int main (int argc, char *argv[]) { CommandLine cmd; cmd.Parse (argc, argv); // Here, we will explicitly create four nodes. NS_LOG_INFO ("Create nodes."); NodeContainer c; c.Create (4); // connect all our nodes to a shared channel. NS_LOG_INFO ("Build Topology."); CsmaHelper csma; csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000))); csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); csma.SetDeviceAttribute ("EncapsulationMode", StringValue ("Llc")); NetDeviceContainer devs = csma.Install (c); // add an ip stack to all nodes. NS_LOG_INFO ("Add ip stack."); InternetStackHelper ipStack; ipStack.Install (c); // assign ip addresses NS_LOG_INFO ("Assign ip addresses."); Ipv4AddressHelper ip; ip.SetBase ("192.168.1.0", "255.255.255.0"); Ipv4InterfaceContainer addresses = ip.Assign (devs); NS_LOG_INFO ("Create Source"); Config::SetDefault ("ns3::Ipv4RawSocketImpl::Protocol", StringValue ("2")); InetSocketAddress dst = InetSocketAddress (addresses.GetAddress (3)); OnOffHelper onoff = OnOffHelper ("ns3::Ipv4RawSocketFactory", dst); onoff.SetConstantRate (DataRate (15000)); onoff.SetAttribute ("PacketSize", UintegerValue (1200)); ApplicationContainer apps = onoff.Install (c.Get (0)); apps.Start (Seconds (1.0)); apps.Stop (Seconds (10.0)); NS_LOG_INFO ("Create Sink."); PacketSinkHelper sink = PacketSinkHelper ("ns3::Ipv4RawSocketFactory", dst); apps = sink.Install (c.Get (3)); apps.Start (Seconds (0.0)); apps.Stop (Seconds (11.0)); NS_LOG_INFO ("Create pinger"); V4PingHelper ping = V4PingHelper (addresses.GetAddress (2)); NodeContainer pingers; pingers.Add (c.Get (0)); pingers.Add (c.Get (1)); pingers.Add (c.Get (3)); apps = ping.Install (pingers); apps.Start (Seconds (2.0)); apps.Stop (Seconds (5.0)); NS_LOG_INFO ("Configure Tracing."); // first, pcap tracing in non-promiscuous mode csma.EnablePcapAll ("csma-ping", false); // then, print what the packet sink receives. Config::ConnectWithoutContext ("/NodeList/3/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&SinkRx)); // finally, print the ping rtts. Config::Connect ("/NodeList/*/ApplicationList/*/$ns3::V4Ping/Rtt", MakeCallback (&PingRtt)); Packet::EnablePrinting (); NS_LOG_INFO ("Run Simulation."); Simulator::Run (); Simulator::Destroy (); NS_LOG_INFO ("Done."); }
// // Example of the sending of a datagram to a broadcast address // // Network topology // ============== // | | // n0 n1 n2 // | | // ========== // // n0 originates UDP broadcast to 255.255.255.255/discard port, which // is replicated and received on both n1 and n2 // void CsmaBroadcastTestCase::DoRun (void) { NodeContainer c; c.Create (3); NodeContainer c0 = NodeContainer (c.Get (0), c.Get (1)); NodeContainer c1 = NodeContainer (c.Get (0), c.Get (2)); CsmaHelper csma; csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000))); csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); NetDeviceContainer n0 = csma.Install (c0); NetDeviceContainer n1 = csma.Install (c1); InternetStackHelper internet; internet.Install (c); Ipv4AddressHelper ipv4; ipv4.SetBase ("10.1.0.0", "255.255.255.0"); ipv4.Assign (n0); ipv4.SetBase ("192.168.1.0", "255.255.255.0"); ipv4.Assign (n1); // RFC 863 discard port ("9") indicates packet should be thrown away // by the system. We allow this silent discard to be overridden // by the PacketSink application. uint16_t port = 9; // Create the OnOff application to send UDP datagrams from n0. // // Make packets be sent about every DefaultPacketSize / DataRate = // 4096 bits / (5000 bits/second) = 0.82 second. OnOffHelper onoff ("ns3::UdpSocketFactory", Address (InetSocketAddress (Ipv4Address ("255.255.255.255"), port))); onoff.SetConstantRate (DataRate (5000)); ApplicationContainer app = onoff.Install (c0.Get (0)); // Start the application app.Start (Seconds (1.0)); app.Stop (Seconds (10.0)); // Create an optional packet sink to receive these packets PacketSinkHelper sink ("ns3::UdpSocketFactory", Address (InetSocketAddress (Ipv4Address::GetAny (), port))); app = sink.Install (c0.Get (1)); app.Add (sink.Install (c1.Get (1))); app.Start (Seconds (1.0)); app.Stop (Seconds (10.0)); // Trace receptions Config::ConnectWithoutContext ("/NodeList/1/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaBroadcastTestCase::SinkRxNode1, this)); Config::ConnectWithoutContext ("/NodeList/2/ApplicationList/0/$ns3::PacketSink/Rx", MakeCallback (&CsmaBroadcastTestCase::SinkRxNode2, this)); Simulator::Run (); Simulator::Destroy (); // We should have sent and received 10 packets NS_TEST_ASSERT_MSG_EQ (m_countNode1, 10, "Node 1 should have received 10 packets"); NS_TEST_ASSERT_MSG_EQ (m_countNode2, 10, "Node 2 should have received 10 packets"); }
int main (int argc, char *argv[]) { uint32_t nWifis = 2; uint32_t nStas = 2; bool sendIp = true; bool writeMobility = false; CommandLine cmd; cmd.AddValue ("nWifis", "Number of wifi networks", nWifis); cmd.AddValue ("nStas", "Number of stations per wifi network", nStas); cmd.AddValue ("SendIp", "Send Ipv4 or raw packets", sendIp); cmd.AddValue ("writeMobility", "Write mobility trace", writeMobility); cmd.Parse (argc, argv); NodeContainer backboneNodes; NetDeviceContainer backboneDevices; Ipv4InterfaceContainer backboneInterfaces; std::vector<NodeContainer> staNodes; std::vector<NetDeviceContainer> staDevices; std::vector<NetDeviceContainer> apDevices; std::vector<Ipv4InterfaceContainer> staInterfaces; std::vector<Ipv4InterfaceContainer> apInterfaces; InternetStackHelper stack; CsmaHelper csma; Ipv4AddressHelper ip; ip.SetBase ("192.168.0.0", "255.255.255.0"); backboneNodes.Create (nWifis); stack.Install (backboneNodes); backboneDevices = csma.Install (backboneNodes); double wifiX = 0.0; YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default (); wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO); for (uint32_t i = 0; i < nWifis; ++i) { // calculate ssid for wifi subnetwork