i,j) != 0.0)
                          ok = 1;
                      }
                    if(ok != 0)
                      std::cerr << getClassName() << "::" << __FUNCTION__
                                << "; constraint matrix not identity,"
                                << " ignoring constraint for node "
                                << nodeID << std::endl;
                    else
                      {
                        const ID &dofs = mpPtr->getConstrainedDOFs();
                        const ID &id = dofPtr->getID();                                
                        for(int i=0; i<dofs.Size(); i++)
                          {
                            int dof = dofs(i);        
                            if(id(dof) == -2)
                              {
                                dofPtr->setID(dof,-4);
                                countDOF--;        
                              }
                            else
                              std::cerr << getClassName() << "::" << __FUNCTION__
                                        << ";  constraint at dof " << dof
                                        << " already specified for constrained node"
                                        << " in MFreedom_Constraint at node "
                                        << nodeID << std::endl;
                          }
                      }
                  }
              }
          }
        // loop through the MFreedom_Constraints to see if any of the
        // DOFs are constrained, note constraint matrix must be diagonal
        // with 1's on the diagonal
        MRMFreedom_ConstraintIter &theMRMPs = theDomain->getConstraints().getMRMPs();
        MRMFreedom_Constraint *mrmpPtr;
        while((mrmpPtr = theMRMPs()) != 0)
          {
            std::cerr << getClassName() << "::" << __FUNCTION__
		      << "; loop through the MRMFreedom_Constraints."
		      << std::endl;
          }
      }

    // set the number of eqn in the model
    theModel->setNumEqn(countDOF);

    // now see if we have to set any of the dof's to -3
    //    int numLast = 0;
    if(nodesLast != 0) 
        for(int i=0; i<nodesLast->Size(); i++)
	  {
            int nodeID = (*nodesLast)(i);
            Node *nodPtr = theDomain->getNode(nodeID);
            if(nodPtr != 0)
	      {
                dofPtr = nodPtr->getDOF_GroupPtr();
                
                const ID &id = dofPtr->getID();
                // set all the dof values to -3
                for (int j=0; j < id.Size(); j++) 
                    if(id(j) == -2)
		      {
                        dofPtr->setID(j,-3);
                        count3++;
                      }
		    else
		      std::cerr << getClassName() << "::" << __FUNCTION__
		                << "; boundary sp constraint in subdomain"
		                << " this should not be - results suspect \n";
	      }
	  }
    
    // initialise the FE_Elements and add to the XC::AnalysisModel.
    ElementIter &theEle = theDomain->getElements();
    Element *elePtr;

    int numFe = 0;    
    FE_Element *fePtr;
    while((elePtr = theEle()) != 0)
      { fePtr= theModel->createFE_Element(numFe++, elePtr); }
    return count3;
  }
示例#16
0
文件: HHT1.cpp 项目: aceskpark/osfeo
int 
HHT1::domainChanged()
{
  AnalysisModel *myModel = this->getAnalysisModel();
  LinearSOE *theLinSOE = this->getLinearSOE();
  const Vector &x = theLinSOE->getX();
  int size = x.Size();

  // if damping factors exist set them in the ele & node of the domain
  if (alphaM != 0.0 || betaK != 0.0 || betaKi != 0.0 || betaKc != 0.0)
    myModel->setRayleighDampingFactors(alphaM, betaK, betaKi, betaKc);

  // create the new Vector objects
  if (Ut == 0 || Ut->Size() != size) {

    // delete the old
    if (Ut != 0)
      delete Ut;
    if (Utdot != 0)
      delete Utdot;
    if (Utdotdot != 0)
      delete Utdotdot;
    if (U != 0)
      delete U;
    if (Udot != 0)
      delete Udot;
    if (Udotdot != 0)
      delete Udotdot;
    if (Ualpha != 0)
      delete Ualpha;
    if (Udotalpha != 0)
      delete Udotalpha;
    
    // create the new
    Ut = new Vector(size);
    Utdot = new Vector(size);
    Utdotdot = new Vector(size);
    U = new Vector(size);
    Udot = new Vector(size);
    Udotdot = new Vector(size);
    Ualpha = new Vector(size);
    Udotalpha = new Vector(size);

    // check we obtained the new
    if (Ut == 0 || Ut->Size() != size ||
	Utdot == 0 || Utdot->Size() != size ||
	Utdotdot == 0 || Utdotdot->Size() != size ||
	U == 0 || U->Size() != size ||
	Udot == 0 || Udot->Size() != size ||
	Udotdot == 0 || Udotdot->Size() != size ||
	Ualpha == 0 || Ualpha->Size() != size ||
	Udotalpha == 0 || Udotalpha->Size() != size) {
  
      opserr << "HHT1::domainChanged - ran out of memory\n";

      // delete the old
      if (Ut != 0)
	delete Ut;
      if (Utdot != 0)
	delete Utdot;
      if (Utdotdot != 0)
	delete Utdotdot;
      if (U != 0)
	delete U;
      if (Udot != 0)
	delete Udot;
      if (Udotdot != 0)
	delete Udotdot;
    if (Ualpha != 0)
      delete Ualpha;
    if (Udotalpha != 0)
      delete Udotalpha;

      Ut = 0; Utdot = 0; Utdotdot = 0;
      U = 0; Udot = 0; Udotdot = 0; Udotalpha=0; Ualpha =0;
      return -1;
    }
  }        
    
  // now go through and populate U, Udot and Udotdot by iterating through
  // the DOF_Groups and getting the last committed velocity and accel

  DOF_GrpIter &theDOFs = myModel->getDOFs();
  DOF_Group *dofPtr;

  while ((dofPtr = theDOFs()) != 0) {
    const ID &id = dofPtr->getID();
    int idSize = id.Size();


	int i;
    const Vector &disp = dofPtr->getCommittedDisp();	
    for (i=0; i < idSize; i++) {
      int loc = id(i);
      if (loc >= 0) {
 	(*U)(loc) = disp(i);		
      }
    }

    const Vector &vel = dofPtr->getCommittedVel();
    for (i=0; i < idSize; i++) {
      int loc = id(i);
      if (loc >= 0) {
 	(*Udot)(loc) = vel(i);
      }
    }

    const Vector &accel = dofPtr->getCommittedAccel();	
    for (i=0; i < idSize; i++) {
      int loc = id(i);
      if (loc >= 0) {
 	(*Udotdot)(loc) = accel(i);
      }
    }
    /** NOTE WE CAN't DO TOGETHER BECAUSE DOF_GROUPS USING SINGLE VECTOR ******
    for (int i=0; i < id.Size(); i++) {
      int loc = id(i);
      if (loc >= 0) {
 	(*U)(loc) = disp(i);		
 	(*Udot)(loc) = vel(i);
 	(*Udotdot)(loc) = accel(i);
      }
    }
    *******************************************************************************/

  }    

  return 0;
}
示例#17
0
文件: HHT1.cpp 项目: aceskpark/osfeo
int
HHT1::newStep(double deltaT)
{

  if (beta == 0 || gamma == 0 ) {
    opserr << "HHT1::newStep() - error in variable\n";
    opserr << "gamma = " << gamma << " beta= " << beta << endln;
    return -1;
  }
    
  if (deltaT <= 0.0) {
    opserr << "HHT1::newStep() - error in variable\n";
    opserr << "dT = " << deltaT << endln;
    return -2;	
  }
  c1 = 1.0;
  c2 = gamma/(beta*deltaT);
  c3 = 1.0/(beta*deltaT*deltaT);


  AnalysisModel *theModel = this->getAnalysisModel();

  if (U == 0) {
    opserr << "HHT1::newStep() - domainChange() failed or hasn't been called\n";
    return -3;	
  }

  // set response at t to be that at t+delta t of previous step
  (*Ut) = *U;        
  (*Utdot) = *Udot;  
  (*Utdotdot) = *Udotdot;  
    
  // set new velocity and accelerations at t + delta t
  double a1 = (1.0 - gamma/beta); 
  double a2 = (deltaT)*(1.0 - 0.5*gamma/beta);

