示例#1
0
/**
 * \brief Calculate the loglikelihood of a linear regression contained
 * in a linear_reg object.
 *
 * @param X The design matrix.
 */
void linear_reg::logLikelihood(const mematrix<double>& X) {
    /*
     loglik = 0.;
     double ss=0;
     for (int i=0;i<rdata.nids;i++) {
     double resid = rdata.Y[i] - beta.get(0,0); // intercept
     for (int j=1;j<beta.nrow;j++) resid -= beta.get(j,0)*X.get(i,j);
     // residuals[i] = resid;
     ss += resid*resid;
     }
     sigma2 = ss/N;
     */
    //cout << "estimate " << rdata.nids << "\n";
    //(rdata.X).print();
    //for (int i=0;i<rdata.nids;i++) cout << rdata.masked_data[i] << " ";
    //cout << endl;
    loglik = 0.;
    double halfrecsig2 = .5 / sigma2;
    //loglik -= halfrecsig2 * residuals[i] * residuals[i];

    double intercept = beta.get(0, 0);
    residuals.data = reg_data.Y.data.array() - intercept;
    //matrix.
    ArrayXXd betacol =
            beta.data.block(1, 0, beta.data.rows() - 1, 1).array().transpose();
    ArrayXXd resid_sub = (X.data.block(0, 1, X.data.rows(), X.data.cols() - 1)
            * betacol.matrix().asDiagonal()).rowwise().sum();
    //std::cout << resid_sub << std::endl;
    residuals.data -= resid_sub.matrix();
    //residuals[i] -= resid_sub;
    loglik -= (residuals.data.array().square() * halfrecsig2).sum();
    loglik -= static_cast<double>(reg_data.nids) * log(sqrt(sigma2));
}
示例#2
0
/*
Multiply each row of u by temp
*/
MatrixXd arrayMultiplierRowWise(MatrixXd u,ArrayXXd temp,int n){
	ArrayXXd uArray = u.array();
	int i;
	for(i=0;i<n;i++){
		uArray.row(i) *= temp;
	}
	return uArray.matrix();
}
示例#3
0
MatrixXd cube(MatrixXd xin){
	
	ArrayXXd x = xin.array();	//convert to Array
	x*=(x*x);
	return x.matrix();
}
示例#4
0
文件: mcbm.cpp 项目: cajal/cmt
double CMT::MCBM::parameterGradient(
	const MatrixXd& inputCompl,
	const MatrixXd& outputCompl,
	const lbfgsfloatval_t* x,
	lbfgsfloatval_t* g,
	const Trainable::Parameters& params_) const
{
	const Parameters& params = dynamic_cast<const Parameters&>(params_);

	// average log-likelihood
	double logLik = 0.;

	// interpret memory for parameters and gradients
	lbfgsfloatval_t* y = const_cast<lbfgsfloatval_t*>(x);

	int offset = 0;

	VectorLBFGS priors(params.trainPriors ? y : const_cast<double*>(mPriors.data()), mNumComponents);
	VectorLBFGS priorsGrad(g, mNumComponents);
	if(params.trainPriors)
		offset += priors.size();

	MatrixLBFGS weights(params.trainWeights ? y + offset : const_cast<double*>(mWeights.data()), mNumComponents, mNumFeatures);
	MatrixLBFGS weightsGrad(g + offset, mNumComponents, mNumFeatures);
	if(params.trainWeights)
		offset += weights.size();

	MatrixLBFGS features(params.trainFeatures ? y + offset : const_cast<double*>(mFeatures.data()), mDimIn, mNumFeatures);
	MatrixLBFGS featuresGrad(g + offset, mDimIn, mNumFeatures);
	if(params.trainFeatures)
		offset += features.size();

	MatrixLBFGS predictors(params.trainPredictors ? y + offset : const_cast<double*>(mPredictors.data()), mNumComponents, mDimIn);
	MatrixLBFGS predictorsGrad(g + offset, mNumComponents, mDimIn);
	if(params.trainPredictors)
		offset += predictors.size();