std::ostringstream oss; oss << "wifi-default-" << i; Ssid ssid = Ssid (oss.str ()); NodeContainer sta; NetDeviceContainer staDev; NetDeviceContainer apDev; Ipv4InterfaceContainer staInterface; Ipv4InterfaceContainer apInterface; MobilityHelper mobility; BridgeHelper bridge; WifiHelper wifi = WifiHelper::Default (); NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default (); YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default (); wifiPhy.SetChannel (wifiChannel.Create ()); sta.Create (nStas); mobility.SetPositionAllocator ("ns3::GridPositionAllocator", "MinX", DoubleValue (wifiX), "MinY", DoubleValue (0.0), "DeltaX", DoubleValue (5.0), "DeltaY", DoubleValue (5.0), "GridWidth", UintegerValue (1), "LayoutType", StringValue ("RowFirst")); // setup the AP. mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); mobility.Install (backboneNodes.Get (i)); wifiMac.SetType ("ns3::ApWifiMac", "Ssid", SsidValue (ssid)); apDev = wifi.Install (wifiPhy, wifiMac, backboneNodes.Get (i)); NetDeviceContainer bridgeDev; bridgeDev = bridge.Install (backboneNodes.Get (i), NetDeviceContainer (apDev, backboneDevices.Get (i))); // assign AP IP address to bridge, not wifi apInterface = ip.Assign (bridgeDev); // setup the STAs stack.Install (sta); mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel", "Mode", StringValue ("Time"), "Time", StringValue ("2s"), "Speed", StringValue ("ns3::ConstantRandomVariable[Constant=1.0]"), "Bounds", RectangleValue (Rectangle (wifiX, wifiX+5.0,0.0, (nStas+1)*5.0))); mobility.Install (sta); wifiMac.SetType ("ns3::StaWifiMac", "Ssid", SsidValue (ssid), "ActiveProbing", BooleanValue (false)); staDev = wifi.Install (wifiPhy, wifiMac, sta); staInterface = ip.Assign (staDev); // save everything in containers. staNodes.push_back (sta); apDevices.push_back (apDev); apInterfaces.push_back (apInterface); staDevices.push_back (staDev); staInterfaces.push_back (staInterface); wifiX += 20.0; } Address dest; std::string protocol; if (sendIp) { dest = InetSocketAddress (staInterfaces[1].GetAddress (1), 1025); protocol = "ns3::UdpSocketFactory"; } else { PacketSocketAddress tmp; tmp.SetSingleDevice (staDevices[0].Get (0)->GetIfIndex ()); tmp.SetPhysicalAddress (staDevices[1].Get (0)->GetAddress ()); tmp.SetProtocol (0x807); dest = tmp; protocol = "ns3::PacketSocketFactory"; } OnOffHelper onoff = OnOffHelper (protocol, dest); onoff.SetConstantRate (DataRate ("500kb/s")); ApplicationContainer apps = onoff.Install (staNodes[0].Get (0)); apps.Start (Seconds (0.5)); apps.Stop (Seconds (3.0)); wifiPhy.EnablePcap ("wifi-wired-bridging", apDevices[0]); wifiPhy.EnablePcap ("wifi-wired-bridging", apDevices[1]); if (writeMobility) { AsciiTraceHelper ascii; MobilityHelper::EnableAsciiAll (ascii.CreateFileStream ("wifi-wired-bridging.mob")); } Simulator::Stop (Seconds (5.0)); Simulator::Run (); Simulator::Destroy (); }
int run(int argc, char* argv[]) { delayFile.open(DELAY_OUTPUT_FILE_NAME); // setting default parameters for PointToPoint links and channels Config::SetDefault("ns3::PointToPointNetDevice::DataRate", StringValue("1000Mbps")); Config::SetDefault("ns3::PointToPointChannel::Delay", StringValue("10ms")); Config::SetDefault("ns3::DropTailQueue::MaxPackets", StringValue("4294967295")); // Read optional command-line parameters (e.g., enable visualizer with ./waf --run=<> --visualize CommandLine cmd; cmd.Parse(argc, argv); // Creating nodes NodeContainer nodes; nodes.Create(NUM_OF_CONSUMERS + NUM_OF_ROUTERS + NUM_OF_PRODUCER); // Connecting nodes using two links // Connecting nodes using two links PointToPointHelper p2p; // Connecting consumers to edge routers int g = 0; for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (0 + NUM_OF_CONSUMERS)); // C0 <--> R0 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (36 + NUM_OF_CONSUMERS)); // C1 <--> R1 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (37 + NUM_OF_CONSUMERS)); // C2 <--> R3 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (9 + NUM_OF_CONSUMERS)); // C3 <--> R5 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (38 + NUM_OF_CONSUMERS)); // C4 <--> R6 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (13 + NUM_OF_CONSUMERS)); // C5 <--> R10 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (16 + NUM_OF_CONSUMERS)); // C6 <--> R8 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (20 + NUM_OF_CONSUMERS)); // C7 <--> R11 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (18 + NUM_OF_CONSUMERS)); // C8 <--> R12 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (28 + NUM_OF_CONSUMERS)); // C9 <--> R18 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (21 + NUM_OF_CONSUMERS)); // C10 <--> R17 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (24 + NUM_OF_CONSUMERS)); // C11 <--> R20 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (26 + NUM_OF_CONSUMERS)); // C12 <--> R24 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (35 + NUM_OF_CONSUMERS)); // C13 <--> R29 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (34 + NUM_OF_CONSUMERS)); // C14 <--> R28 for (int i = 0; i < GROUP_SIZE; i++, g++) p2p.Install (nodes.Get (g), nodes.Get (33 + NUM_OF_CONSUMERS)); // C15 <--> R21 // Connecting routers p2p.Install (nodes.Get (0 + NUM_OF_CONSUMERS), nodes.Get (1 + NUM_OF_CONSUMERS)); // R0 <--> R9 p2p.Install (nodes.Get (1 + NUM_OF_CONSUMERS), nodes.Get (2 + NUM_OF_CONSUMERS)); // R1 <--> R15 p2p.Install (nodes.Get (1 + NUM_OF_CONSUMERS), nodes.Get (17 + NUM_OF_CONSUMERS)); // R1 <--> R15 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (3 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (4 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (6 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (36 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (8 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (17 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (2 + NUM_OF_CONSUMERS), nodes.Get (19 + NUM_OF_CONSUMERS)); // R2 <--> R9 p2p.Install (nodes.Get (3 + NUM_OF_CONSUMERS), nodes.Get (5 + NUM_OF_CONSUMERS)); // R3 <--> R4 p2p.Install (nodes.Get (4 + NUM_OF_CONSUMERS), nodes.Get (16 + NUM_OF_CONSUMERS)); // R4 <--> R7 p2p.Install (nodes.Get (5 + NUM_OF_CONSUMERS), nodes.Get (8 + NUM_OF_CONSUMERS)); // R5 <--> R13 p2p.Install (nodes.Get (6 + NUM_OF_CONSUMERS), nodes.Get (7 + NUM_OF_CONSUMERS)); // R6 <--> R7 p2p.Install (nodes.Get (6 + NUM_OF_CONSUMERS), nodes.Get (37 + NUM_OF_CONSUMERS)); // R6 <--> R7 p2p.Install (nodes.Get (7 + NUM_OF_CONSUMERS), nodes.Get (10 + NUM_OF_CONSUMERS)); // R7 <--> R9 p2p.Install (nodes.Get (8 + NUM_OF_CONSUMERS), nodes.Get (9 + NUM_OF_CONSUMERS)); // R8 <--> R9 p2p.Install (nodes.Get (8 + NUM_OF_CONSUMERS), nodes.Get (11 + NUM_OF_CONSUMERS)); // R8 <--> R9 p2p.Install (nodes.Get (8 + NUM_OF_CONSUMERS), nodes.Get (17 + NUM_OF_CONSUMERS)); // R8 <--> R9 // 9 done p2p.Install (nodes.Get (10 + NUM_OF_CONSUMERS), nodes.Get (11 + NUM_OF_CONSUMERS)); // R10 <--> R14 p2p.Install (nodes.Get (11 + NUM_OF_CONSUMERS), nodes.Get (16 + NUM_OF_CONSUMERS)); // R11 <--> R13 p2p.Install (nodes.Get (11 + NUM_OF_CONSUMERS), nodes.Get (38 + NUM_OF_CONSUMERS)); // R11 <--> R13 p2p.Install (nodes.Get (11 + NUM_OF_CONSUMERS), nodes.Get (12 + NUM_OF_CONSUMERS)); // R11 <--> R13 p2p.Install (nodes.Get (11 + NUM_OF_CONSUMERS), nodes.Get (13 + NUM_OF_CONSUMERS)); // R11 <--> R13 p2p.Install (nodes.Get (11 + NUM_OF_CONSUMERS), nodes.Get (23 + NUM_OF_CONSUMERS)); // R11 <--> R13 p2p.Install (nodes.Get (12 + NUM_OF_CONSUMERS), nodes.Get (13 + NUM_OF_CONSUMERS)); // R12 <--> R13 p2p.Install (nodes.Get (13 + NUM_OF_CONSUMERS), nodes.Get (23 + NUM_OF_CONSUMERS)); // R13 <--> R14 p2p.Install (nodes.Get (14 + NUM_OF_CONSUMERS), nodes.Get (16 + NUM_OF_CONSUMERS)); // R14 <--> R15 p2p.Install (nodes.Get (14 + NUM_OF_CONSUMERS), nodes.Get (15 + NUM_OF_CONSUMERS)); // R14 <--> R18 p2p.Install (nodes.Get (15 + NUM_OF_CONSUMERS), nodes.Get (39 + NUM_OF_CONSUMERS)); // R15 <--> R16 p2p.Install (nodes.Get (15 + NUM_OF_CONSUMERS), nodes.Get (17 + NUM_OF_CONSUMERS)); // R15 <--> R19 p2p.Install (nodes.Get (16 + NUM_OF_CONSUMERS), nodes.Get (17 + NUM_OF_CONSUMERS)); // R16 <--> R23 p2p.Install (nodes.Get (16 + NUM_OF_CONSUMERS), nodes.Get (19 + NUM_OF_CONSUMERS)); // R16 <--> R27 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (18 + NUM_OF_CONSUMERS)); // R17 <--> R23 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (19 + NUM_OF_CONSUMERS)); // R17 <--> R23 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (29 + NUM_OF_CONSUMERS)); // R17 <--> R23 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (32 + NUM_OF_CONSUMERS)); // R17 <--> R23 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (31 + NUM_OF_CONSUMERS)); // R17 <--> R23 p2p.Install (nodes.Get (17 + NUM_OF_CONSUMERS), nodes.Get (39 + NUM_OF_CONSUMERS)); // R17 <--> R23 // 18 done p2p.Install (nodes.Get (19 + NUM_OF_CONSUMERS), nodes.Get (20 + NUM_OF_CONSUMERS)); // R19 <--> R22 p2p.Install (nodes.Get (19 + NUM_OF_CONSUMERS), nodes.Get (27 + NUM_OF_CONSUMERS)); // R19 <--> R22 // 20 done p2p.Install (nodes.Get (21 + NUM_OF_CONSUMERS), nodes.Get (22 + NUM_OF_CONSUMERS)); // R21 <--> R22 p2p.Install (nodes.Get (22 + NUM_OF_CONSUMERS), nodes.Get (40 + NUM_OF_CONSUMERS)); // R22 <--> R23 p2p.Install (nodes.Get (22 + NUM_OF_CONSUMERS), nodes.Get (23 + NUM_OF_CONSUMERS)); // R22 <--> R28 p2p.Install (nodes.Get (22 + NUM_OF_CONSUMERS), nodes.Get (25 + NUM_OF_CONSUMERS)); // R22 <--> R29 p2p.Install (nodes.Get (23 + NUM_OF_CONSUMERS), nodes.Get (24 + NUM_OF_CONSUMERS)); // R23 <--> R24 // 24 done p2p.Install (nodes.Get (25 + NUM_OF_CONSUMERS), nodes.Get (27 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (26 + NUM_OF_CONSUMERS), nodes.Get (27 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (27 + NUM_OF_CONSUMERS), nodes.Get (40 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (27 + NUM_OF_CONSUMERS), nodes.Get (30 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (27 + NUM_OF_CONSUMERS), nodes.Get (31 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (28 + NUM_OF_CONSUMERS), nodes.Get (29 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (29 + NUM_OF_CONSUMERS), nodes.Get (30 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (30 + NUM_OF_CONSUMERS), nodes.Get (31 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (30 + NUM_OF_CONSUMERS), nodes.Get (41 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (30 + NUM_OF_CONSUMERS), nodes.Get (35 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (31 + NUM_OF_CONSUMERS), nodes.Get (41 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (31 + NUM_OF_CONSUMERS), nodes.Get (32 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (31 + NUM_OF_CONSUMERS), nodes.Get (34 + NUM_OF_CONSUMERS)); // R26 <--> R27 p2p.Install (nodes.Get (32 + NUM_OF_CONSUMERS), nodes.Get (33 + NUM_OF_CONSUMERS)); // R26 <--> R27 // 33 done // 34 done // 35 done // 36 done // 37 done // 38 done // 39 done // 40 done // 41 done // Connecting producer(s) int producerId = 0 + NUM_OF_CONSUMERS + NUM_OF_ROUTERS; p2p.Install (nodes.Get (producerId), nodes.Get (0 + NUM_OF_CONSUMERS)); // P0 <--> R0 // Install NDN stack without cache ndn::StackHelper ndnHelperNoCache; // ndnHelperNoCache.SetDefaultRoutes(true); ndnHelperNoCache.SetOldContentStore("ns3::ndn::cs::Nocache"); // no cache // Install on consumers for (int i = 0; i < NUM_OF_CONSUMERS; i++) { ndnHelperNoCache.Install(nodes.Get(i)); } // Install on producer(s) ndnHelperNoCache.Install(nodes.Get(0 + NUM_OF_CONSUMERS + NUM_OF_ROUTERS)); // Install NDN stack with cache ndn::StackHelper ndnHelperWithCache; // ndnHelperWithCache.SetDefaultRoutes(true); ndnHelperWithCache.SetOldContentStore("ns3::ndn::cs::Freshness::Lru", "MaxSize", "0"); // Install