示例#1
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = coupled robust");

  // Optional arguments (have defaults)
  int uniformRefinements = args.Input("--uniformRefinements", "number of uniform refinements", 0);
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation", false);
  double radius = args.Input("--r", "cylinder radius", 0.6);
  int Re = args.Input("--Re", "Reynolds number", 1);
  int maxNewtonIterations = args.Input("--maxIterations", "maximum number of Newton iterations", 1);
  int polyOrder = args.Input("--polyOrder", "polynomial order for field variables", 2);
  int deltaP = args.Input("--deltaP", "how much to enrich test space", 2);
  // string saveFile = args.Input<string>("--meshSaveFile", "file to which to save refinement history", "");
  // string replayFile = args.Input<string>("--meshLoadFile", "file with refinement history to replay", "");
  args.Process();

  ////////////////////   PROBLEM DEFINITIONS   ///////////////////////
  int H1Order = polyOrder+1;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau1 = varFactory.testVar("tau1", HDIV);
  VarPtr tau2 = varFactory.testVar("tau2", HDIV);
  VarPtr v1 = varFactory.testVar("v1", HGRAD);
  VarPtr v2 = varFactory.testVar("v2", HGRAD);
  VarPtr vc = varFactory.testVar("vc", HGRAD);

  // define trial variables
  VarPtr u1 = varFactory.fieldVar("u1");
  VarPtr u2 = varFactory.fieldVar("u2");
  VarPtr p = varFactory.fieldVar("p");
  VarPtr u1hat = varFactory.traceVar("u1hat");
  VarPtr u2hat = varFactory.traceVar("u2hat");
  VarPtr t1hat = varFactory.fluxVar("t1hat");
  VarPtr t2hat = varFactory.fluxVar("t2hat");
  VarPtr sigma1 = varFactory.fieldVar("sigma1", VECTOR_L2);
  VarPtr sigma2 = varFactory.fieldVar("sigma2", VECTOR_L2);

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshFactory::shiftedHemkerMesh(-1, 3, 2, radius, bf, H1Order, deltaP);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u1_prev = Function::solution(u1, backgroundFlow);
  FunctionPtr u2_prev = Function::solution(u2, backgroundFlow);
  FunctionPtr sigma1_prev = Function::solution(sigma1, backgroundFlow);
  FunctionPtr sigma2_prev = Function::solution(sigma2, backgroundFlow);

  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  FunctionPtr beta = e1 * u1_prev + e2 * u2_prev;

  // ==================== SET INITIAL GUESS ==========================
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u1->ID()] = one;
  functionMap[u2->ID()] = zero;
  functionMap[sigma1->ID()] = Function::vectorize(zero,zero);
  functionMap[sigma2->ID()] = Function::vectorize(zero,zero);
  functionMap[p->ID()] = zero;

  backgroundFlow->projectOntoMesh(functionMap);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  // // stress equation
  bf->addTerm( sigma1, tau1 );
  bf->addTerm( sigma2, tau2 );
  bf->addTerm( u1, tau1->div() );
  bf->addTerm( u2, tau2->div() );
  bf->addTerm( -u1hat, tau1->dot_normal() );
  bf->addTerm( -u2hat, tau2->dot_normal() );

  // momentum equation
  // bf->addTerm( Function::xPart(sigma1_prev)*u1, v1 );
  // bf->addTerm( Function::yPart(sigma1_prev)*u2, v1 );
  // bf->addTerm( Function::xPart(sigma2_prev)*u1, v2 );
  // bf->addTerm( Function::yPart(sigma2_prev)*u2, v2 );
  // bf->addTerm( beta*sigma1, v1);
  // bf->addTerm( beta*sigma2, v2);
  bf->addTerm( 1./Re*sigma1, v1->grad() );
  bf->addTerm( 1./Re*sigma2, v2->grad() );
  bf->addTerm( t1hat, v1);
  bf->addTerm( t2hat, v2);
  bf->addTerm( -p, v1->dx() );
  bf->addTerm( -p, v2->dy() );

  // continuity equation
  bf->addTerm( -u1, vc->dx() );
  bf->addTerm( -u2, vc->dy() );
  bf->addTerm( u1hat, vc->times_normal_x() );
  bf->addTerm( u2hat, vc->times_normal_y() );

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );

  // stress equation
  rhs->addTerm( -sigma1_prev * tau1 );
  rhs->addTerm( -sigma2_prev * tau2 );
  rhs->addTerm( -u1_prev * tau1->div() );
  rhs->addTerm( -u2_prev * tau2->div() );

  // momentum equation
  // rhs->addTerm( -beta*sigma1_prev * v1 );
  // rhs->addTerm( -beta*sigma2_prev * v2 );
  rhs->addTerm( -1./Re*sigma1_prev * v1->grad() );
  rhs->addTerm( -1./Re*sigma2_prev * v2->grad() );

  // continuity equation
  rhs->addTerm( u1_prev * vc->dx() );
  rhs->addTerm( u2_prev * vc->dy() );

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
  }
  else if (norm == 1)
  {
    // ip = bf->l2Norm();
  }

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr left = Teuchos::rcp( new ConstantXBoundary(-1) );
  SpatialFilterPtr right = Teuchos::rcp( new ConstantXBoundary(3) );
  SpatialFilterPtr top = Teuchos::rcp( new ConstantYBoundary(1) );
  SpatialFilterPtr bottom = Teuchos::rcp( new ConstantYBoundary(-1) );
  SpatialFilterPtr circle = Teuchos::rcp( new CircleBoundary(radius) );
  FunctionPtr boundaryU1 = Teuchos::rcp( new BoundaryU1 );
  bc->addDirichlet(u1hat, left, boundaryU1);
  bc->addDirichlet(u2hat, left, zero);
  bc->addDirichlet(u1hat, right, boundaryU1);
  bc->addDirichlet(u2hat, right, zero);
  bc->addDirichlet(u1hat, top, zero);
  bc->addDirichlet(u2hat, top, zero);
  bc->addDirichlet(u1hat, bottom, zero);
  bc->addDirichlet(u2hat, bottom, zero);
  bc->addDirichlet(u1hat, circle, zero);
  bc->addDirichlet(u2hat, circle, zero);

  // zero mean constraint on pressure
  bc->addZeroMeanConstraint(p);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );

  if (enforceLocalConservation)
  {
    solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y() == zero);
  }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(backgroundFlow);

  // Teuchos::RCP< RefinementHistory > refHistory = Teuchos::rcp( new RefinementHistory );
  // mesh->registerObserver(refHistory);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(backgroundFlow, mesh, varFactory);
  ofstream errOut;
  ofstream fluxOut;
  if (commRank == 0)
  {
    errOut.open("stokeshemker_err.txt");
    fluxOut.open("stokeshemker_flux.txt");
  }
  errOut.precision(15);
  fluxOut.precision(15);

