void HeatTransferStabilizationHelper::compute_res_energy_steady_and_derivs
  ( AssemblyContext& context,
    unsigned int qp,
    const libMesh::Real rho,
    const libMesh::Real Cp,
    const libMesh::Real k,
    libMesh::Real &res,
    libMesh::Real &d_res_dT,
    libMesh::Gradient &d_res_dgradT,
    libMesh::Tensor   &d_res_dhessT,
    libMesh::Gradient &d_res_dU
    ) const
  {
    libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
    libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);

    libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
                                  rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
    if(this->_flow_vars.dim() == 3)
      rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);

    res = rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
    d_res_dT = 0;
    d_res_dgradT = rhocpU;
    d_res_dhessT = 0;
    d_res_dhessT(0,0) = -k;
    d_res_dhessT(1,1) = -k;
    d_res_dhessT(2,2) = -k;
    d_res_dU = rho * Cp * grad_T;
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_thermo_press_mass_residual( bool /*compute_jacobian*/,
									   AssemblyContext& context )
  {
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p0_dofs = context.get_dof_indices(this->_p0_var).size();
    const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();
    const unsigned int n_p_dofs = context.get_dof_indices(this->_p_var).size();

    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_T_var)->get_JxW();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi =
      context.get_element_fe(this->_T_var)->get_phi();

    // The temperature shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& p_phi =
      context.get_element_fe(this->_p_var)->get_phi();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_p0 = context.get_elem_residual(this->_p0_var);
    libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);
    libMesh::DenseSubVector<libMesh::Real> &F_p = context.get_elem_residual(this->_p_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	libMesh::Number T;
	T = context.fixed_interior_value(this->_T_var, qp);

	libMesh::Number cp = this->_cp(T);
	libMesh::Number cv = cp + this->_R;
	libMesh::Number gamma = cp/cv;
	libMesh::Number one_over_gamma = 1.0/(gamma-1.0);

	libMesh::Number p0_dot = context.interior_value(this->_p0_var, qp );

	libMesh::Number p0 = context.fixed_interior_value(this->_p0_var, qp );

	for (unsigned int i=0; i != n_p0_dofs; i++)
	  {
	    F_p0(i) += p0_dot*one_over_gamma*JxW[qp];
	  }

	for (unsigned int i=0; i != n_T_dofs; i++)
	  {
	    F_T(i) -= p0_dot*T_phi[i][qp]*JxW[qp];
	  }

	for (unsigned int i=0; i != n_p_dofs; i++)
	  {
	    F_p(i) -= p0_dot/p0*p_phi[i][qp]*JxW[qp];
	  }

      }
    return;
  }
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_energy_mass_residual( bool /*compute_jacobian*/,
        AssemblyContext& context )
{
    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
        context.get_element_fe(this->_temp_vars.T())->get_JxW();

    // The temperature shape functions gradients at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
        context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
    {
        libMesh::Number u, v;
        u = context.fixed_interior_value(this->_flow_vars.u(), qp);
        v = context.fixed_interior_value(this->_flow_vars.v(), qp);

        libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);

        libMesh::NumberVectorValue U(u,v);
        if (this->mesh_dim(context) == 3)
            U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp); // w

        libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
        libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );

        libMesh::Real k = this->_k(T);
        libMesh::Real cp = this->_cp(T);

        libMesh::Number rho_cp = rho*this->_cp(T);

        libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());

        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, false );

        libMesh::Real RE_t = this->compute_res_energy_transient( context, qp );

        for (unsigned int i=0; i != n_T_dofs; i++)
        {
            FT(i) -= rho_cp*tau_E*RE_t*U*T_gradphi[i][qp]*JxW[qp];
        }

    }

    return;
}
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_continuity_mass_residual( bool /*compute_jacobian*/,
        AssemblyContext& context)
{
    // The number of local degrees of freedom in each variable.
    const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
        context.get_element_fe(this->_flow_vars.u())->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& p_dphi =
        context.get_element_fe(this->_press_var.p())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p}