on routers for (int i = NUM_OF_CONSUMERS; i < NUM_OF_CONSUMERS + NUM_OF_ROUTERS; i++) { ndnHelperWithCache.InstallWithCallback(nodes.Get(i), (size_t)&ForwardingDelay, i, USE_PINT); } // Consumers ndn::AppHelper consumerHelperHonest("ns3::ndn::AccountingRandomConsumer"); consumerHelperHonest.SetAttribute("Frequency", StringValue("10")); // 10 interests a second consumerHelperHonest.SetAttribute("Randomize", StringValue("uniform")); consumerHelperHonest.SetAttribute("StartSeq", IntegerValue(0)); consumerHelperHonest.SetPrefix("/prefix/A/"); for(int i=0; i < NUM_OF_CONSUMERS; i++) { consumerHelperHonest.SetAttribute("ConsumerID", IntegerValue(i)); ApplicationContainer consumer = consumerHelperHonest.Install(nodes.Get(i)); consumer.Start(Seconds(0)); std::ostringstream node_id; node_id << i; Config::ConnectWithoutContext("/NodeList/" + node_id.str() + "/ApplicationList/0/ReceivedMeaningfulContent", MakeCallback(ReceivedMeaningfulContent)); } // Producer // Producer will reply to all requests starting with /prefix/A ndn::AppHelper producerHelper("ns3::ndn::AccountingProducer"); producerHelper.SetPrefix("/prefix/A"); producerHelper.SetAttribute("PayloadSize", StringValue("1024")); producerHelper.Install(nodes.Get(producerId)); ndn::GlobalRoutingHelper ndnGlobalRoutingHelper; ndnGlobalRoutingHelper.Install(nodes); std::string prefix = "/prefix/A"; ndnGlobalRoutingHelper.AddOrigins(prefix, nodes.Get(producerId)); ndn::GlobalRoutingHelper::CalculateRoutes(); // Traces ndn::L3RateTracer::InstallAll(RATE_OUTPUT_FILE_NAME, Seconds(1.0)); Simulator::Stop(Seconds(SIMULATION_DURATION)); Simulator::Run(); Simulator::Destroy(); delayFile.close(); return 0; }
int main (int argc, char *argv[]) { // // Set up some default values for the simulation. // Config::SetDefault ("ns3::OnOffApplication::PacketSize", UintegerValue (137)); // ??? try and stick 15kb/s into the data rate Config::SetDefault ("ns3::OnOffApplication::DataRate", StringValue ("14kb/s")); // // Default number of nodes in the star. Overridable by command line argument. // uint32_t nSpokes = 8; CommandLine cmd; cmd.AddValue ("nSpokes", "Number of nodes to place in the star", nSpokes); cmd.Parse (argc, argv); NS_LOG_INFO ("Build star topology."); PointToPointHelper pointToPoint; pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps")); pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms")); PointToPointStarHelper star (nSpokes, pointToPoint); NS_LOG_INFO ("Install internet stack on all nodes."); InternetStackHelper internet; star.InstallStack (internet); NS_LOG_INFO ("Assign IP Addresses."); star.AssignIpv4Addresses (Ipv4AddressHelper ("10.1.1.0", "255.255.255.0")); NS_LOG_INFO ("Create applications."); // // Create a packet sink on the star "hub" to receive packets. // uint16_t port = 50000; Address hubLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port)); PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", hubLocalAddress); ApplicationContainer hubApp = packetSinkHelper.Install (star.GetHub ()); hubApp.Start (Seconds (1.0)); hubApp.Stop (Seconds (10.0)); // // Create OnOff applications to send TCP to the hub, one on each spoke node. // OnOffHelper onOffHelper ("ns3::TcpSocketFactory", Address ()); onOffHelper.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]")); onOffHelper.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]")); ApplicationContainer spokeApps; for (uint32_t i = 0; i < star.SpokeCount (); ++i) { AddressValue remoteAddress (InetSocketAddress (star.GetHubIpv4Address (i), port)); onOffHelper.SetAttribute ("Remote", remoteAddress); spokeApps.Add (onOffHelper.Install (star.GetSpokeNode (i))); } spokeApps.Start (Seconds (1.0)); spokeApps.Stop (Seconds (10.0)); NS_LOG_INFO ("Enable static global routing."); // // Turn on global static routing so we can actually be routed across the star. // Ipv4GlobalRoutingHelper::PopulateRoutingTables (); NS_LOG_INFO ("Enable pcap tracing."); // // Do pcap tracing on all point-to-point devices on all nodes. // pointToPoint.EnablePcapAll ("star"); NS_LOG_INFO ("Run Simulation."); Simulator::Run (); Simulator::Destroy (); NS_LOG_INFO ("Done."); return 0; }
int main (int argc, char *argv[]) { #ifdef NS3_MPI // Distributed simulation setup MpiInterface::Enable (&argc, &argv); GlobalValue::Bind ("SimulatorImplementationType", StringValue ("ns3::DistributedSimulatorImpl")); LogComponentEnable ("BriteMPITest", LOG_LEVEL_ALL); LogComponentEnable ("TcpSocketBase", LOG_LEVEL_INFO); uint32_t systemId = MpiInterface::GetSystemId (); uint32_t systemCount = MpiInterface::GetSize (); // Check for valid distributed parameters. // For just this particular example, must have 2 and only 2 Logical Processors (LPs) NS_ASSERT_MSG (systemCount == 2, "This demonstration requires 2 and only 2 logical processors."); // BRITE needs a configuration file to build its graph. By default, this // example will use the TD_ASBarabasi_RTWaxman.conf file. There are many others // which can be found in the BRITE/conf_files directory std::string confFile = "src/brite/examples/conf_files/TD_ASBarabasi_RTWaxman.conf"; bool tracing = false; bool nix = false; CommandLine cmd; cmd.AddValue ("confFile", "BRITE conf file", confFile); cmd.AddValue ("tracing", "Enable or disable ascii tracing", tracing); cmd.AddValue ("nix", "Enable or disable nix-vector routing", nix); cmd.Parse (argc,argv); // Invoke the BriteTopologyHelper and pass in a BRITE // configuration file and a seed file. This will use // BRITE to build a graph from which we can build the ns-3 topology BriteTopologyHelper bth (confFile); PointToPointHelper p2p; Ipv4StaticRoutingHelper staticRouting; Ipv4GlobalRoutingHelper globalRouting; Ipv4ListRoutingHelper listRouting; Ipv4NixVectorHelper nixRouting; InternetStackHelper stack; if (nix) { listRouting.Add (staticRouting, 0); listRouting.Add (nixRouting, 10); } else { listRouting.Add (staticRouting, 0); listRouting.Add (globalRouting, 10); } stack.SetRoutingHelper (listRouting); Ipv4AddressHelper address; address.SetBase ("10.0.0.0", "255.255.255.252"); //build topology as normal but also pass systemCount bth.BuildBriteTopology (stack, systemCount); bth.AssignIpv4Addresses (address); NS_LOG_LOGIC ("Number of AS created " << bth.GetNAs ()); uint16_t port = 5001; NodeContainer client; NodeContainer server; //For this example will use AS 0 and AS 1 which will be on seperate systems //due to the mod divide used to assign AS to system. //GetSystemNumberForAs (uint32_t) can be used to determine which system an //AS is assigned to NS_LOG_LOGIC ("AS 0 has been assigned to system " << bth.GetSystemNumberForAs (0)); NS_LOG_LOGIC ("As 1 has been assigned to system " << bth.GetSystemNumberForAs (1)); //install client node on last leaf node of AS 0 client.Add (CreateObject<Node> (0)); stack.Install (client); int numLeafNodesInAsZero = bth.GetNLeafNodesForAs (0); client.Add (bth.GetLeafNodeForAs (0, numLeafNodesInAsZero - 1)); //install server node on last leaf node on AS 1 server.Add (CreateObject<Node> (1)); stack.Install (server); int numLeafNodesInAsOne = bth.GetNLeafNodesForAs (1); server.Add (bth.GetLeafNodeForAs (1, numLeafNodesInAsOne - 1)); p2p.SetDeviceAttribute ("DataRate", StringValue ("5Mbps")); p2p.SetChannelAttribute ("Delay", StringValue ("2ms")); NetDeviceContainer p2pClientDevices; NetDeviceContainer p2pServerDevices; p2pClientDevices = p2p.Install (client); p2pServerDevices = p2p.Install (server); address.SetBase ("10.1.0.0", "255.255.0.0"); Ipv4InterfaceContainer clientInterfaces; clientInterfaces = address.Assign (p2pClientDevices); address.SetBase ("10.2.0.0", "255.255.0.0"); Ipv4InterfaceContainer serverInterfaces; serverInterfaces = address.Assign (p2pServerDevices); if (!nix) { Ipv4GlobalRoutingHelper::PopulateRoutingTables (); } //only has two systems in this example. Install applications only on nodes in my system //Moved here to get totalRX at end ApplicationContainer sinkApps; if (systemId == 1) { Address sinkLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port)); PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", sinkLocalAddress); sinkApps.Add (packetSinkHelper.Install (server.Get (0))); sinkApps.Start (Seconds (0.0)); sinkApps.Stop (Seconds (10.0)); } if (systemId == 0) { OnOffHelper clientHelper ("ns3::TcpSocketFactory", Address ()); clientHelper.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]")); clientHelper.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]")); ApplicationContainer clientApps; AddressValue remoteAddress (InetSocketAddress (serverInterfaces.GetAddress (0), port)); clientHelper.SetAttribute ("Remote", remoteAddress); clientApps.Add (clientHelper.Install (client.Get (0))); clientApps.Start (Seconds (1.0)); // Start 1 second after sink clientApps.Stop (Seconds (9.0)); // Stop before the sink } if (!nix) { Ipv4GlobalRoutingHelper::PopulateRoutingTables (); } if (tracing) { AsciiTraceHelper ascii; p2p.EnableAsciiAll (ascii.CreateFileStream ("briteLeaves.tr")); } // Run the simulator Simulator::Stop (Seconds (200.0)); Simulator::Run (); Simulator::Destroy (); if (systemId == 1) { Ptr<PacketSink> sink1 = DynamicCast<PacketSink> (sinkApps.Get (0)); NS_LOG_DEBUG ("Total Bytes Received: " << sink1->GetTotalRx ()); } MpiInterface::Disable (); return 0; #else NS_FATAL_ERROR ("Can't use distributed simulator without MPI compiled in"); #endif }
int main (int argc, char *argv[]) { std::string mode = "ConfigureLocal"; std::string tapName = "thetap"; CommandLine cmd; cmd.AddValue ("mode", "Mode setting of TapBridge", mode); cmd.AddValue ("tapName", "Name of the OS tap device", tapName); cmd.Parse (argc, argv); GlobalValue::Bind ("SimulatorImplementationType", StringValue ("ns3::RealtimeSimulatorImpl")); GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true)); // // The topology has a Wifi network of four nodes on the left side. We'll make // node zero the AP and have the other three will be the STAs. // NodeContainer nodesLeft; nodesLeft.Create (4); YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default (); YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default (); wifiPhy.SetChannel (wifiChannel.Create ()); Ssid ssid = Ssid ("left"); WifiHelper wifi = WifiHelper::Default (); NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default (); wifi.SetRemoteStationManager ("ns3::ArfWifiManager"); wifiMac.SetType ("ns3::ApWifiMac", "Ssid", SsidValue (ssid)); NetDeviceContainer devicesLeft = wifi.Install (wifiPhy, wifiMac, nodesLeft.Get (0)); wifiMac.SetType ("ns3::StaWifiMac", "Ssid", SsidValue (ssid), "ActiveProbing", BooleanValue (false)); devicesLeft.Add (wifi.Install (wifiPhy, wifiMac, NodeContainer (nodesLeft.Get (1), nodesLeft.Get (2), nodesLeft.Get (3)))); MobilityHelper mobility; mobility.Install (nodesLeft); InternetStackHelper internetLeft; internetLeft.Install (nodesLeft); Ipv4AddressHelper ipv4Left; ipv4Left.SetBase ("10.1.1.0", "255.255.255.0"); Ipv4InterfaceContainer interfacesLeft = ipv4Left.Assign (devicesLeft); TapBridgeHelper tapBridge (interfacesLeft.GetAddress (1)); tapBridge.SetAttribute ("Mode", StringValue (mode)); tapBridge.SetAttribute ("DeviceName", StringValue (tapName)); tapBridge.Install (nodesLeft.Get (0), devicesLeft.Get (0)); // // Now, create the right side. // NodeContainer nodesRight; nodesRight.Create (4); CsmaHelper csmaRight; csmaRight.SetChannelAttribute ("DataRate", DataRateValue (5000000)); csmaRight.