  // Cell IDs for flux calculations
  vector< pair<ElementPtr, int> > cellFace0;
  vector< pair<ElementPtr, int> > cellFace1;
  vector< pair<ElementPtr, int> > cellFace2;
  vector< pair<ElementPtr, int> > cellFace3;
  vector< pair<ElementPtr, int> > cellFace4;
  cellFace0.push_back(make_pair(mesh->getElement(12), 3));
  cellFace0.push_back(make_pair(mesh->getElement(13), 3));
  cellFace0.push_back(make_pair(mesh->getElement(14), 3));
  cellFace0.push_back(make_pair(mesh->getElement(15), 3));
  cellFace1.push_back(make_pair(mesh->getElement(12), 1));
  cellFace1.push_back(make_pair(mesh->getElement(13), 1));
  cellFace1.push_back(make_pair(mesh->getElement(14), 1));
  cellFace1.push_back(make_pair(mesh->getElement(15), 1));
  cellFace2.push_back(make_pair(mesh->getElement(11), 1));
  cellFace2.push_back(make_pair(mesh->getElement(2 ), 0));
  cellFace2.push_back(make_pair(mesh->getElement(5 ), 2));
  cellFace2.push_back(make_pair(mesh->getElement(16), 1));
  cellFace3.push_back(make_pair(mesh->getElement(9 ), 3));
  cellFace3.push_back(make_pair(mesh->getElement(8 ), 3));
  cellFace3.push_back(make_pair(mesh->getElement(19), 3));
  cellFace3.push_back(make_pair(mesh->getElement(18), 3));
  cellFace4.push_back(make_pair(mesh->getElement(9 ), 1));
  cellFace4.push_back(make_pair(mesh->getElement(8 ), 1));
  cellFace4.push_back(make_pair(mesh->getElement(19), 1));
  cellFace4.push_back(make_pair(mesh->getElement(18), 1));

  // // for loading refinement history
  // if (replayFile.length() > 0) {
  //   RefinementHistory refHistory;
  //   replayFile = replayFile;
  //   refHistory.loadFromFile(replayFile);
  //   refHistory.playback(mesh);
  //   int numElems = mesh->numActiveElements();
  //   if (commRank==0){
  //     double minSideLength = meshInfo.getMinCellSideLength() ;
  //     cout << "after replay, num elems = " << numElems << " and min side length = " << minSideLength << endl;
  //   }
  // }

  for (int i = 0; i < uniformRefinements; i++)
    refinementStrategy.hRefineUniformly(mesh);

  double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e10;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve(false);
      double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID());
      double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID());
      L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update);
      double energy_error = solution->energyErrorTotal();

      // Check local conservation
      if (commRank == 0)
      {
        FunctionPtr n = Function::normal();
        FunctionPtr u1_prev = Function::solution(u1hat, solution);
        FunctionPtr u2_prev = Function::solution(u2hat, solution);
        FunctionPtr flux = u1_prev*n->x() + u2_prev*n->y();
        Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, mesh);
        // cout << "Mass flux: Largest Local = " << fluxImbalances[0]
        //   << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

        errOut << mesh->numGlobalDofs() << " " << energy_error << " "
               << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;

        double massFlux0 = computeFluxOverElementSides(u1_prev, mesh, cellFace0);
        double massFlux1 = computeFluxOverElementSides(u1_prev, mesh, cellFace1);
        double massFlux2 = computeFluxOverElementSides(u1_prev, mesh, cellFace2);
        double massFlux3 = computeFluxOverElementSides(u1_prev, mesh, cellFace3);
        double massFlux4 = computeFluxOverElementSides(u1_prev, mesh, cellFace4);
        fluxOut << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl;
        cout << "Total mass flux = " << massFlux0 << " " << massFlux1 << " " << massFlux2 << " " << massFlux3 << " " << massFlux4 << " " << endl;

        // if (saveFile.length() > 0) {
        //   std::ostringstream oss;
        //   oss << string(saveFile) << refIndex ;
        //   cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl;
        //   refHistory->saveToFile(oss.str());
        // }
      }

      // line search algorithm
      double alpha = 1.0;
      // bool useLineSearch = false;
      // int posEnrich = 5; // amount of enriching of grid points on which to ensure positivity
      // if (useLineSearch){ // to enforce positivity of density rho
      //   double lineSearchFactor = .5; double eps = .001; // arbitrary
      //   FunctionPtr rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution) - Function::constant(eps);
      //   FunctionPtr eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution) - Function::constant(eps);
      //   bool rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich);
      //   bool eIsPositive = eTemp->isPositive(mesh,posEnrich);
      //   int iter = 0; int maxIter = 20;
      //   while (!(rhoIsPositive && eIsPositive) && iter < maxIter){
      //     alpha = alpha*lineSearchFactor;
      //     rhoTemp = Function::solution(rho,backgroundFlow) + alpha*Function::solution(rho,solution);
      //     eTemp = Function::solution(e,backgroundFlow) + alpha*Function::solution(e,solution);
      //     rhoIsPositive = rhoTemp->isPositive(mesh,posEnrich);
      //     eIsPositive = eTemp->isPositive(mesh,posEnrich);
      //     iter++;
      //   }
      //   if (commRank==0 && alpha < 1.0){
      //     cout << "line search factor alpha = " << alpha << endl;
      //   }
      // }

      backgroundFlow->addSolution(solution, alpha, false, true);
      iterCount++;
      // if (commRank == 0)
      //   cout << "L2 Norm of Update = " << L2Update << endl;
    }
    if (commRank == 0)
      cout << endl;

    if (commRank == 0)
    {
      stringstream outfile;
      outfile << "stokeshemker" << uniformRefinements << "_" << refIndex;
      exporter.exportSolution(outfile.str());
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
  {
    errOut.close();
    fluxOut.close();
  }

  return 0;
}
示例#2
0
int main(int argc, char *argv[]) {
 
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int rank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();
  
  int nCells = args.Input<int>("--nCells", "num cells",2);  
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0);
  int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0);
  int order = args.Input<int>("--order","order of approximation",2);
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5);
  double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0);
  double ipSwitch = args.Input<double>("--ipSwitch","point at which to switch to graph norm", 0.0); // default to 0 to remain on robust norm
  bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false);

  int H1Order = order+1; 
  int pToAdd = args.Input<int>("--pToAdd","test space enrichment", 2);

