示例#1
0
// Analysis_TI::Setup()
Analysis::RetType Analysis_TI::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  debug_ = debugIn;
  int nq = analyzeArgs.getKeyInt("nq", 0);
  ArgList nskipArg(analyzeArgs.GetStringKey("nskip"), ","); // Comma-separated
  avg_increment_ = analyzeArgs.getKeyInt("avgincrement", -1);
  avg_max_ = analyzeArgs.getKeyInt("avgmax", -1);
  avg_skip_ = analyzeArgs.getKeyInt("avgskip", 0);
  n_bootstrap_pts_ = analyzeArgs.getKeyInt("bs_pts", -1);
  n_bootstrap_samples_ = analyzeArgs.getKeyInt("bs_samples", 0);
  bootstrap_seed_ = analyzeArgs.getKeyInt("bs_seed", -1);
  bootstrap_fac_ = analyzeArgs.getKeyDouble("bs_fac", 0.75);
  if (!nskipArg.empty()) {
    avgType_ = SKIP;
    // Specified numbers of points to skip
    nskip_.clear();
    for (int i = 0; i != nskipArg.Nargs(); i++) {
      nskip_.push_back( nskipArg.getNextInteger(0) );
      if (nskip_.back() < 0) nskip_.back() = 0;
    }
  } else if (avg_increment_ > 0)
    avgType_ = INCREMENT;
  else if (n_bootstrap_samples_ > 0)
    avgType_ = BOOTSTRAP;
  else
    avgType_ = AVG;
  masterDSL_ = setup.DslPtr();
  // Get lambda values
  ArgList xArgs(analyzeArgs.GetStringKey("xvals"), ","); // Also comma-separated
  if (!xArgs.empty()) {
    xval_.clear();
    for (int i = 0; i != xArgs.Nargs(); i++)
      xval_.push_back( xArgs.getNextDouble(0.0) );
  }
  std::string setname = analyzeArgs.GetStringKey("name");
  DataFile* outfile = setup.DFL().AddDataFile(analyzeArgs.GetStringKey("out"), analyzeArgs);
  curveout_ = setup.DFL().AddDataFile(analyzeArgs.GetStringKey("curveout"), analyzeArgs);
  // Select datasets from remaining args
  if (input_dsets_.AddSetsFromArgs( analyzeArgs.RemainingArgs(), setup.DSL() )) {
    mprinterr("Error: Could not add data sets.\n");
    return Analysis::ERR;
  }
  if (input_dsets_.empty()) {
    mprinterr("Error: No input data sets.\n");
    return Analysis::ERR;
  }
  if (SetQuadAndWeights(nq)) return Analysis::ERR;
  // Determine integration mode
  if (nq > 0)
    mode_ = GAUSSIAN_QUAD;
  else
    mode_ = TRAPEZOID;
  // Check that # abscissas matches # data sets
  if (xval_.size() != input_dsets_.size()) {
     mprinterr("Error: Expected %zu data sets for integration, got %zu\n",
               input_dsets_.size(), xval_.size());
    return Analysis::ERR;
  }
  // Set up output data sets
  DataSet::DataType dtype = DataSet::DOUBLE;
  if (avgType_ == SKIP || avgType_ == INCREMENT)
    dtype = DataSet::XYMESH;
  dAout_ = setup.DSL().AddSet(dtype, setname, "TI");
  if (dAout_ == 0) return Analysis::ERR;
  if (outfile != 0) outfile->AddDataSet( dAout_ );
  MetaData md(dAout_->Meta().Name(), "TIcurve");
  if (avgType_ == AVG) {
    // Single curve
    curve_.push_back( setup.DSL().AddSet(DataSet::XYMESH, md) );
    if (curve_.back() == 0) return Analysis::ERR;
    curve_.back()->ModifyDim(Dimension::X).SetLabel("Lambda");
    if (curveout_ != 0) curveout_->AddDataSet( curve_.back() );
    if (outfile != 0) outfile->ProcessArgs("noxcol");
  } else if (avgType_ == SKIP) {
    // As many curves as skip values
    for (Iarray::const_iterator it = nskip_.begin(); it != nskip_.end(); ++it) {
      md.SetIdx( *it );
      DataSet* ds = setup.DSL().AddSet(DataSet::XYMESH, md);