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); NetDeviceContainer devicesRight = csmaRight.Install (nodesRight); InternetStackHelper internetRight; internetRight.Install (nodesRight); Ipv4AddressHelper ipv4Right; ipv4Right.SetBase ("10.1.3.0", "255.255.255.0"); Ipv4InterfaceContainer interfacesRight = ipv4Right.Assign (devicesRight); // // Stick in the point-to-point line between the sides. // PointToPointHelper p2p; p2p.SetDeviceAttribute ("DataRate", StringValue ("512kbps")); p2p.SetChannelAttribute ("Delay", StringValue ("10ms")); NodeContainer nodes = NodeContainer (nodesLeft.Get (3), nodesRight.Get (0)); NetDeviceContainer devices = p2p.Install (nodes); Ipv4AddressHelper ipv4; ipv4.SetBase ("10.1.2.0", "255.255.255.192"); Ipv4InterfaceContainer interfaces = ipv4.Assign (devices); // // Simulate some CBR traffic over the point-to-point link // uint16_t port = 9; // Discard port (RFC 863) OnOffHelper onoff ("ns3::UdpSocketFactory", InetSocketAddress (interfaces.GetAddress (1), port)); onoff.SetConstantRate (DataRate ("500kb/s")); ApplicationContainer apps = onoff.Install (nodesLeft.Get (3)); apps.Start (Seconds (1.0)); // Create a packet sink to receive these packets PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), port)); apps = sink.Install (nodesRight.Get (0)); apps.Start (Seconds (1.0)); wifiPhy.EnablePcapAll ("tap-wifi-dumbbell"); csmaRight.EnablePcapAll ("tap-wifi-dumbbell", false); Ipv4GlobalRoutingHelper::PopulateRoutingTables (); Simulator::Stop (Seconds (60.)); Simulator::Run (); Simulator::Destroy (); }
void EpcS1uDlTestCase::DoRun () { Ptr<PointToPointEpcHelper> epcHelper = CreateObject<PointToPointEpcHelper> (); Ptr<Node> pgw = epcHelper->GetPgwNode (); // allow jumbo packets Config::SetDefault ("ns3::CsmaNetDevice::Mtu", UintegerValue (30000)); Config::SetDefault ("ns3::PointToPointNetDevice::Mtu", UintegerValue (30000)); epcHelper->SetAttribute ("S1uLinkMtu", UintegerValue (30000)); // Create a single RemoteHost NodeContainer remoteHostContainer; remoteHostContainer.Create (1); Ptr<Node> remoteHost = remoteHostContainer.Get (0); InternetStackHelper internet; internet.Install (remoteHostContainer); // Create the internet PointToPointHelper p2ph; p2ph.SetDeviceAttribute ("DataRate", DataRateValue (DataRate ("100Gb/s"))); NetDeviceContainer internetDevices = p2ph.Install (pgw, remoteHost); Ipv4AddressHelper ipv4h; ipv4h.SetBase ("1.0.0.0", "255.0.0.0"); ipv4h.Assign (internetDevices); // setup default gateway for the remote hosts Ipv4StaticRoutingHelper ipv4RoutingHelper; Ptr<Ipv4StaticRouting> remoteHostStaticRouting = ipv4RoutingHelper.GetStaticRouting (remoteHost->GetObject<Ipv4> ()); // hardcoded UE addresses for now remoteHostStaticRouting->AddNetworkRouteTo (Ipv4Address ("7.0.0.0"), Ipv4Mask ("255.255.255.0"), 1); NodeContainer enbs; uint16_t cellIdCounter = 0; for (std::vector<EnbDlTestData>::iterator enbit = m_enbDlTestData.begin (); enbit < m_enbDlTestData.end (); ++enbit) { Ptr<Node> enb = CreateObject<Node> (); enbs.Add (enb); // we test EPC without LTE, hence we use: // 1) a CSMA network to simulate the cell // 2) a raw socket opened on the CSMA device to simulate the LTE socket uint16_t cellId = ++cellIdCounter; NodeContainer ues; ues.Create (enbit->ues.size ()); NodeContainer cell; cell.Add (ues); cell.Add (enb); CsmaHelper csmaCell; NetDeviceContainer cellDevices = csmaCell.Install (cell); // the eNB's CSMA NetDevice acting as an LTE NetDevice. Ptr<NetDevice> enbDevice = cellDevices.Get (cellDevices.GetN () - 1); // Note that the EpcEnbApplication won't care of the actual NetDevice type epcHelper->AddEnb (enb, enbDevice, cellId); // Plug test RRC entity Ptr<EpcEnbApplication> enbApp = enb->GetApplication (0)->GetObject<EpcEnbApplication> (); NS_ASSERT_MSG (enbApp != 0, "cannot retrieve EpcEnbApplication"); Ptr<EpcTestRrc> rrc = CreateObject<EpcTestRrc> (); rrc->SetS1SapProvider (enbApp->GetS1SapProvider ()); enbApp->SetS1SapUser (rrc->GetS1SapUser ()); // we install the IP stack on UEs only InternetStackHelper internet; internet.Install (ues); // assign IP address to UEs, and install applications for (uint32_t u = 0; u < ues.GetN (); ++u) { Ptr<NetDevice> ueLteDevice = cellDevices.Get (u); Ipv4InterfaceContainer ueIpIface = epcHelper->AssignUeIpv4Address (NetDeviceContainer (ueLteDevice)); Ptr<Node> ue = ues.Get (u); // disable IP Forwarding on the UE. This is because we use // CSMA broadcast MAC addresses for this test. The problem // won't happen with a LteUeNetDevice. ue->GetObject<Ipv4> ()->SetAttribute ("IpForward", BooleanValue (false)); uint16_t port = 1234; PacketSinkHelper packetSinkHelper ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), port)); ApplicationContainer apps = packetSinkHelper.Install (ue); apps.Start (Seconds (1.0)); apps.Stop (Seconds (10.0)); enbit->ues[u].serverApp = apps.Get (0)->GetObject<PacketSink> (); Time interPacketInterval = Seconds (0.01); UdpEchoClientHelper client (ueIpIface.GetAddress (0), port); client.SetAttribute ("MaxPackets", UintegerValue (enbit->ues[u].numPkts)); client.SetAttribute ("Interval", TimeValue (interPacketInterval)); client.SetAttribute ("PacketSize", UintegerValue (enbit->ues[u].pktSize)); apps = client.Install (remoteHost); apps.Start (Seconds (2.0)); apps.Stop (Seconds (10.0)); enbit->ues[u].clientApp = apps.Get (0); uint64_t imsi = u+1; epcHelper->AddUe (ueLteDevice, imsi); epcHelper->ActivateEpsBearer (ueLteDevice, imsi, EpcTft::Default (), EpsBearer (EpsBearer::NGBR_VIDEO_TCP_DEFAULT)); enbApp->GetS1SapProvider ()->InitialUeMessage (imsi, (uint16_t) imsi); } } Simulator::Run (); for (std::vector<EnbDlTestData>::iterator enbit = m_enbDlTestData.begin (); enbit < m_enbDlTestData.end (); ++enbit) { for (std::vector<UeDlTestData>::iterator ueit = enbit->ues.begin (); ueit < enbit->ues.end (); ++ueit) { NS_TEST_ASSERT_MSG_EQ (ueit->serverApp->GetTotalRx (), (ueit->numPkts) * (ueit->pktSize), "wrong total received bytes"); } } Simulator::Destroy (); }