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  vector<double> e1,e2;
  e1.push_back(1.0);e1.push_back(0.0);
  e2.push_back(0.0);e2.push_back(1.0);

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  // first order term with magnitude alpha
  double alpha = 0.0;
  //  confusionBF->addTerm(alpha * u, v);

  ////////////////////   BUILD MESH   ///////////////////////


  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));  
  MeshInfo meshInfo(mesh); // gets info like cell measure, etc

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);

  /*
   // robust test norm
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );  
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh));
  ip->addTerm(hSwitch*sqrt(eps) * v->grad() );
  ip->addTerm(hSwitch*beta * v->grad() );
  ip->addTerm(hSwitch*tau->div() );
  
  // graph norm
  ip->addTerm( (one-hSwitch)*((1.0/eps) * tau + v->grad()));
  ip->addTerm( (one-hSwitch)*(beta * v->grad() - tau->div()));

  // regularizing terms
  ip->addTerm(C_h/sqrt(eps) * tau );    
  ip->addTerm(invSqrtH*v);
  */

   // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );  
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh));
  robIP->addTerm(sqrt(eps) * v->grad() );
  robIP->addTerm(beta * v->grad() );
  robIP->addTerm(tau->div() );
  // regularizing terms
  robIP->addTerm(C_h/sqrt(eps) * tau );    
  robIP->addTerm(invSqrtH*v);

  IPPtr graphIP = confusionBF->graphNorm();
  graphIP->addTerm(invSqrtH*v);
  //  graphIP->addTerm(C_h/sqrt(eps) * tau );    
  IPPtr switchIP = Teuchos::rcp(new IPSwitcher(robIP,graphIP,ipSwitch)); // rob IP for h>ipSwitch mesh size, graph norm o/w
  ip = switchIP;
    
  LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm);
  LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm);
  vVecLT->addTerm(sqrt(eps)*v->grad());
  tauVecLT->addTerm(C_h/sqrt(eps)*tau);

  LinearTermPtr restLT = Teuchos::rcp(new LinearTerm);
  restLT->addTerm(alpha*v);
  restLT->addTerm(invSqrtH*v);
  restLT = restLT + beta * v->grad();
  restLT = restLT + tau->div();

  ////////////////////   SPECIFY RHS   ///////////////////////

  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  //  f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );

  SpatialFilterPtr Inflow = Teuchos::rcp(new LeftInflow);
  SpatialFilterPtr wallBoundary = Teuchos::rcp(new WallBoundary);//MeshUtilities::rampBoundary(rampHeight);
  SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary);

  bc->addDirichlet(uhat, wallBoundary, one);
  //  bc->addDirichlet(uhat, wallBoundary, Teuchos::rcp(new WallSmoothBC(eps)));
  bc->addDirichlet(beta_n_u_minus_sigma_n, Inflow, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );  
  mesh->registerSolution(backgroundFlow); // to trigger issue with p-refinements
  map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = Function::constant(3.14);
  backgroundFlow->projectOntoMesh(functionMap);

  // lower p to p = 1 at SINGULARITY only
  vector<int> ids;
  /*
  for (int i = 0;i<mesh->numActiveElements();i++){
    bool cellIDset = false;
    int cellID = mesh->activeElements()[i]->cellID();
    int elemOrder = mesh->cellPolyOrder(cellID)-1;
    FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID);
    bool vertexOnWall = false; bool vertexAtSingularity = false;
    for (int j = 0;j<4;j++){
      if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10){
	vertexAtSingularity = true;     
	cellIDset = true;
      }
    }	
    if (!vertexAtSingularity && elemOrder<2 && !cellIDset ){
      ids.push_back(cellID);
      cout << "celliD = " << cellID << endl;
    }
  }
  */
  ids.push_back(1);
  ids.push_back(3);
  mesh->pRefine(ids); // to put order = 1

  return 0;
  
  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));  
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual));
  FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual));
  map<int,FunctionPtr> errRepMap;
  errRepMap[v->ID()] = e_v;
  errRepMap[tau->ID()] = e_tau;
  FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false);
  FunctionPtr errV = vVecLT->evaluate(errRepMap,false);
  FunctionPtr errRest = restLT->evaluate(errRepMap,false);
  FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx());
  FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy());
  FunctionPtr restErr = errRest*errRest;

  RefinementStrategy refinementStrategy( solution, energyThreshold );    

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                     PRE REFINEMENTS 
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////  

  if (rank==0){
    cout << "Number of pre-refinements = " << numPreRefs << endl;
  }
  for (int i =0;i<=numPreRefs;i++){   
    vector<ElementPtr> elems = mesh->activeElements();
    vector<ElementPtr>::iterator elemIt;
    vector<int> wallCells;    
    for (elemIt=elems.begin();elemIt != elems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      int numSides = mesh->getElement(cellID)->numSides();
      FieldContainer<double> vertices(numSides,2); //for quads

      mesh->verticesForCell(vertices, cellID);
      bool cellIDset = false;	
      for (int j = 0;j<numSides;j++){ 	
	if ((abs(vertices(j,0)-.5)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset){ // if at singularity, i.e. if a vertex is (1,0)
	  wallCells.push_back(cellID);
	  cellIDset = true;
	}
      }
    }
    if (i<numPreRefs){
      refinementStrategy.refineCells(wallCells);
    }
  }

  double minSideLength = meshInfo.getMinCellSideLength() ;
  double minCellMeasure = meshInfo.getMinCellMeasure() ;
  if (rank==0){
    cout << "after prerefs, sqrt min cell measure = " << sqrt(minCellMeasure) << ", min side length = " << minSideLength << endl;
  }

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0;refIndex<numRefs;refIndex++){
    if (rank==0){
      cout << "on ref index " << refIndex << endl;
    }    
    rieszResidual->computeRieszRep(); // in preparation to get anisotropy    

    vector<int> cellIDs;
    refinementStrategy.getCellsAboveErrorThreshhold(cellIDs);

    map<int,double> energyError = solution->energyError();  

    map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true);    
    for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin();elemIt!=mesh->activeElements().end();elemIt++){
      int cellID = (*elemIt)->cellID();
      double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID];
      //      if (rank==0)
	//      cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl;
    }