  //  (*Udot) *= a1;
  Udot->addVector(a1, *Utdotdot,a2);

  double a3 = -1.0/(beta*deltaT);
  double a4 = 1 - 0.5/beta;
  //  (*Udotdot) *= a4;  
   Udotdot->addVector(a4, *Utdot,a3);

  (*Ualpha) = *Ut;
  (*Udotalpha) = *Utdot;
  //  (*Udotalpha) *= (1 - alpha);
  Udotalpha->addVector((1-alpha), *Udot, alpha);

  // set the new trial response quantities

  theModel->setResponse(*Ualpha,*Udotalpha,*Udotdot);        

  // increment the time and apply the load
  double time = theModel->getCurrentDomainTime();
  time +=deltaT;
  if (theModel->updateDomain(time, deltaT) < 0) {
    opserr << "HHT::newStep() - failed to update the domain\n";
    return -4;
  }

  return 0;
}
示例#18
0
文件: TRBDF2.cpp 项目: lge88/OpenSees
int TRBDF2::newStep(double deltaT)
{
  // check the vectors have been created
  if (U == 0)  {
    opserr << "TRBDF2::newStep() - domainChange() failed or hasn't been called\n";
    return -3;	
  }

  // mark step as Trapezoidal (=0) or Backward Euler (=1)

  if (deltaT != dt || step == 1) {
    step = 0;
  } else
    step = 1;

  // get a pointer to the AnalysisModel
  AnalysisModel *theModel = this->getAnalysisModel();

  // set response at t to be that at t+deltaT of previous step
  dt = deltaT;

  (*Utm1) = *Ut;
  (*Utm1dot) = *Utdot;

  (*Ut) = *U;        
  (*Utdot) = *Udot;  
  (*Utdotdot) = *Udotdot;

  // set the constants
  if (step == 0)  { // trapezoidal
    c1 = 1.0;
    c2 = 2.0/deltaT;
    c3 = 4.0/(deltaT*deltaT);

    (*Udot) *= -1.0;

    double a3 = -4.0/deltaT;
    double a4 = -1;
    Udotdot->addVector(a4, *Utdot, a3);
    
    // set the trial response quantities
    theModel->setVel(*Udot);
    theModel->setAccel(*Udotdot);    

  } else  {  // backward euler
    c1 = 1.0;
    c2 = 1.5/deltaT;
    c3 = 2.25/(deltaT*deltaT);

    (*Udot) = *Utm1;
    Udot->addVector(0.5/deltaT, *Ut, -1/(2.0*deltaT));

    (*Udotdot) = *Utm1dot;
    Udotdot->addVector(0.5/deltaT, *Utdot, -4.0/(2.0*deltaT));    
    Udotdot->addVector(1.0, *Udot, 3.0/(2.0*deltaT));    

    // set the trial response quantities
    theModel->setVel(*Udot);
    theModel->setAccel(*Udotdot);    
  }

  // increment the time to t+deltaT and apply the load
  double time = theModel->getCurrentDomainTime();
  time += deltaT;
  if (theModel->updateDomain(time, deltaT) < 0)  {
    opserr << "TRBDF2::newStep() - failed to update the domain\n";
    return -4;
  }
  
  return 0;
}
int
LagrangeConstraintHandler::handle(const ID *nodesLast)
{
    // first check links exist to a Domain and an AnalysisModel object
    Domain *theDomain = this->getDomainPtr();
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    Integrator *theIntegrator = this->getIntegratorPtr();    
    
    if ((theDomain == 0) || (theModel == 0) || (theIntegrator == 0)) {
	opserr << "WARNING LagrangeConstraintHandler::handle() - ";
	opserr << " setLinks() has not been called\n";
	return -1;
    }

    // get number ofelements and nodes in the domain 
    // and init the theFEs and theDOFs arrays

    int numConstraints = 0;
    SP_ConstraintIter &theSPss = theDomain->getDomainAndLoadPatternSPs();
    SP_Constraint *spPtr;
    while ((spPtr = theSPss()) != 0)
      numConstraints++;

    numConstraints += theDomain->getNumMPs();

    //create a DOF_Group for each Node and add it to the AnalysisModel.
    //    : must of course set the initial IDs
    NodeIter &theNod = theDomain->getNodes();
    Node *nodPtr;
    MP_Constraint *mpPtr;    
    DOF_Group *dofPtr;
    
    int numDofGrp = 0;
    int count3 = 0;
    int countDOF =0;
    while ((nodPtr = theNod()) != 0) {
	if ((dofPtr = new DOF_Group(numDofGrp++, nodPtr)) == 0) {
	    opserr << "WARNING LagrangeConstraintHandler::handle() ";
	    opserr << "- ran out of memory";
	    opserr << " creating DOF_Group " << numDofGrp++ << endln;	
	    return -4;    		
	}
	// initially set all the ID value to -2
	
	const ID &id = dofPtr->getID();
	for (int j=0; j < id.Size(); j++) {
	    dofPtr->setID(j,-2);
	    countDOF++;
	}

	nodPtr->setDOF_GroupPtr(dofPtr);
	theModel->addDOF_Group(dofPtr);
    }

    // create the FE_Elements for the Elements and add to the AnalysisModel
    ElementIter &theEle = theDomain->getElements();
    Element *elePtr;

    int numFeEle = 0;
    FE_Element *fePtr;
    while ((elePtr = theEle()) != 0) {

      // only create an FE_Element for a subdomain element if it does not
      // do independent analysis .. then subdomain part of this analysis so create
      // an FE_element & set subdomain to point to it.
      if (elePtr->isSubdomain() == true) {
	Subdomain *theSub = (Subdomain *)elePtr;
	if (theSub->doesIndependentAnalysis() == false) {
	  if ((fePtr = new FE_Element(numFeEle++, elePtr)) == 0) {
	    opserr << "WARNING PlainHandler::handle() - ran out of memory";
	    opserr << " creating FE_Element " << elePtr->getTag() << endln; 
	    return -5;
	  }		

	  theModel->addFE_Element(fePtr);
	  theSub->setFE_ElementPtr(fePtr);

	} //  if (theSub->doesIndependentAnalysis() == false) {

      } else {

	// just a regular element .. create an FE_Element for it & add to AnalysisModel
	if ((fePtr = new FE_Element(numFeEle++, elePtr)) == 0) {
	  opserr << "WARNING PlainHandler::handle() - ran out of memory";
	  opserr << " creating FE_Element " << elePtr->getTag() << endln; 
	  return -5;
	}
	
	theModel->addFE_Element(fePtr);
      }
    }

    // create the LagrangeSP_FE for the SP_Constraints and 
    // add to the AnalysisModel

    SP_ConstraintIter &theSPs = theDomain->getDomainAndLoadPatternSPs();
    while ((spPtr = theSPs()) != 0) {
	if ((dofPtr = new LagrangeDOF_Group(numDofGrp++, *spPtr)) == 0) {
	    opserr << "WARNING LagrangeConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating LagrangeDOFGroup " << endln; 
	    return -5;
	}		
	const ID &id = dofPtr->getID();
	for (int j=0; j < id.Size(); j++) {
	    dofPtr->setID(j,-2);
	    countDOF++;
	}

	theModel->addDOF_Group(dofPtr);    		
	
	if ((fePtr = new LagrangeSP_FE(numFeEle++, *theDomain, *spPtr, 
				       *dofPtr, alphaSP)) == 0) {
	    opserr << "WARNING LagrangeConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating LagrangeSP_FE " << endln; 
	    return -5;
	}		
	theModel->addFE_Element(fePtr);
    }	    

    // create the LagrangeMP_FE for the MP_Constraints and 
    // add to the AnalysisModel    

    MP_ConstraintIter &theMPs = theDomain->getMPs();
    while ((mpPtr = theMPs()) != 0) {
	if ((dofPtr = new LagrangeDOF_Group(numDofGrp++, *mpPtr)) == 0) {
	    opserr << "WARNING LagrangeConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating LagrangeDOFGroup " << endln; 
	    return -5;
	}		
	const ID &id = dofPtr->getID();
	for (int j=0; j < id.Size(); j++) {
	    dofPtr->setID(j,-2);
	    countDOF++;
	}

	theModel->addDOF_Group(dofPtr);    	

	if ((fePtr = new LagrangeMP_FE(numFeEle++, *theDomain, *mpPtr, 
				       *dofPtr, alphaMP)) == 0) { 
	    opserr << "WARNING LagrangeConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating LagrangeMP_FE " << endln; 
	    return -5;
	}		
	
	theModel->addFE_Element(fePtr);
    }	        
    
    theModel->setNumEqn(countDOF);
    