int main (int argc, char *argv[]) { // // Users may find it convenient to turn on explicit debugging // for selected modules; the below lines suggest how to do this // // LogComponentEnable ("CsmaMulticastExample", LOG_LEVEL_INFO); // // Set up default values for the simulation. // // Select DIX/Ethernet II-style encapsulation (no LLC/Snap header) Config::SetDefault ("ns3::CsmaNetDevice::EncapsulationMode", StringValue ("Dix")); // Allow the user to override any of the defaults at // run-time, via command-line arguments CommandLine cmd; cmd.Parse (argc, argv); NS_LOG_INFO ("Create nodes."); NodeContainer c; c.Create (5); // We will later want two subcontainers of these nodes, for the two LANs NodeContainer c0 = NodeContainer (c.Get (0), c.Get (1), c.Get (2)); NodeContainer c1 = NodeContainer (c.Get (2), c.Get (3), c.Get (4)); NS_LOG_INFO ("Build Topology."); CsmaHelper csma; csma.SetChannelAttribute ("DataRate", DataRateValue (DataRate (5000000))); csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); // We will use these NetDevice containers later, for IP addressing NetDeviceContainer nd0 = csma.Install (c0); // First LAN NetDeviceContainer nd1 = csma.Install (c1); // Second LAN NS_LOG_INFO ("Add IP Stack."); InternetStackHelper internet; internet.Install (c); NS_LOG_INFO ("Assign IP Addresses."); Ipv4AddressHelper ipv4Addr; ipv4Addr.SetBase ("10.1.1.0", "255.255.255.0"); ipv4Addr.Assign (nd0); ipv4Addr.SetBase ("10.1.2.0", "255.255.255.0"); ipv4Addr.Assign (nd1); NS_LOG_INFO ("Configure multicasting."); // // Now we can configure multicasting. As described above, the multicast // source is at node zero, which we assigned the IP address of 10.1.1.1 // earlier. We need to define a multicast group to send packets to. This // can be any multicast address from 224.0.0.0 through 239.255.255.255 // (avoiding the reserved routing protocol addresses). // Ipv4Address multicastSource ("10.1.1.1"); Ipv4Address multicastGroup ("225.1.2.4"); // Now, we will set up multicast routing. We need to do three things: // 1) Configure a (static) multicast route on node n2 // 2) Set up a default multicast route on the sender n0 // 3) Have node n4 join the multicast group // We have a helper that can help us with static multicast Ipv4StaticRoutingHelper multicast; // 1) Configure a (static) multicast route on node n2 (multicastRouter) Ptr<Node> multicastRouter = c.Get (2); // The node in question Ptr<NetDevice> inputIf = nd0.Get (2); // The input NetDevice NetDeviceContainer outputDevices; // A container of output NetDevices outputDevices.Add (nd1.Get (0)); // (we only need one NetDevice here) multicast.AddMulticastRoute (multicastRouter, multicastSource, multicastGroup, inputIf, outputDevices); // 2) Set up a default multicast route on the sender n0 Ptr<Node> sender = c.Get (0); Ptr<NetDevice> senderIf = nd0.Get (0); multicast.SetDefaultMulticastRoute (sender, senderIf); // // Create an OnOff application to send UDP datagrams from node zero to the // multicast group (node four will be listening). // NS_LOG_INFO ("Create Applications."); uint16_t multicastPort = 9; // Discard port (RFC 863) // Configure a multicast packet generator that generates a packet // every few seconds OnOffHelper onoff ("ns3::UdpSocketFactory", Address (InetSocketAddress (multicastGroup, multicastPort))); onoff.SetConstantRate (DataRate ("255b/s")); onoff.SetAttribute ("PacketSize", UintegerValue (128)); ApplicationContainer srcC = onoff.Install (c0.Get (0)); // // Tell the application when to start and stop. // srcC.Start (Seconds (1.)); srcC.Stop (Seconds (10.)); // Create an optional packet sink to receive these packets PacketSinkHelper sink ("ns3::UdpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), multicastPort)); ApplicationContainer sinkC = sink.Install (c1.Get (2)); // Node n4 // Start the sink sinkC.Start (Seconds (1.0)); sinkC.Stop (Seconds (10.0)); NS_LOG_INFO ("Configure Tracing."); // // Configure tracing of all enqueue, dequeue, and NetDevice receive events. // Ascii trace output will be sent to the file "csma-multicast.tr" // AsciiTraceHelper ascii; csma.EnableAsciiAll (ascii.CreateFileStream ("csma-multicast.tr")); // Also configure some tcpdump traces; each interface will be traced. // The output files will be named: // csma-multicast-<nodeId>-<interfaceId>.pcap // and can be read by the "tcpdump -r" command (use "-tt" option to // display timestamps correctly) csma.EnablePcapAll ("csma-multicast", false); // // Now, do the actual simulation. // NS_LOG_INFO ("Run Simulation."); Simulator::Run (); Simulator::Destroy (); NS_LOG_INFO ("Done."); }
int main (int argc, char *argv[]) { // // Users may find it convenient to turn on explicit debugging // for selected modules; the below lines suggest how to do this // #if 0 LogComponentEnable ("CsmaBridgeOneHopExample", LOG_LEVEL_INFO); #endif // // Allow the user to override any of the defaults and the above Bind() at // run-time, via command-line arguments // CommandLine cmd; cmd.Parse (argc, argv); // // Explicitly create the nodes required by the topology (shown above). // NS_LOG_INFO ("Create nodes."); Ptr<Node> n0 = CreateObject<Node> (); Ptr<Node> n1 = CreateObject<Node> (); Ptr<Node> n2 = CreateObject<Node> (); Ptr<Node> n3 = CreateObject<Node> (); Ptr<Node> n4 = CreateObject<Node> (); Ptr<Node> bridge1 = CreateObject<Node> (); Ptr<Node> bridge2 = CreateObject<Node> (); NS_LOG_INFO ("Build Topology"); CsmaHelper csma; csma.SetChannelAttribute ("DataRate", DataRateValue (5000000)); csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); // Create the csma links, from each terminal to the bridge // This will create six network devices; we'll keep track separately // of the devices on and off the bridge respectively, for later configuration NetDeviceContainer topLanDevices; NetDeviceContainer topBridgeDevices; // It is easier to iterate the nodes in C++ if we put them into a container NodeContainer topLan (n2, n0, n1); for (int i = 0; i < 3; i++) { // install a csma channel between the ith toplan node and the bridge node NetDeviceContainer