	MatrixLBFGS inputBias(params.trainInputBias ? y + offset : const_cast<double*>(mInputBias.data()), mDimIn, mNumComponents);
	MatrixLBFGS inputBiasGrad(g + offset, mDimIn, mNumComponents);
	if(params.trainInputBias)
		offset += inputBias.size();

	VectorLBFGS outputBias(params.trainOutputBias ? y + offset : const_cast<double*>(mOutputBias.data()), mNumComponents);
	VectorLBFGS outputBiasGrad(g + offset, mNumComponents);
	if(params.trainOutputBias)
		offset += outputBias.size();

	if(g) {
		// initialize gradients
		if(params.trainPriors)
			priorsGrad.setZero();
		if(params.trainWeights)
			weightsGrad.setZero();
		if(params.trainFeatures)
			featuresGrad.setZero();
		if(params.trainPredictors)
			predictorsGrad.setZero();
		if(params.trainInputBias)
			inputBiasGrad.setZero();
		if(params.trainOutputBias)
			outputBiasGrad.setZero();
	}

	// split data into batches for better performance
	int numData = static_cast<int>(inputCompl.cols());
	int batchSize = min(max(params.batchSize, 10), numData);

	#pragma omp parallel for
	for(int b = 0; b < inputCompl.cols(); b += batchSize) {
		const MatrixXd& input = inputCompl.middleCols(b, min(batchSize, numData - b));
		const MatrixXd& output = outputCompl.middleCols(b, min(batchSize, numData - b));

		ArrayXXd featureOutput = features.transpose() * input;
		MatrixXd featureOutputSq = featureOutput.square();
		MatrixXd weightsOutput = weights * featureOutputSq;
		ArrayXXd predictorOutput = predictors * input;

		// unnormalized posteriors over components for both possible outputs
		ArrayXXd logPost0 = (weightsOutput + inputBias.transpose() * input).colwise() + priors;
		ArrayXXd logPost1 = (logPost0 + predictorOutput).colwise() + outputBias.array();

		// sum over components to get unnormalized probabilities of outputs
		Array<double, 1, Dynamic> logProb0 = logSumExp(logPost0);
		Array<double, 1, Dynamic> logProb1 = logSumExp(logPost1);
	
		// normalize posteriors over components
		logPost0.rowwise() -= logProb0;
		logPost1.rowwise() -= logProb1;

		// stack row vectors
		ArrayXXd logProb01(2, input.cols());
		logProb01 << logProb0, logProb1; 

		// normalize log-probabilities
		Array<double, 1, Dynamic> logNorm = logSumExp(logProb01);
		logProb1 -= logNorm;
		logProb0 -= logNorm;

		double logLikBatch = (output.array() * logProb1 + (1. - output.array()) * logProb0).sum();

		#pragma omp critical
		logLik += logLikBatch;

		if(!g)
			// don't compute gradients
			continue;

		Array<double, 1, Dynamic> tmp = output.array() * logProb0.exp() - (1. - output.array()) * logProb1.exp();

		ArrayXXd post0Tmp = logPost0.exp().rowwise() * tmp;
		ArrayXXd post1Tmp = logPost1.exp().rowwise() * tmp;
		ArrayXXd postDiffTmp = post1Tmp - post0Tmp;

		// update gradients
		if(params.trainPriors)
			#pragma omp critical
			priorsGrad -= postDiffTmp.rowwise().sum().matrix();

		if(params.trainWeights)
			#pragma omp critical
			weightsGrad -= postDiffTmp.matrix() * featureOutputSq.transpose();

		if(params.trainFeatures) {
			ArrayXXd tmp2 = weights.transpose() * postDiffTmp.matrix() * 2.;
			MatrixXd tmp3 = featureOutput * tmp2;
			#pragma omp critical
			featuresGrad -= input * tmp3.transpose();
		}

		if(params.trainPredictors)
			#pragma omp critical
			predictorsGrad -= post1Tmp.matrix() * input.transpose();

		if(params.trainInputBias)
			#pragma omp critical
			inputBiasGrad -= input * postDiffTmp.matrix().transpose();