    // set the number of eqn in the model
    // now see if we have to set any of the dof's to -3
    //    int numLast = 0;
    if (nodesLast != 0) 
	for (int i=0; i<nodesLast->Size(); i++) {
	    int nodeID = (*nodesLast)(i);
	    Node *nodPtr = theDomain->getNode(nodeID);
	    if (nodPtr != 0) {
		dofPtr = nodPtr->getDOF_GroupPtr();
		
		const ID &id = dofPtr->getID();
		// set all the dof values to -3
		for (int j=0; j < id.Size(); j++) 
		    if (id(j) == -2) {
			dofPtr->setID(j,-3);
			count3++;
		    } else {
			opserr << "WARNING LagrangeConstraintHandler::handle() ";
			opserr << " - boundary sp constraint in subdomain";
			opserr << " this should not be - results suspect \n";
		    }
	    }
	}

    return count3;
}
示例#20
0
int
PlainNumberer::numberDOF(int lastDOF)
{
    int eqnNumber = 0; // start equation number = 0

    // get a pointer to the model & check its not null
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    Domain *theDomain = 0;
    if (theModel != 0) theDomain = theModel->getDomainPtr();

    if (theModel == 0 || theDomain == 0) {
	opserr << "WARNING PlainNumberer::numberDOF(int) -";
	opserr << " - no AnalysisModel - has setLinks() been invoked?\n";
	return -1;
    }
    
    if (lastDOF != -1) {
	opserr << "WARNING PlainNumberer::numberDOF(int lastDOF):";
	opserr << " does not use the lastDOF as requested\n";
    }
    
    // iterate throgh  the DOFs first time setting -2 values
    DOF_GrpIter &theDOFs = theModel->getDOFs();
    DOF_Group *dofPtr;
    
    while ((dofPtr = theDOFs()) != 0) {
	const ID &theID = dofPtr->getID();
	for (int i=0; i<theID.Size(); i++)
	    if (theID(i) == -2) 
	      dofPtr->setID(i,eqnNumber++);
    }

    // iterate throgh  the DOFs second time setting -3 values
    DOF_GrpIter &moreDOFs = theModel->getDOFs();
    
    while ((dofPtr = moreDOFs()) != 0) {
	const ID &theID = dofPtr->getID();
	for (int i=0; i<theID.Size(); i++)
	    if (theID(i) == -3) dofPtr->setID(i,eqnNumber++);
    }

    // iterate through the DOFs one last time setting any -4 values
    DOF_GrpIter &tDOFs = theModel->getDOFs();
    while ((dofPtr = tDOFs()) != 0) {
    	const ID &theID = dofPtr->getID();
    	int have4s = 0;
	for (int i=0; i<theID.Size(); i++)
	    if (theID(i) == -4) have4s = 1;

	if (have4s == 1) {
		int nodeID = dofPtr->getNodeTag();
		// loop through the MP_Constraints to see if any of the
		// DOFs are constrained, note constraint matrix must be diagonal
		// with 1's on the diagonal
		MP_ConstraintIter &theMPs = theDomain->getMPs();
		MP_Constraint *mpPtr;
		while ((mpPtr = theMPs()) != 0 ) {
			// note keep looping over all in case multiple constraints
			// are used to constrain a node -- can't assume intelli user
	    		if (mpPtr->getNodeConstrained() == nodeID) {
	    			int nodeRetained = mpPtr->getNodeRetained();
	    			Node *nodeRetainedPtr = theDomain->getNode(nodeRetained);
	    			DOF_Group *retainedDOF = nodeRetainedPtr->getDOF_GroupPtr();
	    			const ID&retainedDOFIDs = retainedDOF->getID();
	    			const ID&constrainedDOFs = mpPtr->getConstrainedDOFs();
	    			const ID&retainedDOFs = mpPtr->getRetainedDOFs();
	    			for (int i=0; i<constrainedDOFs.Size(); i++) {
	    				int dofC = constrainedDOFs(i);
	    				int dofR = retainedDOFs(i);
	    				int dofID = retainedDOFIDs(dofR);
	    				dofPtr->setID(dofC, dofID);
	    			}
	    		}
		}		
	}	
    }

    eqnNumber--;
    int numEqn = eqnNumber - START_EQN_NUMBER +1;
	
    // iterate through the FE_Element getting them to set their IDs
    FE_EleIter &theEle = theModel->getFEs();
    FE_Element *elePtr;
    while ((elePtr = theEle()) != 0)
	elePtr->setID();

    // set the numOfEquation in the Model
    theModel->setNumEqn(numEqn);

    return numEqn;
}
int
TransformationConstraintHandler::handle(const ID *nodesLast)
{
    // first check links exist to a Domain and an AnalysisModel object
    Domain *theDomain = this->getDomainPtr();
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    Integrator *theIntegrator = this->getIntegratorPtr();    
    
    if ((theDomain == 0) || (theModel == 0) || (theIntegrator == 0)) {
	opserr << "WARNING TransformationConstraintHandler::handle() - ";
	opserr << " setLinks() has not been called\n";
	return -1;
    }
    
    // get number ofelements and nodes in the domain 
    // and init the theFEs and theDOFs arrays
    int numMPConstraints = theDomain->getNumMPs();

    //    int numSPConstraints = theDomain->getNumSPs();    
    int numSPConstraints = 0;
    SP_ConstraintIter &theSP1s = theDomain->getDomainAndLoadPatternSPs();
    SP_Constraint *theSP1; 
    while ((theSP1 = theSP1s()) != 0) 
	numSPConstraints++;
    
    numDOF = 0;
    ID transformedNode(0, 64);

    int i;
    
    // create an ID of constrained node tags in MP_Constraints
    ID constrainedNodesMP(0, numMPConstraints);
    MP_Constraint **mps =0;
    if (numMPConstraints != 0) {
	mps = new MP_Constraint *[numMPConstraints];
	if (mps == 0) {
	    opserr << "WARNING TransformationConstraintHandler::handle() - ";
	    opserr << "ran out of memory for MP_Constraints"; 
	    opserr << " array of size " << numMPConstraints << endln;
	    return -3;	    
	}
	MP_ConstraintIter &theMPs = theDomain->getMPs();
	MP_Constraint *theMP; 
	int index = 0;
	while ((theMP = theMPs()) != 0) {
	  int nodeConstrained = theMP->getNodeConstrained();
	  if (transformedNode.getLocation(nodeConstrained) < 0)
	    transformedNode[numDOF++] = nodeConstrained;
	  constrainedNodesMP[index] = nodeConstrained;
	  mps[index] = theMP;
	  index++;
	}	
    }

    // create an ID of constrained node tags in SP_Constraints
    ID constrainedNodesSP(0, numSPConstraints);;
    SP_Constraint **sps =0;
    if (numSPConstraints != 0) {
	sps = new SP_Constraint *[numSPConstraints];
	if (sps == 0) {
	    opserr << "WARNING TransformationConstraintHandler::handle() - ";
	    opserr << "ran out of memory for SP_Constraints"; 
	    opserr << " array of size " << numSPConstraints << endln;
	    if (mps != 0) delete [] mps;
	    if (sps != 0) delete [] sps;
	    return -3;	    
	}
	SP_ConstraintIter &theSPs = theDomain->getDomainAndLoadPatternSPs();
	SP_Constraint *theSP; 
	int index = 0;
	while ((theSP = theSPs()) != 0) {
	  int constrainedNode = theSP->getNodeTag();
	  if (transformedNode.getLocation(constrainedNode) < 0)
	    transformedNode[numDOF++] = constrainedNode;	    
	  constrainedNodesSP[index] = constrainedNode;
	  sps[index] = theSP;
	  index++;
	}	
    }