      if (ds == 0) return Analysis::ERR;
      ds->ModifyDim(Dimension::X).SetLabel("Lambda");
      ds->SetLegend( md.Name() + "_Skip" + integerToString(*it) );
      if (curveout_ != 0) curveout_->AddDataSet( ds );
      curve_.push_back( ds );
    }
  } else if (avgType_ == BOOTSTRAP) {
    // As many curves as resamples
    for (int nsample = 0; nsample != n_bootstrap_samples_; nsample++) {
      md.SetIdx(nsample);
      DataSet* ds = setup.DSL().AddSet(DataSet::XYMESH, md);
      if (ds == 0) return Analysis::ERR;
      ds->ModifyDim(Dimension::X).SetLabel("Lambda");
      ds->SetLegend( md.Name() + "_Sample" + integerToString(nsample) );
      if (curveout_ != 0) curveout_->AddDataSet( ds );
      curve_.push_back( ds );
    }
    // Standard devation of avg free energy over samples
    dA_SD_ = setup.DSL().AddSet(DataSet::DOUBLE, MetaData(md.Name(), "SD"));
    if (dA_SD_ == 0) return Analysis::ERR;
    if (outfile != 0) {
      outfile->AddDataSet( dA_SD_ );
      outfile->ProcessArgs("noxcol");
    }
  }
  // NOTE: INCREMENT is set up once data set size is known 

  mprintf("    TI: Calculating TI");
  if (mode_ == GAUSSIAN_QUAD) {
    mprintf(" using Gaussian quadrature with %zu points.\n", xval_.size());
    mprintf("\t%6s %8s %8s %s\n", "Point", "Abscissa", "Weight", "SetName");
    for (unsigned int i = 0; i != xval_.size(); i++)
      mprintf("\t%6i %8.5f %8.5f %s\n", i, xval_[i], wgt_[i], input_dsets_[i]->legend());
  } else {
    mprintf(" using the trapezoid rule.\n");
    mprintf("\t%6s %8s %s\n", "Point", "Abscissa", "SetName");
    for (unsigned int i = 0; i != xval_.size(); i++)
      mprintf("\t%6i %8.5f %s\n", i, xval_[i], input_dsets_[i]->legend());
  }
  mprintf("\tResult(s) of integration(s) saved in set '%s'\n", dAout_->legend());
  if (avgType_ == AVG)
    mprintf("\tUsing all data points in <DV/DL> calc.\n");
  else if (avgType_ == SKIP) {
    mprintf("\tSkipping first");
    for (Iarray::const_iterator it = nskip_.begin(); it != nskip_.end(); ++it)
      mprintf(" %i", *it);
    mprintf(" data points for <DV/DL> calc.\n");
  } else if (avgType_ == INCREMENT) {
    mprintf("\tCalculating <DV/DL> starting from point %i, increment by %i.",
            avg_skip_, avg_increment_);
    if (avg_max_ != -1)
      mprintf(" Max %i points.", avg_max_);
    mprintf("\n");
  } else if (avgType_ == BOOTSTRAP) {
    mprintf("\tStandard devation of result stored in set '%s'\n", dA_SD_->legend());
    mprintf("\tCalculating <DV/DL> from %i bootstrap resamples.\n", n_bootstrap_samples_);
    if (n_bootstrap_pts_ > 0)
      mprintf("\tBootstrap resample size is %i data points.\n", n_bootstrap_pts_);
    else
      mprintf("\tWill use bootstrap resample size of %g%% of total points.\n",
              bootstrap_fac_*100.0);
    if (bootstrap_seed_ != -1)
      mprintf("\tBoostrap base seed is %i\n", bootstrap_seed_);
  }
  mprintf("\tTI curve(s) saved in set(s)");
  if (avgType_ != INCREMENT)
    for (DSarray::const_iterator ds = curve_.begin(); ds != curve_.end(); ++ds)
      mprintf(" '%s'", (*ds)->legend());
  else
    mprintf(" named '%s'", md.PrintName().c_str());
  mprintf("\n");
  if (outfile != 0) mprintf("\tResults written to '%s'\n", outfile->DataFilename().full());