		if(params.trainOutputBias)
			#pragma omp critical
			outputBiasGrad -= post1Tmp.rowwise().sum().matrix();
	}

	double normConst = inputCompl.cols() * log(2.) * dimOut();

	if(g) {
		for(int i = 0; i < offset; ++i)
			g[i] /= normConst;

		if(params.trainFeatures)
			featuresGrad += params.regularizeFeatures.gradient(features);

		if(params.trainPredictors)
			predictorsGrad += params.regularizePredictors.gradient(predictors.transpose()).transpose();

		if(params.trainWeights)
			weightsGrad += params.regularizeWeights.gradient(weights);
	}

	double value = -logLik / normConst;

	if(params.trainFeatures)
		value += params.regularizeFeatures.evaluate(features);

	if(params.trainPredictors)
		value += params.regularizePredictors.evaluate(predictors.transpose());

	if(params.trainWeights)
		value += params.regularizeWeights.evaluate(weights);

	return value;
}
示例#5
0
int main() {

    // The eigen approach
    ArrayXd n                = ArrayXd::LinSpaced(N+1,0,N);
    double multiplier        = M_PI/N;
    Array<double, 1, N+1> nT = n.transpose();
    ArrayXd x                = - cos(multiplier*n);
    ArrayXd xsub             = x.middleRows(1, N-1);
    ArrayXd ysub             = (x1-x0)/2*xsub + (x1+x0)/2;

    ArrayXXd T               = cos((acos(x).matrix()*nT.matrix()).array());
    ArrayXXd Tsub            = cos((acos(xsub).matrix()*nT.matrix()).array());
    ArrayXd sqinx            = 1/sqrt(1-xsub*xsub);

    MatrixXd inv1x2          = (sqinx).matrix().asDiagonal();

    // Can't use the following to test elements of inv1x2
    // std::cout << inv1x2(0,0) << "\n";

    MatrixXd Usub            = inv1x2 * sin(((acos(xsub).matrix())*nT.matrix()).array()).matrix();
    MatrixXd dTsub           = Usub*(n.matrix().asDiagonal());
    MatrixXd d2Tsub          = ((sqinx*sqinx).matrix().asDiagonal())*((xsub.matrix().asDiagonal()) * (dTsub.matrix()) - (Tsub.matrix()) * ((n*n).matrix().asDiagonal()));

    MatrixXd d2T(N+1, N+1);
    RowVectorXd a            = (pow((-1),nT))*(nT*nT+1)*(nT*nT)/3;
    RowVectorXd b            = (nT*nT+1)*(nT*nT)/3;
    d2T.middleRows(1,N-1)    = d2Tsub; 
    d2T.row(0)               = a;
    d2T.row(N)               = b;

    MatrixXd D2              = d2T.matrix() * ((T.matrix()).inverse());
    MatrixXd E2              = D2.middleRows(1,N-1).middleCols(1,N-1);
    MatrixXd Y               = ysub.matrix().asDiagonal();
    MatrixXd H               = - (4 / ((x1-x0)*(x1-x0))) * E2 + k*Y;

    Eigen::EigenSolver<Eigen::MatrixXd> HE(H);
    VectorXcd D              = HE.eigenvalues();
    MatrixXcd V              = HE.eigenvectors();
    std::cout << HE.info() << std::endl;

    // Open ofstream
    ofstream Dfile;
    Dfile.open("D-output.txt");

    ofstream Vfile;
    Vfile.open("V-output.txt");

    ofstream V544file;
    V544file.open("V544-output.txt");

    Dfile.precision(15);
    Dfile << D.real() << "\n";

    Vfile.precision(15);
    Vfile << V.real() << "\n";

    V544file.precision(15);

	for(int i = 1; i<N-1; i++)
    {
		V544file << ysub[i-1];
        V544file << " "        << V.col(544).row(i-1).real() << "\n";
	}
    Dfile.close();
    Vfile.close();
	V544file.close();
	system("gnuplot -p plot.gp");
	system("rsvg-convert -w 2000 -o V544-plot.png V544-plot.svg");

}