    // create an array for the DOF_Groups and zero it
    if ((numDOF != 0) && ((theDOFs = new DOF_Group *[numDOF]) == 0)) {
	opserr << "WARNING TransformationConstraintHandler::handle() - ";
        opserr << "ran out of memory for DOF_Groups";
	opserr << " array of size " << numDOF << endln;
	return -3;    
    }    
    for (i=0; i<numDOF; i++) theDOFs[i] = 0;

    //create a DOF_Group for each Node and add it to the AnalysisModel.
    //    :must of course set the initial IDs
    NodeIter &theNod = theDomain->getNodes();
    Node *nodPtr;

    int numDofGrp = 0;
    int count3 = 0;
    int countDOF =0;
    
    numConstrainedNodes = 0;
    numDOF = 0;
    while ((nodPtr = theNod()) != 0) {

        DOF_Group *dofPtr = 0;

	int nodeTag = nodPtr->getTag();
	int numNodalDOF = nodPtr->getNumberDOF();
	int loc = -1;
	int createdDOF = 0;

	loc = constrainedNodesMP.getLocation(nodeTag);
	if (loc >= 0) {

	  TransformationDOF_Group *tDofPtr = 
	    new TransformationDOF_Group(numDofGrp++, nodPtr, mps[loc], this); 

	  createdDOF = 1;
	  dofPtr = tDofPtr;
	  
	  // add any SPs
	  if (numSPConstraints != 0) {
	    loc = constrainedNodesSP.getLocation(nodeTag);
	    if (loc >= 0) {
	      tDofPtr->addSP_Constraint(*(sps[loc]));
	      for (int i = loc+1; i<numSPConstraints; i++) {
		if (constrainedNodesSP(i) == nodeTag)
		  tDofPtr->addSP_Constraint(*(sps[i]));
	      }
	    }
	    // add the DOF to the array	    
	    theDOFs[numDOF++] = dofPtr;	    	    
	    numConstrainedNodes++;
	  }
	}
	
	if (createdDOF == 0) {
	  loc = constrainedNodesSP.getLocation(nodeTag);
	  if (loc >= 0) {
	    TransformationDOF_Group *tDofPtr = 
	      new TransformationDOF_Group(numDofGrp++, nodPtr, this);

	    int numSPs = 1;
	    createdDOF = 1;
	    dofPtr = tDofPtr;
	    tDofPtr->addSP_Constraint(*(sps[loc]));
	
	    // check for more SP_constraints acting on node and add them
	    for (int i = loc+1; i<numSPConstraints; i++) {
	      if (constrainedNodesSP(i) == nodeTag) {
		tDofPtr->addSP_Constraint(*(sps[i]));
		numSPs++;
	      }
	    }
	    // add the DOF to the array
	    theDOFs[numDOF++] = dofPtr;	    	    
	    numConstrainedNodes++;	    
	    countDOF+= numNodalDOF - numSPs;		
	  }
	}

	// create an ordinary DOF_Group object if no dof constrained
	if (createdDOF == 0) {
	    if ((dofPtr = new DOF_Group(numDofGrp++, nodPtr)) == 0) {
		opserr << "WARNING TransformationConstraintHandler::handle() ";
		opserr << "- ran out of memory";
		opserr << " creating DOF_Group " << i << endln;	
		if (mps != 0) delete [] mps;
		if (sps != 0) delete [] sps;
		return -4;    		
	    }
	
	    countDOF+= numNodalDOF;
	}
	
	if (dofPtr == 0) 
	  opserr << "TransformationConstraintHandler::handle() - error in logic\n";
	    
	nodPtr->setDOF_GroupPtr(dofPtr);
	theModel->addDOF_Group(dofPtr);
    }

    // create the FE_Elements for the Elements and add to the AnalysisModel
    ElementIter &theEle = theDomain->getElements();
    Element *elePtr;
    FE_Element *fePtr;

    numFE = 0;
    ID transformedEle(0, 64);

    while ((elePtr = theEle()) != 0) {
      int flag = 0;
      if (elePtr->isSubdomain() == true) {
	Subdomain *theSub = (Subdomain *)elePtr;
	if (theSub->doesIndependentAnalysis() == true) 
	  flag = 1;
      }

      if (flag == 0) {
      
	const ID &nodes = elePtr->getExternalNodes();
	int nodesSize = nodes.Size();
	int isConstrainedNode = 0;
	for (int i=0; i<nodesSize; i++) {
	  int nodeTag = nodes(i);
	  if (numMPConstraints != 0) {
	    int loc = constrainedNodesMP.getLocation(nodeTag);
	    if (loc >= 0) {
	      isConstrainedNode = 1;
	      i = nodesSize;
	    }
	  } 
	  if (numSPConstraints != 0 && isConstrainedNode == 0) {
	    int loc = constrainedNodesSP.getLocation(nodeTag);
	    if (loc >= 0) {
	      isConstrainedNode = 1;		    
	      i = nodesSize;
	    }
	  }
	}
	
	if (isConstrainedNode == 1) {
	  transformedEle[numFE++] = elePtr->getTag();
	}
      }
    }
    
    // create an array for the FE_elements and zero it
    if ((numFE != 0) && ((theFEs  = new FE_Element *[numFE]) == 0)) {
      opserr << "WARNING TransformationConstraintHandler::handle() - ";
      opserr << "ran out of memory for FE_elements"; 
      opserr << " array of size " << numFE << endln;
      return -2;
    }
    
    for (i=0; i<numFE; i++) theFEs[i] = 0;

    ElementIter &theEle1 = theDomain->getElements();
    
    // int numConstraints = numMPConstraints+numSPConstraints;
    int numFeEle = 0;
    int numFE = 0;

    while ((elePtr = theEle1()) != 0) {
      int tag = elePtr->getTag();
      if (elePtr->isSubdomain() == true) {
	Subdomain *theSub = (Subdomain *)elePtr;
	if (theSub->doesIndependentAnalysis() == false) {
	  
	  if (transformedEle.getLocation(tag) < 0) {
	    if ((fePtr = new FE_Element(numFeEle, elePtr)) == 0) {
	      opserr << "WARNING TransformationConstraintHandler::handle()";
	      opserr << " - ran out of memory";
	      opserr << " creating FE_Element " << elePtr->getTag() << endln; 
	      if (mps != 0) delete [] mps;
	      if (sps != 0) delete [] sps;
	      return -5;
	    }	
	  } else {
	    if ((fePtr = new TransformationFE(numFeEle, elePtr)) == 0) {		
	      opserr << "WARNING TransformationConstraintHandler::handle()";
	      opserr << " - ran out of memory";
	      opserr << " creating TransformationFE " << elePtr->getTag() << endln; 
	      if (mps != 0) delete [] mps;
	      if (sps != 0) delete [] sps;
	      return -6;		    
	    }
	    theFEs[numFE++] = fePtr;
	  }

	  numFeEle++;
	  theModel->addFE_Element(fePtr);
	  theSub->setFE_ElementPtr(fePtr);
	}
      } else {
	if (transformedEle.getLocation(tag) < 0) {
	  if ((fePtr = new FE_Element(numFeEle, elePtr)) == 0) {
	    opserr << "WARNING TransformationConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating FE_Element " << elePtr->getTag() << endln; 
	    if (mps != 0) delete [] mps;
	    if (sps != 0) delete [] sps;
	    return -5;
	  }	
	} else {
	  if ((fePtr = new TransformationFE(numFeEle, elePtr)) == 0) {		
	    opserr << "WARNING TransformationConstraintHandler::handle()";
	    opserr << " - ran out of memory";
	    opserr << " creating TransformationFE " << elePtr->getTag() << endln; 
	    if (mps != 0) delete [] mps;
	    if (sps != 0) delete [] sps;
	    return -6;		    
	  }
	  theFEs[numFE++] = fePtr;
	}
	
	numFeEle++;
	theModel->addFE_Element(fePtr);
      }
    }

    theModel->setNumEqn(countDOF);
    