    /*
    map<int,double> ratio,xErr,yErr;
    vector<ElementPtr> elems = mesh->activeElements();
    for (vector<ElementPtr>::iterator elemIt = elems.begin();elemIt!=elems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      ratio[cellID] = 0.0;
      xErr[cellID] = 0.0;
      yErr[cellID] = 0.0;
      if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()){ // if this cell is above energy thresh
	ratio[cellID] = yErrMap[cellID]/xErrMap[cellID];
	xErr[cellID] = xErrMap[cellID];
	yErr[cellID] = yErrMap[cellID];
      }
    }   
    FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio));
    FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr));
    FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr));
    exporter.exportFunction(ratioFxn, string("ratio")+oss.str());
    exporter.exportFunction(xErrFxn, string("xErr")+oss.str());
    exporter.exportFunction(yErrFxn, string("yErr")+oss.str());
    */
    if (useAnisotropy){
      refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements
    }else{
      refinementStrategy.refine(rank==0); // no anisotropy
    }

    // lower p to p = 1 at SINGULARITY only
    vector<int> ids;
    for (int i = 0;i<mesh->numActiveElements();i++){
      int cellID = mesh->activeElements()[i]->cellID();
      int elemOrder = mesh->cellPolyOrder(cellID)-1;
      FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID);
      bool vertexOnWall = false; bool vertexAtSingularity = false;
      for (int j = 0;j<4;j++){
	if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10)
	  vertexAtSingularity = true;
      }	
      if (!vertexAtSingularity && elemOrder<2){
	ids.push_back(cellID);
      }
    }
    mesh->pRefine(ids); // to put order = 1
    /*
      if (elemOrder>1){
	if (vertexAtSingularity){
	  vector<int> ids;
	  ids.push_back(cellID);
	  mesh->pRefine(ids,1-(elemOrder-1)); // to put order = 1
	  //	  mesh->pRefine(ids); // to put order = 1
	  if (rank==0)
	    cout << "p unrefining elem with elemOrder = " << elemOrder << endl;
	}
      }else{
	if (!vertexAtSingularity){
	  vector<int> ids;
	  ids.push_back(cellID);	    
	  mesh->pRefine(ids,2-elemOrder);
	}	  
      }
      */



    double minSideLength = meshInfo.getMinCellSideLength() ;
    if (rank==0)
      cout << "minSideLength is " << minSideLength << endl;

    solution->condensedSolve();
    std::ostringstream oss;
    oss << refIndex;
    
  }

  // final solve on final mesh
  solution->setWriteMatrixToFile(true,"K.mat");
  solution->condensedSolve();

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                                          CHECK CONDITIONING 
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////

  bool checkConditioning = true;
  if (checkConditioning){
    double minSideLength = meshInfo.getMinCellSideLength() ;
    StandardAssembler assembler(solution);
    double maxCond = 0.0;
    int maxCellID = 0;
    for (int i = 0;i<mesh->numActiveElements();i++){
      int cellID = mesh->getActiveElement(i)->cellID();
      FieldContainer<double> ipMat = assembler.getIPMatrix(mesh->getElement(cellID));
      double cond = SerialDenseWrapper::getMatrixConditionNumber(ipMat);
      if (cond>maxCond){
	maxCond = cond;
	maxCellID = cellID;
      }
    }
    if (rank==0){
      cout << "cell ID  " << maxCellID << " has minCellLength " << minSideLength << " and condition estimate " << maxCond << endl;
    }
    string ipMatName = string("ipMat.mat");
    ElementPtr maxCondElem = mesh->getElement(maxCellID);
    FieldContainer<double> ipMat = assembler.getIPMatrix(maxCondElem);
    SerialDenseWrapper::writeMatrixToMatlabFile(ipMatName,ipMat);   
  }
  ////////////////////   print to file   ///////////////////////
  
  if (rank==0){
    exporter.exportSolution(string("robustIP"));
    cout << endl;
  }
 
  return 0;
} 
示例#3
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  halfwidth = args.Input("--halfwidth", "half the width of the wedge", 0.5);
  bool allQuads = args.Input("--allQuads", "use only quads in mesh", false);
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", enforceLocalConservation);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());
  
  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  // Graph norm
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); 
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); 
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); 
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  SpatialFilterPtr inflow = Teuchos::rcp( new Inflow );
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflow, zero);

  SpatialFilterPtr leadingWedge = Teuchos::rcp( new LeadingWedge );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  bc->addDirichlet(uhat, leadingWedge, one);

  SpatialFilterPtr trailingWedge = Teuchos::rcp( new TrailingWedge );
  bc->addDirichlet(beta_n_u_minus_sigma_n, trailingWedge, beta*n*one);
  // bc->addDirichlet(uhat, trailingWedge, one);

  SpatialFilterPtr top = Teuchos::rcp( new Top );
  bc->addDirichlet(uhat, top, zero);
  // bc->addDirichlet(beta_n_u_minus_sigma_n, top, zero);

  SpatialFilterPtr outflow = Teuchos::rcp( new Outflow );
  pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, outflow);
  
  ////////////////////   BUILD MESH   ///////////////////////
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  vector< FieldContainer<double> > vertices;
  FieldContainer<double> pt(2);
  vector< vector<int> > elementIndices;
  vector<int> q(4);
  vector<int> t(3);

  if (allQuads)
  {
    pt(0) = -halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);

    q[0] = 0; q[1] = 1; q[2] = 4; q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 1; q[1] = 2; q[2] = 3; q[3] = 4;
    elementIndices.push_back(q);
  }
  else
  {
    pt(0) = -halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;         pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth; pt(1) =  0;
    vertices.push_back(pt);

    t[0] = 0; t[1] = 1; t[2] = 7;
    elementIndices.push_back(t);
    t[0] = 1; t[1] = 2; t[2] = 3;
    elementIndices.push_back(t);
    q[0] = 1; q[1] = 3; q[2] = 4; q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 7; q[1] = 1; q[2] = 5; q[3] = 6;
    elementIndices.push_back(q);
  }

  Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh(vertices, elementIndices, bf, H1Order, pToAdd) );  
  
  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }
  
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);
  ofstream errOut;
  if (commRank == 0)
    errOut.open("singularwedge_err.txt");
  
  for (int refIndex=0; refIndex<=numRefs; refIndex++){    
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0){
      stringstream outfile;
      outfile << "singularwedge_" << refIndex;
      exporter.exportSolution(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0] 
        << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
        << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();
  
  return 0;
}
示例#4
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", false);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }

  // // robust test norm
  // IPPtr robIP = Teuchos::rcp(new IP);
  // FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
  // if (!enforceLocalConservation)
  //   robIP->addTerm( ip_scaling * v );
  // robIP->addTerm( sqrt(epsilon) * v->grad() );
  // // Weight these two terms for inflow
  // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
  // robIP->addTerm( ip_weight * beta * v->grad() );
  // robIP->addTerm( ip_weight * tau->div() );
  // robIP->addTerm( ip_scaling/sqrt(epsilon) * tau );
  // if (enforceLocalConservation)
  //   robIP->addZeroMeanTerm( v );