  if (curveout_!= 0) mprintf("\tTI curve(s) written to '%s'\n", curveout_->DataFilename().full());

  return Analysis::OK;
}
示例#2
0
Analysis::RetType Analysis_State::Setup(ArgList& analyzeArgs, AnalysisSetup& setup, int debugIn)
{
  debug_ = debugIn;
  masterDSL_ = setup.DslPtr();
  DataFile* outfile = setup.DFL().AddDataFile( analyzeArgs.GetStringKey("out"), analyzeArgs );
  curveOut_ = setup.DFL().AddDataFile( analyzeArgs.GetStringKey("curveout"), analyzeArgs );
  stateOut_ = setup.DFL().AddCpptrajFile( analyzeArgs.GetStringKey("stateout"), "State Output",
                                     DataFileList::TEXT, true);
  transOut_ = setup.DFL().AddCpptrajFile( analyzeArgs.GetStringKey("transout"), "Transitions Output",
                                     DataFileList::TEXT, true);
  normalize_ = analyzeArgs.hasKey("norm");
  // Get definitions of states if present.
  // Define states as 'state <#>,<dataset>,<min>,<max>'
  std::string state_arg = analyzeArgs.GetStringKey("state");
  if (!state_arg.empty()) {
    while (!state_arg.empty()) {
      // Expect form <#>,<dataset>
      ArgList argtmp(state_arg, ",");
      if (argtmp.Nargs() != 4) {
        mprinterr("Error: Malformed state argument '%s': expect <ID>,<dataset>,<min>,<max>\n",
                  state_arg.c_str());
        return Analysis::ERR;
      }
      std::string state_id = argtmp.GetStringNext();
      // TODO: Check duplicate names
      if (state_id.empty()) {
        mprinterr("Error: In state argument, could not get ID.\n");
        return Analysis::ERR;
      }
      DataSet* ds = setup.DSL().GetDataSet( argtmp.GetStringNext() );
      if (ds == 0) return Analysis::ERR;
      if (ds->Ndim() != 1) {
        mprinterr("Error: Only 1D data sets allowed.\n");
        return Analysis::ERR;
      }
      double min = argtmp.getNextDouble(0.0);
      double max = argtmp.getNextDouble(0.0);
      if (max < min) {
        mprinterr("Error: max value cannot be less than min.\n");
        return Analysis::ERR;
      }
      States_.push_back( StateType(state_id, (DataSet_1D*)ds, min, max) );
      state_arg = analyzeArgs.GetStringKey("state");
    }
  }
  if (States_.empty()) {
    mprinterr("Error: No states defined.\n");
    return Analysis::ERR;
  }
  state_data_ = setup.DSL().AddSet(DataSet::INTEGER, analyzeArgs.GetStringKey("name"), "State");
  if (state_data_ == 0) return Analysis::ERR;
  if (outfile != 0) outfile->AddDataSet( state_data_ );

  mprintf("    STATE: The following states have been set up:\n");
  for (StateArray::const_iterator state = States_.begin(); state != States_.end(); ++state)
    mprintf("\t%u: %20s %12.4f <= %-20s < %12.4f\n", state - States_.begin(), state->DS().legend(),
            state->Min(), state->id(), state->Max());
  mprintf("\tState data set: %s\n", state_data_->legend());
  if (outfile != 0)
    mprintf("\tStates vs time output to file '%s'\n", outfile->DataFilename().full());
  if (curveOut_ != 0)
    mprintf("\tCurves output to file '%s'\n", curveOut_->DataFilename().full());
  mprintf("\tState output to file '%s'\n", stateOut_->Filename().full());
  mprintf("\tTransitions output to file '%s'\n", transOut_->Filename().full());
  if (normalize_)
    mprintf("\tCurves will be normalized to 1.0\n");

  return Analysis::OK;
}