    // set the number of eqn in the model
    // now see if we have to set any of the dof's to -3
    //    int numLast = 0;
    if (nodesLast != 0) 
	for (i=0; i<nodesLast->Size(); i++) {
	    int nodeID = (*nodesLast)(i);
	    Node *nodPtr = theDomain->getNode(nodeID);
	    if (nodPtr != 0) {
		DOF_Group *dofPtr = nodPtr->getDOF_GroupPtr();
		
		const ID &id = dofPtr->getID();
		// set all the dof values to -3
		for (int j=0; j < id.Size(); j++) {
		    if (id(j) == -2) {
			dofPtr->setID(j,-3);
			count3++;
		    } else {
			opserr << "WARNING TransformationConstraintHandler::handle() ";
			opserr << " - boundary sp constraint in subdomain";
			opserr << " this should not be - results suspect \n";
			if (mps != 0) delete [] mps;
			if (sps != 0) delete [] sps;
		    }
		}
	    }
	}

    if (mps != 0) delete [] mps;
    if (sps != 0) delete [] sps;

    return count3;
}
示例#22
0
int HHTHSFixedNumIter::update(const Vector &deltaU)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    if (theModel == 0)  {
        opserr << "WARNING HHTHSFixedNumIter::update() - no AnalysisModel set\n";
        return -1;
    }
    ConvergenceTest *theTest = this->getConvergenceTest();
    if (theTest == 0)  {
        opserr << "WARNING HHTHSFixedNumIter::update() - no ConvergenceTest set\n";
        return -2;
    }
    
    // check domainChanged() has been called, i.e. Ut will not be zero
    if (Ut == 0)  {
        opserr << "WARNING HHTHSFixedNumIter::update() - domainChange() failed or not called\n";
        return -3;
    }	
    
    // check deltaU is of correct size
    if (deltaU.Size() != U->Size())  {
        opserr << "WARNING HHTHSFixedNumIter::update() - Vectors of incompatible size ";
        opserr << " expecting " << U->Size() << " obtained " << deltaU.Size() << endln;
        return -4;
    }
    
    // get interpolation location and scale displacement increment 
    x = (double) theTest->getNumTests()/theTest->getMaxNumTests();
    if (polyOrder == 1)  {
        (*scaledDeltaU) = x*((*U)+deltaU) - (x-1.0)*(*Ut)  - (*U);
    }
    else if (polyOrder == 2)  {
        (*scaledDeltaU) = x*(x+1.0)/2.0*((*U)+deltaU) - (x-1.0)*(x+1.0)*(*Ut) 
                        + (x-1.0)*x/2.0*(*Utm1) - (*U);
    }
    else if (polyOrder == 3)  {
        (*scaledDeltaU) = x*(x+1.0)*(x+2.0)/6.0*((*U)+deltaU) - (x-1.0)*(x+1.0)*(x+2.0)/2.0*(*Ut)
                        + (x-1.0)*x*(x+2.0)/2.0*(*Utm1) - (x-1.0)*x*(x+1.0)/6.0*(*Utm2) - (*U);
    }
    else  {
        opserr << "WARNING HHTHSFixedNumIter::update() - polyOrder > 3 not supported\n";
    }
    
    // determine the response at t+deltaT
    U->addVector(1.0, *scaledDeltaU, c1);
    
    Udot->addVector(1.0, *scaledDeltaU, c2);
    
    Udotdot->addVector(1.0, *scaledDeltaU, c3);
    
    // determine response at t+alpha*deltaT
    (*Ualpha) = *Ut;
    Ualpha->addVector((1.0-alphaF), *U, alphaF);
    
    (*Ualphadot) = *Utdot;
    Ualphadot->addVector((1.0-alphaF), *Udot, alphaF);
    
    (*Ualphadotdot) = *Utdotdot;
    Ualphadotdot->addVector((1.0-alphaI), *Udotdot, alphaI);
    
    // update the response at the DOFs
    theModel->setResponse(*Ualpha,*Ualphadot,*Ualphadotdot);
    if (theModel->updateDomain() < 0)  {
        opserr << "HHTHSFixedNumIter::update() - failed to update the domain\n";
        return -5;
    }
    
    return 0;
}
示例#23
0
int HHTHSFixedNumIter::domainChanged()
{
    AnalysisModel *myModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
    const Vector &x = theLinSOE->getX();
    int size = x.Size();
    
    // if damping factors exist set them in the ele & node of the domain
    if (alphaM != 0.0 || betaK != 0.0 || betaKi != 0.0 || betaKc != 0.0)
        myModel->setRayleighDampingFactors(alphaM, betaK, betaKi, betaKc);
    
    // create the new Vector objects
    if (Ut == 0 || Ut->Size() != size)  {
        
        // delete the old
        if (Ut != 0)
            delete Ut;
        if (Utdot != 0)
            delete Utdot;
        if (Utdotdot != 0)
            delete Utdotdot;
        if (U != 0)
            delete U;
        if (Udot != 0)
            delete Udot;
        if (Udotdot != 0)
            delete Udotdot;
        if (Ualpha != 0)
            delete Ualpha;
        if (Ualphadot != 0)
            delete Ualphadot;
        if (Ualphadotdot != 0)
            delete Ualphadotdot;
        if (Utm1 != 0)
            delete Utm1;
        if (Utm2 != 0)
            delete Utm2;
        if (scaledDeltaU != 0)
            delete scaledDeltaU;
        
        // create the new
        Ut = new Vector(size);
        Utdot = new Vector(size);
        Utdotdot = new Vector(size);
        U = new Vector(size);
        Udot = new Vector(size);
        Udotdot = new Vector(size);
        Ualpha = new Vector(size);
        Ualphadot = new Vector(size);
        Ualphadotdot = new Vector(size);
        Utm1 = new Vector(size);
        Utm2 = new Vector(size);
        scaledDeltaU = new Vector(size);
        
        // check we obtained the new
        if (Ut == 0 || Ut->Size() != size ||
            Utdot == 0 || Utdot->Size() != size ||
            Utdotdot == 0 || Utdotdot->Size() != size ||
            U == 0 || U->Size() != size ||
            Udot == 0 || Udot->Size() != size ||
            Udotdot == 0 || Udotdot->Size() != size ||
            Ualpha == 0 || Ualpha->Size() != size ||
            Ualphadot == 0 || Ualphadot->Size() != size ||
            Ualphadotdot == 0 || Ualphadotdot->Size() != size ||
            Utm1 == 0 || Utm1->Size() != size ||
            Utm2 == 0 || Utm2->Size() != size ||
            scaledDeltaU == 0 || scaledDeltaU->Size() != size)  {
            
            opserr << "HHTHSFixedNumIter::domainChanged - ran out of memory\n";
            
            // delete the old
            if (Ut != 0)
                delete Ut;
            if (Utdot != 0)
                delete Utdot;
            if (Utdotdot != 0)
                delete Utdotdot;
            if (U != 0)
                delete U;
            if (Udot != 0)
                delete Udot;
            if (Udotdot != 0)
                delete Udotdot;
            if (Ualpha != 0)
                delete Ualpha;
            if (Ualphadot != 0)
                delete Ualphadot;
            if (Ualphadotdot != 0)
                delete Ualphadotdot;
            if (Utm1 != 0)
                delete Utm1;
            if (Utm2 != 0)
                delete Utm2;
            if (scaledDeltaU != 0)
                delete scaledDeltaU;
            
            Ut = 0; Utdot = 0; Utdotdot = 0;
            U = 0; Udot = 0; Udotdot = 0;
            Ualpha = 0; Ualphadot = 0; Ualphadotdot = 0;
            Utm1 = 0; Utm2 = 0; scaledDeltaU = 0;
            
            return -1;
        }
    }        
    
    // now go through and populate U, Udot and Udotdot by iterating through
    // the DOF_Groups and getting the last committed velocity and accel
    DOF_GrpIter &theDOFs = myModel->getDOFs();
    DOF_Group *dofPtr;
    while ((dofPtr = theDOFs()) != 0)  {
        const ID &id = dofPtr->getID();
        int idSize = id.Size();
        
        int i;
        const Vector &disp = dofPtr->getCommittedDisp();	
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Utm1)(loc) = disp(i);
                (*Ut)(loc) = disp(i);
                (*U)(loc) = disp(i);
            }
        }
        
        const Vector &vel = dofPtr->getCommittedVel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udot)(loc) = vel(i);
            }
        }
        
        const Vector &accel = dofPtr->getCommittedAccel();	
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udotdot)(loc) = accel(i);
            }
        }
    }
    
    if (polyOrder == 2)
        opserr << "\nWARNING: HHTHSFixedNumIter::domainChanged() - assuming Ut-1 = Ut\n";
    else if (polyOrder == 3)
        opserr << "\nWARNING: HHTHSFixedNumIter::domainChanged() - assuming Ut-2 = Ut-1 = Ut\n";
    
    return 0;
}
示例#24
0
int
ArcLength::update(const Vector &dU)
{
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING ArcLength::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }

    (*deltaUbar) = dU; // have to do this as the SOE is gonna change

    // determine dUhat    
    theLinSOE->setB(*phat);
    theLinSOE->solve();

    (*deltaUhat) = theLinSOE->getX();    

    // determine the coeeficients of our quadratic equation
    double a = alpha2 + ((*deltaUhat)^(*deltaUhat));
    double b = alpha2*deltaLambdaStep 
      + ((*deltaUhat)^(*deltaUbar))
      + ((*deltaUstep)^(*deltaUhat));
    b *= 2.0;
    double c = 2*((*deltaUstep)^(*deltaUbar)) + ((*deltaUbar)^(*deltaUbar));
    // check for a solution to quadratic
    double b24ac = b*b - 4.0*a*c;
    if (b24ac < 0) {
      opserr << "ArcLength::update() - imaginary roots due to multiple instability";
      opserr << " directions - initial load increment was too large\n";
      opserr << "a: " << a << " b: " << b << " c: " << c << " b24ac: " << b24ac << endln;
      return -1;
    }			       
    double a2 = 2.0*a;
    if (a2 == 0.0) {
      opserr << "ArcLength::update() - zero denominator";
      opserr << " alpha was set to 0.0 and zero reference load\n";
      return -2;
    }			       

    // determine the roots of the quadratic
    double sqrtb24ac = sqrt(b24ac);
    double dlambda1 = (-b + sqrtb24ac)/a2;
    double dlambda2 = (-b - sqrtb24ac)/a2;

    double val = (*deltaUhat)^(*deltaUstep);
    double theta1 = ((*deltaUstep)^(*deltaUstep)) + ((*deltaUbar)^(*deltaUstep));
    //    double theta2 = theta1 + dlambda2*val;
    theta1 += dlambda1*val;

    // choose dLambda based on angle between incremental displacement before
    // and after this step -- want positive
    double dLambda;
    if (theta1 > 0)
      dLambda = dlambda1;
    else
      dLambda = dlambda2;


    // determine delta U(i)
    (*deltaU) = (*deltaUbar);    
    deltaU->addVector(1.0, *deltaUhat,dLambda);
    
    // update dU and dlambda
    (*deltaUstep) += *deltaU;
    deltaLambdaStep += dLambda;
    currentLambda += dLambda;

    // update the model
    theModel->incrDisp(*deltaU);    
    theModel->applyLoadDomain(currentLambda);    


    theModel->updateDomain();
    
    // set the X soln in linearSOE to be deltaU for convergence Test
    theLinSOE->setX(*deltaU);

    return 0;
}
示例#25
0
void
ArpackSolver::myMv(int n, double *v, double *result)
{
  Vector x(v, n);
  Vector y(result,n);
    
  bool mDiagonal = theArpackSOE->mDiagonal;

  if (mDiagonal == true) {

    int Msize = theArpackSOE->Msize;
    double *M = theArpackSOE->M;

    /* for output
    DataFileStream dataStream("M.txt");
    dataStream.open();
    for (int i=0; i<n; i++)
      dataStream << M[i] << endln;
    dataStream.close();
    */

    if (n <= Msize) {
      for (int i=0; i<n; i++)
	result[i] = M[i]*v[i];
    } else {
      opserr << "ArpackSolver::myMv() n > Msize!\n";
      return;
    }

  } else {

    y.Zero();

    AnalysisModel *theAnalysisModel = theArpackSOE->theModel;
    
    // loop over the FE_Elements
    FE_Element *elePtr;
    FE_EleIter &theEles = theAnalysisModel->getFEs();    
    while((elePtr = theEles()) != 0) {
      const Vector &b = elePtr->getM_Force(x, 1.0);
      y.Assemble(b, elePtr->getID(), 1.0);

    }

    // loop over the DOF_Groups
    DOF_Group *dofPtr;
    DOF_GrpIter &theDofs = theAnalysisModel->getDOFs();
    while ((dofPtr = theDofs()) != 0) {
      const Vector &a = dofPtr->getM_Force(x,1.0);      
      y.Assemble(a, dofPtr->getID(), 1.0);
    }
  }

  // if paallel we have to merge the results
  int processID = theArpackSOE->processID;
  if (processID != -1) {
    Channel **theChannels = theArpackSOE->theChannels;
    int numChannels = theArpackSOE->numChannels;
    if (processID != 0) {
      theChannels[0]->sendVector(0, 0, y);
      theChannels[0]->recvVector(0, 0, y);
    } else {
      Vector other(workArea, n);
      // recv contribution from remote & add
      for (int i=0; i<numChannels; i++) {
	theChannels[i]->recvVector(0,0,other);
	y += other;
      }
      // send result back
      for (int i=0; i<numChannels; i++) {
	theChannels[i]->sendVector(0,0,y);
      }
    }
  }
}
int CollocationHSIncrReduct::domainChanged()
{
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();
    const Vector &x = theLinSOE->getX();
    int size = x.Size();
    
    // create the new Vector objects
    if (Ut == 0 || Ut->Size() != size)  {
        
        // delete the old
        if (Ut != 0)
            delete Ut;
        if (Utdot != 0)
            delete Utdot;
        if (Utdotdot != 0)
            delete Utdotdot;
        if (U != 0)
            delete U;
        if (Udot != 0)
            delete Udot;
        if (Udotdot != 0)
            delete Udotdot;
        if (scaledDeltaU != 0)
            delete scaledDeltaU;
        
        // create the new
        Ut = new Vector(size);
        Utdot = new Vector(size);
        Utdotdot = new Vector(size);
        U = new Vector(size);
        Udot = new Vector(size);
        Udotdot = new Vector(size);
        scaledDeltaU = new Vector(size);
        
        // check we obtained the new
        if (Ut == 0 || Ut->Size() != size ||
            Utdot == 0 || Utdot->Size() != size ||
            Utdotdot == 0 || Utdotdot->Size() != size ||
            U == 0 || U->Size() != size ||
            Udot == 0 || Udot->Size() != size ||
            Udotdot == 0 || Udotdot->Size() != size ||
            scaledDeltaU == 0 || scaledDeltaU->Size() != size)  {
            
            opserr << "CollocationHSIncrReduct::domainChanged() - ran out of memory\n";
            
            // delete the old
            if (Ut != 0)
                delete Ut;
            if (Utdot != 0)
                delete Utdot;
            if (Utdotdot != 0)
                delete Utdotdot;
            if (U != 0)
                delete U;
            if (Udot != 0)
                delete Udot;
            if (Udotdot != 0)
                delete Udotdot;
            if (scaledDeltaU != 0)
                delete scaledDeltaU;
            
            Ut = 0; Utdot = 0; Utdotdot = 0;
            U = 0; Udot = 0; Udotdot = 0;
            scaledDeltaU = 0;
            
            return -1;
        }
    }
    
    // now go through and populate U, Udot and Udotdot by iterating through
    // the DOF_Groups and getting the last committed velocity and accel
    DOF_GrpIter &theDOFs = theModel->getDOFs();
    DOF_Group *dofPtr;
    while ((dofPtr = theDOFs()) != 0)  {
        const ID &id = dofPtr->getID();
        int idSize = id.Size();
        
        int i;
        const Vector &disp = dofPtr->getCommittedDisp();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*U)(loc) = disp(i);
            }
        }
        
        const Vector &vel = dofPtr->getCommittedVel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udot)(loc) = vel(i);
            }
        }
        
        const Vector &accel = dofPtr->getCommittedAccel();
        for (i=0; i < idSize; i++)  {
            int loc = id(i);
            if (loc >= 0)  {
                (*Udotdot)(loc) = accel(i);
            }
        }
    }
    
    return 0;
}
示例#27
0
int Newmark::newStep(double deltaT)
{
    if (beta == 0 || gamma == 0)  {
        opserr << "Newmark::newStep() - error in variable\n";
        opserr << "gamma = " << gamma << " beta = " << beta << endln;
        return -1;
    }
    
    if (deltaT <= 0.0)  {
        opserr << "Newmark::newStep() - error in variable\n";
        opserr << "dT = " << deltaT << endln;
        return -2;	
    }