link = csma.Install (NodeContainer (topLan.Get (i), bridge1)); topLanDevices.Add (link.Get (0)); topBridgeDevices.Add (link.Get (1)); } // // Now, Create the bridge netdevice, which will do the packet switching. The // bridge lives on the node bridge1 and bridges together the topBridgeDevices // which are the three CSMA net devices on the node in the diagram above. // BridgeHelper bridge; bridge.Install (bridge1, topBridgeDevices); // Add internet stack to the router nodes NodeContainer routerNodes (n0, n1, n2, n3, n4); InternetStackHelper internet; internet.Install (routerNodes); // Repeat for bottom bridged LAN NetDeviceContainer bottomLanDevices; NetDeviceContainer bottomBridgeDevices; NodeContainer bottomLan (n2, n3, n4); for (int i = 0; i < 3; i++) { NetDeviceContainer link = csma.Install (NodeContainer (bottomLan.Get (i), bridge2)); bottomLanDevices.Add (link.Get (0)); bottomBridgeDevices.Add (link.Get (1)); } bridge.Install (bridge2, bottomBridgeDevices); // We've got the "hardware" in place. Now we need to add IP addresses. NS_LOG_INFO ("Assign IP Addresses."); Ipv4AddressHelper ipv4; ipv4.SetBase ("10.1.1.0", "255.255.255.0"); ipv4.Assign (topLanDevices); ipv4.SetBase ("10.1.2.0", "255.255.255.0"); ipv4.Assign (bottomLanDevices); // // Create router nodes, initialize routing database and set up the routing // tables in the nodes. We excuse the bridge nodes from having to serve as // routers, since they don't even have internet stacks on them. // Ipv4GlobalRoutingHelper::PopulateRoutingTables (); // // Create an OnOff application to send UDP datagrams from node zero to node 1. // NS_LOG_INFO ("Create Applications."); uint16_t port = 9; // Discard port (RFC 863) OnOffHelper onoff ("ns3::UdpSocketFactory", Address (InetSocketAddress (Ipv4Address ("10.1.1.3"), port))); onoff.SetConstantRate (DataRate ("500kb/s")); ApplicationContainer app = onoff.Install (n0); // Start the application app.Start (Seconds (1.0)); app.Stop (Seconds (10.0)); // Create an optional packet sink to receive these packets PacketSinkHelper sink ("ns3::UdpSocketFactory", Address (InetSocketAddress (Ipv4Address::GetAny (), port))); ApplicationContainer sink1 = sink.Install (n1); sink1.Start (Seconds (1.0)); sink1.Stop (Seconds (10.0)); // // Create a similar flow from n3 to n0, starting at time 1.1 seconds // onoff.SetAttribute ("Remote", AddressValue (InetSocketAddress (Ipv4Address ("10.1.1.2"), port))); ApplicationContainer app2 = onoff.Install (n3); app2.Start (Seconds (1.1)); app2.Stop (Seconds (10.0)); ApplicationContainer sink2 = sink.Install (n0); sink2.Start (Seconds (1.1)); sink2.Stop (Seconds (10.0)); NS_LOG_INFO ("Configure Tracing."); // // Configure tracing of all enqueue, dequeue, and NetDevice receive events. // Trace output will be sent to the file "csma-bridge-one-hop.tr" // AsciiTraceHelper ascii; csma.EnableAsciiAll (ascii.CreateFileStream ("csma-bridge-one-hop.tr")); // // Also configure some tcpdump traces; each interface will be traced. // The output files will be named: // csma-bridge-one-hop-<nodeId>-<interfaceId>.pcap // and can be read by the "tcpdump -r" command (use "-tt" option to // display timestamps correctly) // csma.EnablePcapAll ("csma-bridge-one-hop", false); // // Now, do the actual simulation. // NS_LOG_INFO ("Run Simulation."); Simulator::Run (); Simulator::Destroy (); NS_LOG_INFO ("Done."); }
int main (int argc, char** argv) { bool verbose = false; CommandLine cmd; cmd.AddValue ("verbose", "turn on log components", verbose); cmd.Parse (argc, argv); if (verbose) { LogComponentEnable ("Ipv6L3Protocol", LOG_LEVEL_ALL); LogComponentEnable ("Icmpv6L4Protocol", LOG_LEVEL_ALL); LogComponentEnable ("Ipv6StaticRouting", LOG_LEVEL_ALL); LogComponentEnable ("Ipv6Interface", LOG_LEVEL_ALL); LogComponentEnable ("Ping6Application", LOG_LEVEL_ALL); } NS_LOG_INFO ("Create nodes."); Ptr<Node> n0 = CreateObject<Node> (); Ptr<Node> r = CreateObject<Node> (); Ptr<Node> n1 = CreateObject<Node> (); NodeContainer net1 (n0, r); NodeContainer net2 (r, n1); NodeContainer all (n0, r, n1); NS_LOG_INFO ("Create IPv6 Internet Stack"); InternetStackHelper internetv6; internetv6.Install (all); NS_LOG_INFO ("Create channels."); CsmaHelper csma; csma.SetChannelAttribute ("DataRate", DataRateValue (5000000)); csma.SetChannelAttribute ("Delay", TimeValue (MilliSeconds (2))); NetDeviceContainer d1 = csma.Install (net1); NetDeviceContainer d2 = csma.Install (net2); NS_LOG_INFO ("Create networks and assign IPv6 Addresses."); Ipv6AddressHelper ipv6; ipv6.SetBase (Ipv6Address ("2001:1::"), Ipv6Prefix (64)); Ipv6InterfaceContainer i1 = ipv6.Assign (d1); i1.SetForwarding (1, true); i1.SetDefaultRouteInAllNodes (1); ipv6.SetBase (Ipv6Address ("2001:2::"), Ipv6Prefix (64)); Ipv6InterfaceContainer i2 = ipv6.Assign (d2); i2.SetForwarding (0, true); i2.SetDefaultRouteInAllNodes (0); Ipv6StaticRoutingHelper routingHelper; Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> (&std::cout); routingHelper.PrintRoutingTableAt (Seconds (0), n0, routingStream); /* Create a Ping6 application to send ICMPv6 echo request from n0 to n1 via r */ uint32_t packetSize = 4096; uint32_t maxPacketCount = 5; Time interPacketInterval = Seconds (1.0); Ping6Helper ping6; ping6.SetLocal (i1.GetAddress (0, 1)); ping6.SetRemote (i2.GetAddress (1, 1)); ping6.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount)); ping6.SetAttribute ("Interval", TimeValue (interPacketInterval)); ping6.SetAttribute ("PacketSize", UintegerValue (packetSize)); ApplicationContainer apps = ping6.Install (net1.Get (0)); apps.Start (Seconds (2.0)); apps.Stop (Seconds (20.0)); AsciiTraceHelper ascii; csma.EnableAsciiAll (ascii.CreateFileStream ("fragmentation-ipv6.tr")); csma.EnablePcapAll (std::string ("fragmentation-ipv6"), true); NS_LOG_INFO ("Run Simulation."); Simulator::Run (); Simulator::Destroy (); NS_LOG_INFO ("Done."); }