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
    {
        libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());

        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
        libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );

        libMesh::Real mu = this->_mu(T);

        libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
                                 context.fixed_interior_value( this->_flow_vars.v(), qp ) );
        if( this->mesh_dim(context) == 3 )
            U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );

        libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, false );
        libMesh::RealGradient RM_t = this->compute_res_momentum_transient( context, qp );

        // Now a loop over the pressure degrees of freedom.  This
        // computes the contributions of the continuity equation.
        for (unsigned int i=0; i != n_p_dofs; i++)
        {
            Fp(i) += tau_M*RM_t*p_dphi[i][qp]*JxW[qp];
        }
    }

    return;
}
示例#5
0
  void HeatTransferSPGSMStabilization<K>::mass_residual( bool compute_jacobian,
                                                         AssemblyContext & context )
  {
    if( compute_jacobian )
      libmesh_not_implemented();

    // The number of local degrees of freedom in each variable.
    const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_temp_vars.T())->get_JxW();

    const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
      context.get_element_fe(this->_temp_vars.T())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}

    libMesh::FEBase* fe = context.get_element_fe(this->_temp_vars.T());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
                                 context.fixed_interior_value( this->_flow_vars.v(), qp ) );
        if( this->_flow_vars.dim() == 3 )
          {
            U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
          }

        // Compute Conductivity at this qp
        libMesh::Real _k_qp = this->_k(context, qp);

        libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, G, this->_rho, this->_Cp, _k_qp,  U, false );

        libMesh::Real RE_t = this->_stab_helper.compute_res_energy_transient( context, qp, this->_rho, this->_Cp );

        for (unsigned int i=0; i != n_T_dofs; i++)
          {
            FT(i) -= tau_E*RE_t*this->_rho*this->_Cp*U*T_gradphi[i][qp]*JxW[qp];
          }

      }
  }
  libMesh::Real HeatTransferStabilizationHelper::compute_res_energy_steady( AssemblyContext& context,
                                                                            unsigned int qp,
                                                                            const libMesh::Real rho,
                                                                            const libMesh::Real Cp,
                                                                            const libMesh::Real k ) const
  {
    libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
    libMesh::Tensor hess_T = context.fixed_interior_hessian(this->_temp_vars.T(), qp);

    libMesh::RealGradient rhocpU( rho*Cp*context.fixed_interior_value(this->_flow_vars.u(), qp),
                                  rho*Cp*context.fixed_interior_value(this->_flow_vars.v(), qp) );
    if(this->_flow_vars.dim() == 3)
      rhocpU(2) = rho*Cp*context.fixed_interior_value(this->_flow_vars.w(), qp);

    return rhocpU*grad_T - k*(hess_T(0,0) + hess_T(1,1) + hess_T(2,2));
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_energy_mass_residual( bool /*compute_jacobian*/,
								     AssemblyContext& context )
  {
    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_T_var)->get_JxW();

    // The shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& T_phi = 
      context.get_element_fe(this->_T_var)->get_phi();
  
    // The number of local degrees of freedom in each variable
    const unsigned int n_T_dofs = context.get_dof_indices(this->_T_var).size();

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_T = context.get_elem_residual(this->_T_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	// For the mass residual, we need to be a little careful.
	// The time integrator is handling the time-discretization
	// for us so we need to supply M(u_fixed)*u for the residual.
	// u_fixed will be given by the fixed_interior_* functions
	// while u will be given by the interior_* functions.
	libMesh::Real T_dot = context.interior_value(this->_T_var, qp);

	libMesh::Real T = context.fixed_interior_value(this->_T_var, qp);

	libMesh::Real cp = this->_cp(T);

	libMesh::Number rho = this->rho(T, this->get_p0_transient(context, qp));
      
	for (unsigned int i = 0; i != n_T_dofs; ++i)
	  {
	    F_T(i) += rho*cp*T_dot*T_phi[i][qp]*JxW[qp];
	  } // End DoF loop i