    // get a pointer to the AnalysisModel
    AnalysisModel *theModel = this->getAnalysisModel();
    
    // set the constants
    if (displ == true)  {
        c1 = 1.0;
        c2 = gamma/(beta*deltaT);
        c3 = 1.0/(beta*deltaT*deltaT);
    } else  {
        c1 = beta*deltaT*deltaT;
        c2 = gamma*deltaT;
        c3 = 1.0;
    }
    
    if (U == 0)  {
        opserr << "Newmark::newStep() - domainChange() failed or hasn't been called\n";
        return -3;	
    }
    
    // set response at t to be that at t+deltaT of previous step
    (*Ut) = *U;        
    (*Utdot) = *Udot;  
    (*Utdotdot) = *Udotdot;
    
    if (displ == true)  {    
        // determine new velocities and accelerations at t+deltaT
        double a1 = (1.0 - gamma/beta); 
        double a2 = (deltaT)*(1.0 - 0.5*gamma/beta);
        Udot->addVector(a1, *Utdotdot, a2);
        
        double a3 = -1.0/(beta*deltaT);
        double a4 = 1.0 - 0.5/beta;
        Udotdot->addVector(a4, *Utdot, a3);

        // set the trial response quantities
        theModel->setVel(*Udot);
        theModel->setAccel(*Udotdot);
    } else  {
        // determine new displacements and velocities at t+deltaT      
        double a1 = (deltaT*deltaT/2.0);
        U->addVector(1.0, *Utdot, deltaT);
        U->addVector(1.0, *Utdotdot, a1);
        
        Udot->addVector(1.0, *Utdotdot, deltaT);

        // set the trial response quantities
        theModel->setDisp(*U);
        theModel->setVel(*Udot);
    }

    // increment the time to t+deltaT and apply the load
    double time = theModel->getCurrentDomainTime();
    time += deltaT;
    if (theModel->updateDomain(time, deltaT) < 0)  {
        opserr << "Newmark::newStep() - failed to update the domain\n";
        return -4;
    }
    
    return 0;
}
示例#28
0
int XC::ParallelNumberer::numberDOF(int lastDOF)
  {
    int result = 0;

    // get a pointer to the model & check its not null
    AnalysisModel *theModel = this->getAnalysisModelPtr();
    Domain *theDomain = 0;
    if(theModel) theDomain = theModel->getDomainPtr();
  
    if(theModel == 0 || theDomain == 0)
      {
        std::cerr << "WARNING XC::ParallelNumberer::numberDOF(int) -";
        std::cerr << " - no AnalysisModel.\n";
        return -1;
      }
  
    if(lastDOF != -1)
      {
        std::cerr << "WARNING XC::ParallelNumberer::numberDOF(int lastDOF):";
        std::cerr << " does not use the lastDOF as requested\n";
      }

    Graph &theGraph= theModel->getDOFGroupGraph();

    // if subdomain, collect graph, send it off, get 
    // ID back containing dof tags & start id numbers.
    if(processID != 0)
      {
        CommParameters cp(0,*theChannels[0]);
        const int numVertex = theGraph.getNumVertex();

        /*
        static XC::ID test(2); test(0) = processID; test(1) = 25;
        theChannel->recvID(0, 0, test);
        */

        cp.sendMovable(theGraph,DistributedObj::getDbTagData(),CommMetaData(1));

        // recv iD
        ID theID(2*numVertex);
        cp.receiveID(theID,DistributedObj::getDbTagData(),CommMetaData(2));

        // set vertex numbering based on ID received
        for(int i=0; i<numVertex; i ++)
          {
            const int vertexTag= theID(i);
            int startID= theID(i+numVertex);
            //Vertex *vertexPtr = theGraph.getVertexPtr(vertexTag);
            const int dofTag= vertexTag;
            DOF_Group *dofPtr= theModel->getDOF_GroupPtr(dofTag);
            if(!dofPtr)
              {
                std::cerr << "WARNING ParallelNumberer::numberDOF - ";
                std::cerr << "DOF_Group " << dofTag << "not in XC::AnalysisModel!\n";
                result= -4;
              }
            else
              {
                const ID &theDOFID= dofPtr->getID();
                //std::cerr << "P: " << processID << " dofTag: " << dofTag << " " << "start: " << startID << " " << theDOFID;
                const int idSize= theDOFID.Size();
                for(int j=0; j<idSize; j++)
                  if(theDOFID(j) == -2 || theDOFID(j) == -3) dofPtr->setID(j, startID++);
              }
            //const ID &theDOFID= dofPtr->getID();
          }
        cp.sendID(theID,DistributedObj::getDbTagData(),CommMetaData(2));
      } 
    else
      {
        // if XC::main domain, collect graphs from all subdomains,
        // merge into 1, number this one, send to subdomains the
        // id containing dof tags & start id's.

        // for P0 domain determine original vertex and ref tags
        const int numVertex= theGraph.getNumVertex(); 
        const int numVertexP0= numVertex;

        ID vertexTags(numVertex);
        ID vertexRefs(numVertex);
        Vertex *vertexPtr;
        int loc= 0;
        VertexIter &theVertices= theGraph.getVertices();
        while((vertexPtr= theVertices()) != 0)
          {
            vertexTags[loc]= vertexPtr->getTag();
            vertexRefs[loc]= vertexPtr->getRef();
            loc++;
          }
    
        const int numChannels= theChannels.size();
	std::vector<ID> theSubdomainIDs(numChannels);
        FEM_ObjectBroker theBroker;

        // for each subdomain we receive graph, create an XC::ID (to store
        // subdomain graph to merged graph vertex mapping and the final
        // subdoain graph vertex to startDOF mapping) and finally merge the
        // subdomain graph

        for(int j=0; j<numChannels; j++)
          {
            CommParameters cp(0,*theChannels[j]);
            Graph theSubGraph;

            /*
            static XC::ID test(2); test(0)= processID; test(1)= 25;
            theChannel->sendID(0, 0, test);
            */
            cp.receiveMovable(theSubGraph,DistributedObj::getDbTagData(),CommMetaData(3));
            theSubdomainIDs[j]= ID(theSubGraph.getNumVertex()*2);
            this->mergeSubGraph(theGraph, theSubGraph, vertexTags, vertexRefs, theSubdomainIDs[j]);
          }
    
        // we use graph numberer if one was provided in constructor,
        // otherwise we number based on subdomains (all in subdomain 1 numbered first, 
        // then  those in 2 not in 1 and so on till done.
        //    GraphNumberer *theNumberer= this->getGraphNumbererPtr();

        ID theOrderedRefs(theGraph.getNumVertex());

        if(theNumberer)
          {
            // use the supplied graph numberer to number the merged graph
            theOrderedRefs= theNumberer->number(theGraph, lastDOF);     
          }
        else
          {
            // assign numbers based on the subdomains

            int loc= 0;
            for(int l=0; l<numChannels; l++)
              {
                const ID &theSubdomain= theSubdomainIDs[l];
                int numVertexSubdomain= theSubdomain.Size()/2;

                for(int i=0; i<numVertexSubdomain; i++)
                  {
                    const int vertexTagMerged= theSubdomain(i+numVertexSubdomain);
                    //  int refTag= vertexRefs[vertexTags.getLocation(vertexTagMerged)];
                    if(theOrderedRefs.getLocation(vertexTagMerged) == -1)
                      theOrderedRefs[loc++]= vertexTagMerged;
                  }
              }