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );

  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  // SpatialFilterPtr leftCircleBoundary = Teuchos::rcp( new LeftCircleBoundary );
  // SpatialFilterPtr rightCircleBoundary = Teuchos::rcp( new RightCircleBoundary );
  SpatialFilterPtr circleBoundary = Teuchos::rcp( new CircleBoundary );

  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, zero);
  pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == zero, rBoundary);
  // bc->addDirichlet(uhat, leftCircleBoundary, one);
  // bc->addDirichlet(beta_n_u_minus_sigma_n, rightCircleBoundary, beta*n*one);
  bc->addDirichlet(uhat, circleBoundary, one);


  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 3, pToAdd = 2;
  Teuchos::RCP<Mesh> mesh;
  mesh = MeshFactory::shiftedHemkerMesh(-3, 9, 6, 1, bf, H1Order, pToAdd);
  // mesh = BuildHemkerMesh(bf, nseg, circleMesh, triangulateMesh, H1Order, pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.25; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  Teuchos::RCP<RefinementHistory> refHistory = Teuchos::rcp( new RefinementHistory );
  mesh->registerObserver(refHistory);
#ifdef saveVTK
  VTKExporter exporter(solution, mesh, varFactory);
#endif
  ofstream errOut;
  if (commRank == 0)
    errOut.open("hemker_err.txt");

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0)
    {
      stringstream outfile;
      outfile << "hemker_" << refIndex;
#ifdef saveVTK
      exporter.exportSolution(outfile.str());
#endif

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
             << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();

  return 0;
}
int main(int argc, char *argv[])
{
#ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS
  cout << "NOTE: enabling floating point exceptions for divide by zero.\n";
  _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
  int rank = Teuchos::GlobalMPISession::getRank();

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  const static double PI  = 3.141592653589793238462;

  bool useCondensedSolve = true; // condensed solve not yet compatible with minimum rule meshes

  int k = 2; // poly order for u in every direction, including temporal
  int numCells = 32; // in x, y
  int numTimeCells = 1;
  int numTimeSlabs = -1;
  int numFrames = 201;
  int delta_k = 3;   // test space enrichment: should be 3 for 3D
  int maxRefinements = 0; // maximum # of refinements on each time slab
  bool useMumpsIfAvailable  = true;
  bool useConstantConvection = false;
  double refinementTolerance = 0.1;

  int checkPointFrequency = 50; // output solution and mesh every 50 time slabs

  int previousSolutionTimeSlabNumber = -1;
  string previousSolutionFile = "";
  string previousMeshFile = "";

  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");

  cmdp.setOption("numCells",&numCells,"number of cells in x and y directions");
  cmdp.setOption("numTimeCells",&numTimeCells,"number of time axis cells");
  cmdp.setOption("numTimeSlabs",&numTimeSlabs,"number of time slabs");
  cmdp.setOption("numFrames",&numFrames,"number of frames for export");

  cmdp.setOption("useConstantConvection", "useVariableConvection", &useConstantConvection);

  cmdp.setOption("useCondensedSolve", "useUncondensedSolve", &useCondensedSolve, "use static condensation to reduce the size of the global solve");
  cmdp.setOption("useMumps", "useKLU", &useMumpsIfAvailable, "use MUMPS (if available)");

  cmdp.setOption("refinementTolerance", &refinementTolerance, "relative error beyond which to stop refining");
  cmdp.setOption("maxRefinements", &maxRefinements, "maximum # of refinements on each time slab");

  cmdp.setOption("previousSlabNumber", &previousSolutionTimeSlabNumber, "time slab number of previous solution");
  cmdp.setOption("previousSolution", &previousSolutionFile, "file with previous solution");
  cmdp.setOption("previousMesh", &previousMeshFile, "file with previous mesh");

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  int H1Order = k + 1;

  VarFactory varFactory;
  // traces:
  VarPtr qHat = varFactory.fluxVar("\\widehat{q}");

  // fields:
  VarPtr u = varFactory.fieldVar("u", L2);

  // test functions:
  VarPtr v = varFactory.testVar("v", HGRAD);

  FunctionPtr x = Function::xn(1);
  FunctionPtr y = Function::yn(1);

  FunctionPtr c;
  if (useConstantConvection)
  {
    c = Function::vectorize(Function::constant(0.5), Function::constant(0.5), Function::constant(1.0));
  }
  else
  {
    c = Function::vectorize(y-0.5, 0.5-x, Function::constant(1.0));
  }
  FunctionPtr n = Function::normal();

  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  bf->addTerm( u, c * v->grad());
  bf->addTerm(qHat, v);

  double width = 2.0, height = 2.0;
  int horizontalCells = numCells, verticalCells = numCells;
  int depthCells = numTimeCells;
  double x0 = -0.5;
  double y0 = -0.5;
  double t0 = 0;

  double totalTime = 2.0 * PI;

  vector<double> frameTimes;
  for (int i=0; i<numFrames; i++)
  {
    frameTimes.push_back((totalTime*i) / (numFrames-1));
  }

  if (numTimeSlabs==-1)
  {
    // want the number of grid points in temporal direction to be about 2000.  The temporal length is 2 * PI
    numTimeSlabs = (int) 2000 / k;
  }
  double timeLengthPerSlab = totalTime / numTimeSlabs;

  if (rank==0)
  {
    cout << "solving on " << numCells << " x " << numCells << " x " << numTimeCells << " mesh " << "of order " << k << ".\n";
    cout << "numTimeSlabs: " << numTimeSlabs << endl;
  }

  SpatialFilterPtr inflowFilter  = Teuchos::rcp( new InflowFilterForClockwisePlanarRotation (x0,x0+width,y0,y0+height,0.5,0.5));

  vector<double> dimensions;
  dimensions.push_back(width);
  dimensions.push_back(height);
  dimensions.push_back(timeLengthPerSlab);

  vector<int> elementCounts(3);
  elementCounts[0] = horizontalCells;
  elementCounts[1] = verticalCells;
  elementCounts[2] = depthCells;

  vector<double> origin(3);
  origin[0] = x0;
  origin[1] = y0;
  origin[2] = t0;

  Teuchos::RCP<Solver> solver = Teuchos::rcp( new KluSolver );

#ifdef HAVE_AMESOS_MUMPS
  if (useMumpsIfAvailable) solver = Teuchos::rcp( new MumpsSolver );
#endif