      } // End quadrature loop qp

    return;
  }
  void LowMachNavierStokes<Mu,SH,TC>::assemble_momentum_mass_residual( bool /*compute_jacobian*/, 
								       AssemblyContext& context )
  {
    // Element Jacobian * quadrature weights for interior integration
    const std::vector<libMesh::Real> &JxW = 
      context.get_element_fe(this->_u_var)->get_JxW();

    // The shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::Real> >& u_phi = 
      context.get_element_fe(this->_u_var)->get_phi();
  
    // The number of local degrees of freedom in each variable
    const unsigned int n_u_dofs = context.get_dof_indices(this->_u_var).size();

    // for convenience
    if (this->_dim != 3)
      this->_w_var = this->_u_var;

    // The subvectors and submatrices we need to fill:
    libMesh::DenseSubVector<libMesh::Real> &F_u = context.get_elem_residual(this->_u_var);
    libMesh::DenseSubVector<libMesh::Real> &F_v = context.get_elem_residual(this->_v_var);
    libMesh::DenseSubVector<libMesh::Real> &F_w = context.get_elem_residual(this->_w_var);

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    for (unsigned int qp = 0; qp != n_qpoints; ++qp)
      {
	// For the mass residual, we need to be a little careful.
	// The time integrator is handling the time-discretization
	// for us so we need to supply M(u_fixed)*u for the residual.
	// u_fixed will be given by the fixed_interior_* functions
	// while u will be given by the interior_* functions.
	libMesh::Real u_dot = context.interior_value(this->_u_var, qp);
	libMesh::Real v_dot = context.interior_value(this->_v_var, qp);

	libMesh::Real w_dot = 0.0;
	if( this->_dim == 3 )
	  w_dot = context.interior_value(this->_w_var, qp);

	libMesh::Real T = context.fixed_interior_value(this->_T_var, qp);
      
	libMesh::Number rho = this->rho(T, this->get_p0_transient(context, qp));
      
	for (unsigned int i = 0; i != n_u_dofs; ++i)
	  {
	    F_u(i) += rho*u_dot*u_phi[i][qp]*JxW[qp];
	    F_v(i) += rho*v_dot*u_phi[i][qp]*JxW[qp];

	    if( this->_dim == 3 )
	      F_w(i) += rho*w_dot*u_phi[i][qp]*JxW[qp];
	  
	    /*
	      if( compute_jacobian )
	      {
	      for (unsigned int j=0; j != n_u_dofs; j++)
	      {
	      // Assuming rho is constant w.r.t. u, v, w
	      // and T (if Boussinesq added).
	      libMesh::Real value = JxW[qp]*_rho*u_phi[i][qp]*u_phi[j][qp];
		  
	      M_uu(i,j) += value;
	      M_vv(i,j) += value;
		  
	      if( _dim == 3)
	      {
	      M_ww(i,j) += value;
	      }
		  
	      } // End DoF loop j
	      } // End Jacobian check
	    */

	  } // End DoF loop i
      } // End quadrature loop qp

    return;
  }
  void SpalartAllmarasSPGSMStabilization<Mu>::mass_residual
  ( bool compute_jacobian, AssemblyContext & context )
  {
    // Get a pointer to the current element, we need this for computing the distance to wall for the
    // quadrature points
    libMesh::Elem &elem_pointer = context.get_elem();

    // The number of local degrees of freedom in each variable.
    const unsigned int n_nu_dofs = context.get_dof_indices(this->_turbulence_vars.nu()).size();

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
      context.get_element_fe(this->_turbulence_vars.nu())->get_JxW();

    // The pressure shape functions at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& nu_gradphi =
      context.get_element_fe(this->_turbulence_vars.nu())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &Fnu = context.get_elem_residual(this->_turbulence_vars.nu()); // R_{nu}

    libMesh::FEBase* fe = context.get_element_fe(this->_turbulence_vars.nu());

    unsigned int n_qpoints = context.get_element_qrule().n_points();

    // Auto pointer to distance fcn evaluated at quad points
    std::unique_ptr< libMesh::DenseVector<libMesh::Real> > distance_qp;