            // now order those not yet ordered in p0
            for(int j=0; j<numVertexP0; j++)
              {
                int refTagP0= vertexTags[j];
                if(theOrderedRefs.getLocation(refTagP0) == -1)
                  theOrderedRefs[loc++]= refTagP0;
              }        
          }
    int count= 0;
    for(int i=0; i<theOrderedRefs.Size(); i++)
      {
        int vertexTag= theOrderedRefs(i);
        //      int vertexTag= vertexTags[vertexRefs.getLocation(tag)];
        Vertex *vertexPtr= theGraph.getVertexPtr(vertexTag);
        int numDOF= vertexPtr->getColor();
        vertexPtr->setTmp(count);
        count += numDOF;
      }

    // number own dof's
    for(int i=0; i<numVertexP0; i++  ) {
      int vertexTag= vertexTags(i);
      Vertex *vertexPtr= theGraph.getVertexPtr(vertexTag);

      int startID= vertexPtr->getTmp();
      int dofTag= vertexTag;
      DOF_Group *dofPtr;        
      dofPtr= theModel->getDOF_GroupPtr(dofTag);
      if(dofPtr == 0) {
        std::cerr << "WARNING XC::ParallelNumberer::numberDOF - ";
        std::cerr << "DOF_Group (P0) " << dofTag << "not in XC::AnalysisModel!\n";
        result= -4;
      } else {
        const ID &theDOFID= dofPtr->getID();
        int idSize= theDOFID.Size();
        for(int j=0; j<idSize; j++)
          if(theDOFID(j) == -2 || theDOFID(j) == -3) dofPtr->setID(j, startID++);
      }
    }

    // now given the ordered refs we determine the mapping for each subdomain
    // and send the id with the information back to the subdomain, which it uses to order
    // it's own graph
    for(int k=0; k<numChannels; k++)
     {
        CommParameters cp(0,*theChannels[k]);
        ID &theSubdomain= theSubdomainIDs[k];
        int numVertexSubdomain= theSubdomain.Size()/2;

        for(int i=0; i<numVertexSubdomain; i++)
          {
            int vertexTagMerged= theSubdomain[numVertexSubdomain+i];
            Vertex *vertexPtr= theGraph.getVertexPtr(vertexTagMerged);
            int startDOF= vertexPtr->getTmp();
            theSubdomain[i+numVertexSubdomain]= startDOF;
          }
        cp.sendID(theSubdomain,DistributedObj::getDbTagData(),CommMetaData(4));
        cp.receiveID(theSubdomain,DistributedObj::getDbTagData(),CommMetaData(4));
      }      
  }

  // iterate through the XC::FE_Element getting them to set their IDs
  FE_EleIter &theEle= theModel->getFEs();
  FE_Element *elePtr;
  while ((elePtr= theEle()) != 0)
    elePtr->setID();
  
  return result;
}
示例#29
0
int 
ArcLength::domainChanged(void)
{
    // we first create the Vectors needed
    AnalysisModel *theModel = this->getAnalysisModel();
    LinearSOE *theLinSOE = this->getLinearSOE();    
    if (theModel == 0 || theLinSOE == 0) {
	opserr << "WARNING ArcLength::update() ";
	opserr << "No AnalysisModel or LinearSOE has been set\n";
	return -1;
    }    
    int size = theModel->getNumEqn(); // ask model in case N+1 space

    if (deltaUhat == 0 || deltaUhat->Size() != size) { // create new Vector
	if (deltaUhat != 0)
	    delete deltaUhat;   // delete the old
	deltaUhat = new Vector(size);
	if (deltaUhat == 0 || deltaUhat->Size() != size) { // check got it
	    opserr << "FATAL ArcLength::domainChanged() - ran out of memory for";
	    opserr << " deltaUhat Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUbar == 0 || deltaUbar->Size() != size) { // create new Vector
	if (deltaUbar != 0)
	    delete deltaUbar;   // delete the old
	deltaUbar = new Vector(size);
	if (deltaUbar == 0 || deltaUbar->Size() != size) { // check got it
	    opserr << "FATAL ArcLength::domainChanged() - ran out of memory for";
	    opserr << " deltaUbar Vector of size " << size << endln;
	    exit(-1);
	}
    }

    
    if (deltaU == 0 || deltaU->Size() != size) { // create new Vector
	if (deltaU != 0)
	    delete deltaU;   // delete the old
	deltaU = new Vector(size);
	if (deltaU == 0 || deltaU->Size() != size) { // check got it
	    opserr << "FATAL ArcLength::domainChanged() - ran out of memory for";
	    opserr << " deltaU Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	if (deltaUstep != 0)
	    delete deltaUstep;  
	deltaUstep = new Vector(size);
	if (deltaUstep == 0 || deltaUstep->Size() != size) { 
	    opserr << "FATAL ArcLength::domainChanged() - ran out of memory for";
	    opserr << " deltaUstep Vector of size " << size << endln;
	    exit(-1);
	}
    }

    if (phat == 0 || phat->Size() != size) { 
	if (phat != 0)
	    delete phat;  
	phat = new Vector(size);
	if (phat == 0 || phat->Size() != size) { 
	    opserr << "FATAL ArcLength::domainChanged() - ran out of memory for";
	    opserr << " phat Vector of size " << size << endln;
	    exit(-1);
	}
    }    

    // now we have to determine phat
    // do this by incrementing lambda by 1, applying load
    // and getting phat from unbalance.
    currentLambda = theModel->getCurrentDomainTime();
    currentLambda += 1.0;
    theModel->applyLoadDomain(currentLambda);    
    this->formUnbalance(); // NOTE: this assumes unbalance at last was 0
    (*phat) = theLinSOE->getB();
    currentLambda -= 1.0;
    theModel->setCurrentDomainTime(currentLambda);    
    

    // check there is a reference load
    int haveLoad = 0;
    for (int i=0; i<size; i++)
      if ( (*phat)(i) != 0.0 ) {
	haveLoad = 1;
	i = size;
      }

    if (haveLoad == 0) {
      opserr << "WARNING ArcLength::domainChanged() - zero reference load";
      return -1;
    }

    return 0;
}
示例#30
0
int HHTHSFixedNumIter::newStep(double _deltaT)
{
    deltaT = _deltaT;
    if (beta == 0 || gamma == 0 )  {
        opserr << "HHTHSFixedNumIter::newStep() - error in variable\n";
        opserr << "gamma = " << gamma << " beta = " << beta << endln;
        return -1;
    }
    
    if (deltaT <= 0.0)  {
        opserr << "HHTHSFixedNumIter::newStep() - error in variable\n";
        opserr << "dT = " << deltaT << endln;
        return -2;	
    }
    
    // get a pointer to the AnalysisModel
    AnalysisModel *theModel = this->getAnalysisModel();
    
    // set the constants
    c1 = 1.0;
    c2 = gamma/(beta*deltaT);
    c3 = 1.0/(beta*deltaT*deltaT);
    
    if (U == 0)  {
        opserr << "HHTHSFixedNumIter::newStep() - domainChange() failed or hasn't been called\n";
        return -3;	
    }
    
    // set response at t to be that at t+deltaT of previous step
    (*Utm2) = *Utm1;
    (*Utm1) = *Ut;
    (*Ut) = *U;
    (*Utdot) = *Udot;
    (*Utdotdot) = *Udotdot;
    
    // determine new velocities and accelerations at t+deltaT
    double a1 = (1.0 - gamma/beta);
    double a2 = deltaT*(1.0 - 0.5*gamma/beta);
    Udot->addVector(a1, *Utdotdot, a2);
    
    double a3 = -1.0/(beta*deltaT);
    double a4 = 1.0 - 0.5/beta;
    Udotdot->addVector(a4, *Utdot, a3);
    
    // determine the velocities and accelerations at t+alpha*deltaT
    (*Ualphadot) = *Utdot;
    Ualphadot->addVector((1.0-alphaF), *Udot, alphaF);
    
    (*Ualphadotdot) = *Utdotdot;
    Ualphadotdot->addVector((1.0-alphaI), *Udotdot, alphaI);
    
    // set the trial response quantities
    theModel->setVel(*Ualphadot);
    theModel->setAccel(*Ualphadotdot);
    
    // increment the time to t+alpha*deltaT and apply the load
    double time = theModel->getCurrentDomainTime();
    time += alphaF*deltaT;
    theModel->applyLoadDomain(time);
    
    return 0;
}