//  double errorPercentage = 0.5; // for mesh refinements: ask to refine elements that account for 80% of the error in each step
//  Teuchos::RCP<RefinementStrategy> refinementStrategy;
//  refinementStrategy = Teuchos::rcp( new ErrorPercentageRefinementStrategy( soln, errorPercentage ));

  if (maxRefinements != 0)
  {
    cout << "Warning: maxRefinements is not 0, but the slice exporter implicitly assumes there won't be any refinements.\n";
  }

  MeshPtr mesh;

  MeshPtr prevMesh;
  SolutionPtr prevSoln;

  mesh = MeshFactory::rectilinearMesh(bf, dimensions, elementCounts, H1Order, delta_k, origin);

  if (rank==0) cout << "Initial mesh has " << mesh->getTopology()->activeCellCount() << " active (leaf) cells " << "and " << mesh->globalDofCount() << " degrees of freedom.\n";

  FunctionPtr sideParity = Function::sideParity();

  int lastFrameOutputted = -1;

  SolutionPtr soln;

  IPPtr ip;
  ip = bf->graphNorm();

  FunctionPtr u0 = Teuchos::rcp( new Cone_U0(0.0, 0.25, 0.1, 1.0, false) );

  BCPtr bc = BC::bc();
  bc->addDirichlet(qHat, inflowFilter, Function::zero()); // zero BCs enforced at the inflow boundary.
  bc->addDirichlet(qHat, SpatialFilter::matchingZ(t0), u0);

  MeshPtr initialMesh = mesh;

  int startingSlabNumber;
  if (previousSolutionTimeSlabNumber != -1)
  {
    startingSlabNumber = previousSolutionTimeSlabNumber + 1;

    if (rank==0) cout << "Loading mesh from " << previousMeshFile << endl;

    prevMesh = MeshFactory::loadFromHDF5(bf, previousMeshFile);
    prevSoln = Solution::solution(mesh, bc, RHS::rhs(), ip); // include BC and IP objects for sake of condensed dof interpreter setup...
    prevSoln->setUseCondensedSolve(useCondensedSolve);

    if (rank==0) cout << "Loading solution from " << previousSolutionFile << endl;
    prevSoln->loadFromHDF5(previousSolutionFile);

    double tn = (previousSolutionTimeSlabNumber+1) * timeLengthPerSlab;
    origin[2] = tn;
    mesh = MeshFactory::rectilinearMesh(bf, dimensions, elementCounts, H1Order, delta_k, origin);

    FunctionPtr q_prev = Function::solution(qHat, prevSoln);
    FunctionPtr q_transfer = Teuchos::rcp( new MeshTransferFunction(-q_prev, prevMesh, mesh, tn) ); // negate because the normals go in opposite directions

    bc = BC::bc();
    bc->addDirichlet(qHat, inflowFilter, Function::zero()); // zero BCs enforced at the inflow boundary.
    bc->addDirichlet(qHat, SpatialFilter::matchingZ(tn), q_transfer);

    double t_slab_final = (previousSolutionTimeSlabNumber+1) * timeLengthPerSlab;
    int frameOrdinal = 0;

    while (frameTimes[frameOrdinal] < t_slab_final)
    {
      lastFrameOutputted = frameOrdinal++;
    }
  }
  else
  {
    startingSlabNumber = 0;
  }


#ifdef HAVE_EPETRAEXT_HDF5
  ostringstream dir_name;
  dir_name << "spacetime_slice_convectingCone_k" << k << "_startSlab" << startingSlabNumber;
  map<GlobalIndexType,GlobalIndexType> cellMap;
  MeshPtr meshSlice = MeshTools::timeSliceMesh(initialMesh, 0, cellMap, H1Order);
  HDF5Exporter sliceExporter(meshSlice,dir_name.str());
#endif

  soln = Solution::solution(mesh, bc, RHS::rhs(), ip);
  soln->setUseCondensedSolve(useCondensedSolve);

  for(int timeSlab = startingSlabNumber; timeSlab<numTimeSlabs; timeSlab++)
  {
    double energyThreshold = 0.2; // for mesh refinements: ask to refine elements that account for 80% of the error in each step
    Teuchos::RCP<RefinementStrategy> refinementStrategy;
    refinementStrategy = Teuchos::rcp( new RefinementStrategy( soln, energyThreshold ));

    FunctionPtr u_spacetime = Function::solution(u, soln);

    double relativeEnergyError;
    int refNumber = 0;

//    {
//      // DEBUGGING: just to try running the time slicing:
//      double t_slab_final = (timeStep+1) * timeLengthPerSlab;
//      int frameOrdinal = lastFrameOutputted + 1;
//      while (frameTimes[frameOrdinal] < t_slab_final) {
//        FunctionPtr u_spacetime = Function::solution(u, soln);
//        ostringstream dir_name;
//        dir_name << "spacetime_slice_convectingCone_k" << k;
//        MeshTools::timeSliceExport(dir_name.str(), mesh, u_spacetime, frameTimes[frameOrdinal], "u_slice");
//
//        cout << "Exported frame " << frameOrdinal << ", t=" << frameTimes[frameOrdinal] << endl;
//        frameOrdinal++;
//      }
//    }

    do
    {
      soln->solve(solver);
      soln->reportTimings();

#ifdef HAVE_EPETRAEXT_HDF5
      ostringstream dir_name;
      dir_name << "spacetime_convectingCone_k" << k << "_t" << timeSlab;
      HDF5Exporter exporter(soln->mesh(),dir_name.str());
      exporter.exportSolution(soln, varFactory);

      if (rank==0) cout << "Exported HDF solution for time slab to directory " << dir_name.str() << endl;
//      string u_name = "u_spacetime";
//      exporter.exportFunction(u_spacetime, u_name);

      ostringstream file_name;
      file_name << dir_name.str();

      bool saveSolutionAndMeshForThisSlab = ((timeSlab + 1) % checkPointFrequency == 0); // +1 so that first output is nth, not first
      if (saveSolutionAndMeshForThisSlab)
      {
        dir_name << ".soln";
        soln->saveToHDF5(dir_name.str());
        if (rank==0) cout << endl << "wrote " << dir_name.str() << endl;

        file_name << ".mesh";
        soln->mesh()->saveToHDF5(file_name.str());
      }
#endif
      FunctionPtr u_soln = Function::solution(u, soln);

      double solnNorm = u_soln->l2norm(mesh);

      double energyError = soln->energyErrorTotal();
      relativeEnergyError = energyError / solnNorm;

      if (rank==0)
      {
        cout << "Relative energy error for refinement " << refNumber++ << ": " << relativeEnergyError << endl;
      }

      if ((relativeEnergyError > refinementTolerance) && (refNumber < maxRefinements))
      {
        refinementStrategy->refine();
        if (rank==0)
        {
          cout << "After refinement, mesh has " << mesh->getTopology()->activeCellCount() << " active (leaf) cells " << "and " << mesh->globalDofCount() << " degrees of freedom.\n";
        }
      }

