void GPBFile::moveAnimationChannels(Node* node, Animation* dstAnimation) { // Loop through the animations and channels backwards because they will be removed when found. int animationCount = _animations.getAnimationCount(); for (int i = animationCount - 1; i >= 0; --i) { Animation* animation = _animations.getAnimation(i); int channelCount = animation->getAnimationChannelCount(); for (int j = channelCount - 1; j >= 0; --j) { AnimationChannel* channel = animation->getAnimationChannel(j); if (equals(channel->getTargetId(), node->getId())) { animation->remove(channel); dstAnimation->add(channel); } } if (animation->getAnimationChannelCount() == 0) { _animations.removeAnimation(i); } } for (Node* child = node->getFirstChild(); child != NULL; child = child->getNextSibling()) { moveAnimationChannels(child, dstAnimation); } }
void GPBFile::optimizeTransformAnimations() { const unsigned int animationCount = _animations.getAnimationCount(); for (unsigned int animationIndex = 0; animationIndex < animationCount; ++animationIndex) { Animation* animation = _animations.getAnimation(animationIndex); assert(animation); const int channelCount = animation->getAnimationChannelCount(); // loop backwards because we will be adding and removing channels for (int channelIndex = channelCount -1; channelIndex >= 0 ; --channelIndex) { AnimationChannel* channel = animation->getAnimationChannel(channelIndex); assert(channel); // get target node const Object* obj = _refTable.get(channel->getTargetId()); if (obj && obj->getTypeId() == Object::NODE_ID) { const Node* node = static_cast<const Node*>(obj); if (node->isJoint() && channel->getTargetAttribute() == Transform::ANIMATE_SCALE_ROTATE_TRANSLATE) { decomposeTransformAnimationChannel(animation, channel); animation->remove(channel); SAFE_DELETE(channel); } } } } }
void MeshSkin::computeBounds() { // Find the offset of the blend indices and blend weights within the mesh vertices int blendIndexOffset = -1; int blendWeightOffset = -1; for (unsigned int i = 0, count = _mesh->getVertexElementCount(); i < count; ++i) { const VertexElement& e = _mesh->getVertexElement(i); switch (e.usage) { case BLENDINDICES: blendIndexOffset = i; break; case BLENDWEIGHTS: blendWeightOffset = i; break; } } if (blendIndexOffset == -1 || blendWeightOffset == -1) { // Need blend indices and blend weights to calculate skinned bounding volume return; } LOG(2, "Computing bounds for skin of mesh: %s\n", _mesh->getId().c_str()); // Get the root joint if (_joints.size() == 0) return; Node* rootJoint = _joints[0]; Node* parent = rootJoint->getParent(); while (parent) { // Is this parent in the list of joints that form the skeleton? // If not, then it's simply a parent node to the root joint if (find(_joints.begin(), _joints.end(), parent) != _joints.end()) { rootJoint = parent; } parent = parent->getParent(); } // If the root joint has a parent node, temporarily detach it so that its transform is // not included in the bounding volume calculation below Node* rootJointParent = rootJoint->getParent(); if (rootJointParent) { rootJointParent->removeChild(rootJoint); } unsigned int jointCount = _joints.size(); unsigned int vertexCount = _mesh->getVertexCount(); LOG(3, " %u joints found.\n", jointCount); std::vector<AnimationChannel*> channels; std::vector<Node*> channelTargets; std::vector<Curve*> curves; std::vector<Vector3> vertices; _jointBounds.resize(jointCount); // Construct a list of all animation channels that target the joints affecting this mesh skin LOG(3, " Collecting animations...\n"); LOG(3, " 0%%\r"); for (unsigned int i = 0; i < jointCount; ++i) { Node* joint = _joints[i]; // Find all animations that target this joint Animations* animations = GPBFile::getInstance()->getAnimations(); for (unsigned int j = 0, animationCount = animations->getAnimationCount(); j < animationCount; ++j) { Animation* animation = animations->getAnimation(j); for (unsigned int k = 0, channelCount = animation->getAnimationChannelCount(); k < channelCount; ++k) { AnimationChannel* channel = animation->getAnimationChannel(k); if (channel->getTargetId() == joint->getId()) { if (find(channels.begin(), channels.end(), channel) == channels.end()) { channels.push_back(channel); channelTargets.push_back(joint); } } } } // Calculate the local bounding volume for this joint vertices.clear(); BoundingVolume jointBounds; jointBounds.min.set(FLT_MAX, FLT_MAX, FLT_MAX); jointBounds.max.set(-FLT_MAX, -FLT_MAX, -FLT_MAX); for (unsigned int j = 0; j < vertexCount; ++j) { const Vertex& v = _mesh->getVertex(j); if ((v.blendIndices.x == i && !ISZERO(v.blendWeights.x)) || (v.blendIndices.y == i && !ISZERO(v.blendWeights.y)) || (v.blendIndices.z == i && !ISZERO(v.blendWeights.z)) || (v.blendIndices.w == i && !ISZERO(v.blendWeights.w))) { vertices.push_back(v.position); // Update box min/max if (v.position.x < jointBounds.min.x) jointBounds.min.x = v.position.x; if (v.position.y < jointBounds.min.y) jointBounds.min.y = v.position.y; if (v.position.z < jointBounds.min.z) jointBounds.min.z = v.position.z; if (v.position.x > jointBounds.max.x) jointBounds.max.x = v.position.x; if (v.position.y > jointBounds.max.y) jointBounds.max.y = v.position.y; if (v.position.z > jointBounds.max.z) jointBounds.max.z = v.position.z; } } if (vertices.size() > 0) { // Compute center point Vector3::add(jointBounds.min, jointBounds.max, &jointBounds.center); jointBounds.center.scale(0.5f); // Compute radius for (unsigned int j = 0, jointVertexCount = vertices.size(); j < jointVertexCount; ++j) { float d = jointBounds.center.distanceSquared(vertices[j]); if (d > jointBounds.radius) jointBounds.radius = d; } jointBounds.radius = sqrt(jointBounds.radius); } _jointBounds[i] = jointBounds; LOG(3, " %d%%\r", (int)((float)(i+1) / (float)jointCount * 100.0f)); } LOG(3, "\n"); unsigned int channelCount = channels.size(); // Create a Curve for each animation channel float maxDuration = 0.0f; LOG(3, " Building animation curves...\n"); LOG(3, " 0%%\r"); for (unsigned int i = 0; i < channelCount; ++i) { AnimationChannel* channel = channels[i]; const std::vector<float>& keyTimes = channel->getKeyTimes(); unsigned int keyCount = keyTimes.size(); if (keyCount == 0) continue; // Create a curve for this animation channel Curve* curve = NULL; switch (channel->getTargetAttribute()) { case Transform::ANIMATE_SCALE_ROTATE_TRANSLATE: curve = new Curve(keyCount, 10); curve->setQuaternionOffset(3); break; } if (curve == NULL) { // Unsupported/not implemented curve type continue; } // Copy key values into a temporary array unsigned int keyValuesCount = channel->getKeyValues().size(); float* keyValues = new float[keyValuesCount]; for (unsigned int j = 0; j < keyValuesCount; ++j) keyValues[j] = channel->getKeyValues()[j]; // Determine animation duration float startTime = keyTimes[0]; float duration = keyTimes[keyCount-1] - startTime; if (duration > maxDuration) maxDuration = duration; if (duration > 0.0f) { // Set curve points float* keyValuesPtr = keyValues; for (unsigned int j = 0; j < keyCount; ++j) { // Store time normalized, between 0-1 float t = (keyTimes[j] - startTime) / duration; // Set the curve point // TODO: Handle other interpolation types curve->setPoint(j, t, keyValuesPtr, gameplay::Curve::LINEAR); // Move to the next point on the curve keyValuesPtr += curve->getComponentCount(); } curves.push_back(curve); } delete[] keyValues; keyValues = NULL; LOG(3, " %d%%\r", (int)((float)(i+1) / (float)channelCount * 100.0f)); } LOG(3, "\n"); // Compute a total combined bounding volume for the MeshSkin that contains all possible // vertex positions for all animations targeting the skin. This rough approximation allows // us to store a volume that can be used for rough intersection tests (such as for visibility // determination) efficiently at runtime. // Backup existing node transforms so we can restore them when we are finished Matrix* oldTransforms = new Matrix[jointCount]; for (unsigned int i = 0; i < jointCount; ++i) { memcpy(oldTransforms[i].m, _joints[i]->getTransformMatrix().m, 16 * sizeof(float)); } float time = 0.0f; float srt[10]; Matrix temp; Matrix* jointTransforms = new Matrix[jointCount]; _mesh->bounds.min.set(FLT_MAX, FLT_MAX, FLT_MAX); _mesh->bounds.max.set(-FLT_MAX, -FLT_MAX, -FLT_MAX); _mesh->bounds.center.set(0, 0, 0); _mesh->bounds.radius = 0; Vector3 skinnedPos; Vector3 tempPos; LOG(3, " Evaluating joints...\n"); LOG(3, " 0%%\r"); BoundingVolume finalBounds; while (time <= maxDuration) { // Evaluate joint transforms at this time interval for (unsigned int i = 0, curveCount = curves.size(); i < curveCount; ++i) { Node* joint = channelTargets[i]; Curve* curve = curves[i]; // Evalulate the curve at this time to get the new value float tn = time / maxDuration; if (tn > 1.0f) tn = 1.0f; curve->evaluate(tn, srt); // Update the joint's local transform Matrix::createTranslation(srt[7], srt[8], srt[9], temp.m); temp.rotate(*((Quaternion*)&srt[3])); temp.scale(srt[0], srt[1], srt[2]); joint->setTransformMatrix(temp.m); } // Store the final matrix pallette of resovled world space joint matrices std::vector<Matrix>::const_iterator bindPoseItr = _bindPoses.begin(); for (unsigned int i = 0; i < jointCount; ++i, bindPoseItr++) { BoundingVolume bounds = _jointBounds[i]; if (ISZERO(bounds.radius)) continue; Matrix& m = jointTransforms[i]; Matrix::multiply(_joints[i]->getWorldMatrix().m, bindPoseItr->m, m.m); Matrix::multiply(m.m, _bindShape, m.m); // Get a world-space bounding volume for this joint bounds.transform(m); if (ISZERO(finalBounds.radius)) finalBounds = bounds; else finalBounds.merge(bounds); } // Increment time by 1/30th of second (~ 33 ms) if (time < maxDuration && (time + 33.0f) > maxDuration) time = maxDuration; else time += 33.0f; LOG(3, " %d%%\r", (int)(time / maxDuration * 100.0f)); } LOG(3, "\n"); // Update the bounding sphere for the mesh _mesh->bounds = finalBounds; // Restore original joint transforms for (unsigned int i = 0; i < jointCount; ++i) { _joints[i]->setTransformMatrix(oldTransforms[i].m); } // Cleanup for (unsigned int i = 0, curveCount = curves.size(); i < curveCount; ++i) { delete curves[i]; } delete[] oldTransforms; delete[] jointTransforms; // Restore removed joints if (rootJointParent) { rootJointParent->addChild(rootJoint); } }