    // Fill the vector of distances to quadrature points
    distance_qp = this->distance_function->interpolate(&elem_pointer, context.get_element_qrule().get_points());

    for (unsigned int qp=0; qp != n_qpoints; qp++)
      {
        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
                                 context.fixed_interior_value( this->_flow_vars.v(), qp ) );
        // Compute the viscosity at this qp
        libMesh::Real _mu_qp = this->_mu(context, qp);

        if( this->_flow_vars.dim() == 3 )
          {
            U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
          }

        libMesh::Real tau_spalart = this->_stab_helper.compute_tau_spalart( context, qp, g, G, this->_rho, U, _mu_qp, this->_is_steady );

        libMesh::Real RM_spalart = this->_stab_helper.compute_res_spalart_transient( context, qp, this->_rho );

        for (unsigned int i=0; i != n_nu_dofs; i++)
          {
            Fnu(i) += -JxW[qp]*tau_spalart*RM_spalart*this->_rho*(U*nu_gradphi[i][qp]);
          }

        if( compute_jacobian )
          {
            libmesh_not_implemented();
          }

      }
  }
void LowMachNavierStokesSPGSMStabilization<Mu,SH,TC>::assemble_momentum_mass_residual( bool /*compute_jacobian*/,
        AssemblyContext& context )
{
    // The number of local degrees of freedom in each variable.
    const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();

    // Check number of dofs is same for _flow_vars.u(), v_var and w_var.
    libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.v()).size());
    if (this->mesh_dim(context) == 3)
        libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.w()).size());

    // Element Jacobian * quadrature weights for interior integration.
    const std::vector<libMesh::Real> &JxW =
        context.get_element_fe(this->_flow_vars.u())->get_JxW();

    // The velocity shape function gradients at interior quadrature points.
    const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi =
        context.get_element_fe(this->_flow_vars.u())->get_dphi();

    libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u}
    libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v}
    libMesh::DenseSubVector<libMesh::Real>* Fw = NULL;

    if( this->mesh_dim(context) == 3 )
    {
        Fw  = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
    }

    unsigned int n_qpoints = context.get_element_qrule().n_points();
    for (unsigned int qp=0; qp != n_qpoints; qp++)
    {
        libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
        libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );

        libMesh::Real mu = this->_mu(T);

        libMesh::RealGradient U( context.fixed_interior_value(this->_flow_vars.u(), qp),
                                 context.fixed_interior_value(this->_flow_vars.v(), qp) );

        libMesh::RealGradient grad_u = context.fixed_interior_gradient(this->_flow_vars.u(), qp);
        libMesh::RealGradient grad_v = context.fixed_interior_gradient(this->_flow_vars.v(), qp);
        libMesh::RealGradient grad_w;

        if( this->mesh_dim(context) == 3 )
        {
            U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp);
            grad_w = context.fixed_interior_gradient(this->_flow_vars.w(), qp);
        }

        libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());

        libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
        libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );

        libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, false );
        libMesh::Real tau_C = this->_stab_helper.compute_tau_continuity( tau_M, g );

        libMesh::Real RC_t = this->compute_res_continuity_transient( context, qp );
        libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
        libMesh::RealGradient RM_t = this->compute_res_momentum_transient( context, qp );

        for (unsigned int i=0; i != n_u_dofs; i++)
        {
            Fu(i) -= ( tau_C*RC_t*u_gradphi[i][qp](0)
                       + tau_M*RM_t(0)*rho*U*u_gradphi[i][qp] )*JxW[qp];

            Fv(i) -= ( tau_C*RC_t*u_gradphi[i][qp](1)
                       + tau_M*RM_t(1)*rho*U*u_gradphi[i][qp] )*JxW[qp];

            if( this->mesh_dim(context) == 3 )
            {
                (*Fw)(i) -= ( tau_C*RC_t*u_gradphi[i][qp](2)
                              + tau_M*RM_t(2)*rho*U*u_gradphi[i][qp] )*JxW[qp];
            }
        }

    }
    return;
}