    }
    while ((relativeEnergyError > refinementTolerance) && (refNumber < maxRefinements));

    double t_slab_final = (timeSlab+1) * timeLengthPerSlab;
    int frameOrdinal = lastFrameOutputted + 1;
    vector<double> timesForSlab;
    while (frameTimes[frameOrdinal] < t_slab_final)
    {
      double t = frameTimes[frameOrdinal];
      if (rank==0) cout << "exporting t=" << t << " on slab " << timeSlab << endl;
      FunctionPtr sliceFunction = MeshTools::timeSliceFunction(mesh, cellMap, u_spacetime, t);
      sliceExporter.exportFunction(sliceFunction, "u_slice", t);
      lastFrameOutputted = frameOrdinal++;
    }

    // set up next mesh/solution:
    FunctionPtr q_prev = Function::solution(qHat, soln);

//    cout << "Error in setup of q_prev: simple solution doesn't know about the map from the previous time slab to the current one. (TODO: fix this.)\n";

    double tn = (timeSlab+1) * timeLengthPerSlab;
    origin[2] = tn;
    mesh = MeshFactory::rectilinearMesh(bf, dimensions, elementCounts, H1Order, delta_k, origin);

    FunctionPtr q_transfer = Teuchos::rcp( new MeshTransferFunction(-q_prev, soln->mesh(), mesh, tn) ); // negate because the normals go in opposite directions

    bc = BC::bc();
    bc->addDirichlet(qHat, inflowFilter, Function::zero()); // zero BCs enforced at the inflow boundary.
    bc->addDirichlet(qHat, SpatialFilter::matchingZ(tn), q_transfer);

    // IMPORTANT: now that we are ready to step to next soln, nullify BC.  If we do not do this, then we have an RCP chain
    //            that extends back to the first time slab, effectively a memory leak.
    soln->setBC(BC::bc());

    soln = Solution::solution(mesh, bc, RHS::rhs(), ip);
    soln->setUseCondensedSolve(useCondensedSolve);
  }

  return 0;
}
示例#6
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // {
  // // 1D tests
  //   CellTopoPtrLegacy line_2 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Line<2> >() ) );

  // // let's draw a line
  //   vector<double> v0 = makeVertex(0);
  //   vector<double> v1 = makeVertex(1);
  //   vector<double> v2 = makeVertex(2);

  //   vector< vector<double> > vertices;
  //   vertices.push_back(v0);
  //   vertices.push_back(v1);
  //   vertices.push_back(v2);

  //   vector<unsigned> line1VertexList;
  //   vector<unsigned> line2VertexList;
  //   line1VertexList.push_back(0);
  //   line1VertexList.push_back(1);
  //   line2VertexList.push_back(1);
  //   line2VertexList.push_back(2);

  //   vector< vector<unsigned> > elementVertices;
  //   elementVertices.push_back(line1VertexList);
  //   elementVertices.push_back(line2VertexList);

  //   vector< CellTopoPtrLegacy > cellTopos;
  //   cellTopos.push_back(line_2);
  //   cellTopos.push_back(line_2);
  //   MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

  //   MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

  //   FunctionPtr x = Function::xn(1);
  //   FunctionPtr function = x;
  //   FunctionPtr fbdr = Function::restrictToCellBoundary(function);
  //   vector<FunctionPtr> functions;
  //   functions.push_back(function);
  //   functions.push_back(function);
  //   vector<string> functionNames;
  //   functionNames.push_back("function1");
  //   functionNames.push_back("function2");

  //   // {
  //   //     HDF5Exporter exporter(mesh, "function1", false);
  //   //     exporter.exportFunction(function, "function1");
  //   // }
  //   // {
  //   //     HDF5Exporter exporter(mesh, "boundary1", false);
  //   //     exporter.exportFunction(fbdr, "boundary1");
  //   // }
  //   // {
  //   //     HDF5Exporter exporter(mesh, "functions1", false);
  //   //     exporter.exportFunction(functions, functionNames);
  //   // }
  // }
  {
    // 2D tests
    // CellTopoPtrLegacy quad_4 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ) );
    // CellTopoPtrLegacy tri_3 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() ) );
    CellTopoPtr quad_4 = CellTopology::quad();
    CellTopoPtr tri_3 = CellTopology::triangle();

    // let's draw a little house
    vector<double> v0 = makeVertex(-1,0);
    vector<double> v1 = makeVertex(1,0);
    vector<double> v2 = makeVertex(1,2);
    vector<double> v3 = makeVertex(-1,2);
    vector<double> v4 = makeVertex(0.0,3);

    vector< vector<double> > vertices;
    vertices.push_back(v0);
    vertices.push_back(v1);
    vertices.push_back(v2);
    vertices.push_back(v3);
    vertices.push_back(v4);

    vector<unsigned> quadVertexList;
    quadVertexList.push_back(0);
    quadVertexList.push_back(1);
    quadVertexList.push_back(2);
    quadVertexList.push_back(3);

    vector<unsigned> triVertexList;
    triVertexList.push_back(3);
    triVertexList.push_back(2);
    triVertexList.push_back(4);

    vector< vector<unsigned> > elementVertices;
    elementVertices.push_back(quadVertexList);
    elementVertices.push_back(triVertexList);

    // vector< CellTopoPtrLegacy > cellTopos;
    vector< CellTopoPtr> cellTopos;
    cellTopos.push_back(quad_4);
    cellTopos.push_back(tri_3);
    MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

    MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

    ////////////////////   DECLARE VARIABLES   ///////////////////////
    // define test variables
    VarFactoryPtr vf = VarFactory::varFactory();
    VarPtr tau = vf->testVar("tau", HDIV);
    VarPtr v = vf->testVar("v", HGRAD);

    // define trial variables
    VarPtr uhat = vf->traceVar("uhat");
    VarPtr fhat = vf->fluxVar("fhat");
    VarPtr u = vf->fieldVar("u");
    VarPtr sigma = vf->fieldVar("sigma", VECTOR_L2);

    ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
    BFPtr bf = Teuchos::rcp( new BF(vf) );
    // tau terms:
    bf->addTerm(sigma, tau);
    bf->addTerm(u, tau->div());
    bf->addTerm(-uhat, tau->dot_normal());

    // v terms:
    bf->addTerm( sigma, v->grad() );
    bf->addTerm( fhat, v);

    ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
    IPPtr ip = bf->graphNorm();

    ////////////////////   SPECIFY RHS   ///////////////////////
    RHSPtr rhs = RHS::rhs();
    FunctionPtr one = Function::constant(1.0);
    rhs->addTerm( one * v );

    ////////////////////   CREATE BCs   ///////////////////////
    BCPtr bc = BC::bc();
    FunctionPtr zero = Function::zero();
    SpatialFilterPtr entireBoundary = SpatialFilter::allSpace();
    bc->addDirichlet(uhat, entireBoundary, zero);

    ////////////////////   SOLVE & REFINE   ///////////////////////

    // Output solution
    Intrepid::FieldContainer<GlobalIndexType> savedCellPartition;
    Teuchos::RCP<Epetra_FEVector> savedLHSVector;

    {
      ////////////////////   BUILD MESH   ///////////////////////
      int H1Order = 4, pToAdd = 2;
      Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh (meshTopology, bf, H1Order, pToAdd) );

      Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
      solution->solve(false);
      RefinementStrategy refinementStrategy( solution, 0.2);
      HDF5Exporter exporter(mesh, "Poisson");
      // exporter.exportSolution(solution, vf, 0, 2, cellIDToSubdivision(mesh, 4));
      exporter.exportSolution(solution, 0, 2);
      mesh->saveToHDF5("MeshSave.h5");
      solution->saveToHDF5("SolnSave.h5");
      solution->save("PoissonProblem");
      // int numRefs = 1;
      // for (int ref = 1; ref <= numRefs; ref++)
      // {
      //   refinementStrategy.refine(commRank==0);
      //   solution->solve(false);
      //   mesh->saveToHDF5("MeshSave.h5");
      //   solution->saveToHDF5("SolnSave.h5");
      //   exporter.exportSolution(solution, vf, ref, 2, cellIDToSubdivision(mesh, 4));
      // }
      mesh->globalDofAssignment()->getPartitions(savedCellPartition);
      savedLHSVector = solution->getLHSVector();
    }
    {
      SolutionPtr loadedSolution = Solution::load(bf, "PoissonProblem");
      HDF5Exporter exporter(loadedSolution->mesh(), "ProblemLoaded");
      // exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedSolution->mesh(), 4));
      exporter.exportSolution(loadedSolution, 0, 2);
    }
    // {
    //   MeshPtr loadedMesh = MeshFactory::loadFromHDF5(bf, "Test0.h5");
    //   Teuchos::RCP<Solution> loadedSolution = Teuchos::rcp( new Solution(loadedMesh, bc, rhs, ip) );
    //   loadedSolution->solve(false);
    //   HDF5Exporter exporter(loadedMesh, "MeshLoaded");
    //   exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedMesh, 4));
    // }
    {
      MeshPtr loadedMesh = MeshFactory::loadFromHDF5(bf, "MeshSave.h5");
      Intrepid::FieldContainer<GlobalIndexType> loadedCellPartition;
      loadedMesh->globalDofAssignment()->getPartitions(loadedCellPartition);
      if (loadedCellPartition.size() != savedCellPartition.size())
      {
        cout << "Error: the loaded partition has different size/shape than the saved one.\n";
        cout << "loaded size: " << loadedCellPartition.size() << "; saved size: " << savedCellPartition.size() << endl;
      }
      else
      {
        bool partitionsMatch = true;
        for (int i=0; i<loadedCellPartition.size(); i++)
        {
          if (loadedCellPartition[i] != savedCellPartition[i])
          {
            partitionsMatch = false;
            break;
          }
        }
        if (partitionsMatch) cout << "Saved and loaded cell partitions match!\n";
        else
        {
          cout << "Saved and loaded cell partitions differ.\n";
          cout << "saved:\n" << savedCellPartition;
          cout << "loaded:\n" << loadedCellPartition;
        }
      }
      Teuchos::RCP<Solution> loadedSolution = Teuchos::rcp( new Solution(loadedMesh, bc, rhs, ip) );
      loadedSolution->loadFromHDF5("SolnSave.h5");

      Teuchos::RCP<Epetra_FEVector> loadedLHSVector = loadedSolution->getLHSVector();
      if (loadedLHSVector->Map().MinLID() != savedLHSVector->Map().MinLID())
      {
        cout << "On rank " << commRank << ", loaded min LID = " << loadedLHSVector->Map().MinLID();
        cout << ", but saved min LID = " << savedLHSVector->Map().MinLID() << endl;
      }
      else if (loadedLHSVector->Map().MaxLID() != savedLHSVector->Map().MaxLID())
      {
        cout << "On rank " << commRank << ", loaded max LID = " << loadedLHSVector->Map().MaxLID();
        cout << ", but saved max LID = " << savedLHSVector->Map().MaxLID() << endl;
      }
      else
      {
        bool globalIDsMatch = true;
        for (int lid = loadedLHSVector->Map().MinLID(); lid <= loadedLHSVector->Map().MaxLID(); lid++)
        {
          if (loadedLHSVector->Map().GID(lid) != savedLHSVector->Map().GID(lid))
          {
            globalIDsMatch = false;
          }
        }
        if (! globalIDsMatch)
        {
          cout << "On rank " << commRank << ", loaded and saved solution vector maps differ in their global IDs.\n";
        }
        else
        {
          cout << "On rank " << commRank << ", loaded and saved solution vector maps match in their global IDs.\n";
        }

        bool entriesMatch = true;
        double tol = 1e-16;
        if (loadedLHSVector->Map().MinLID() != loadedLHSVector->Map().MaxLID())
        {
          for (int lid = loadedLHSVector->Map().MinLID(); lid <= loadedLHSVector->Map().MaxLID(); lid++)
          {
            double loadedValue = (*loadedLHSVector)[0][lid];
            double savedValue = (*savedLHSVector)[0][lid];
            double diff = abs( loadedValue - savedValue );
            if (diff > tol)
            {
              entriesMatch = false;
              cout << "On rank " << commRank << ", loaded and saved solution vectors differ in entry with lid " << lid;
              cout << "; loaded value = " << loadedValue << "; saved value = " << savedValue << ".\n";
            }
          }
          if (entriesMatch)
          {
            cout << "On rank " << commRank << ", loaded and saved solution vectors match!\n";
          }
          else
          {
            cout << "On rank " << commRank << ", loaded and saved solution vectors do not match.\n";
          }
        }
      }

      HDF5Exporter exporter(loadedMesh, "SolutionLoaded");
      // exporter.exportSolution(loadedSolution, vf, 0, 2, cellIDToSubdivision(loadedMesh, 4));
      exporter.exportSolution(loadedSolution, 0, 2);
    }
  }

  // {
  // // 3D tests
  //   CellTopoPtrLegacy hex = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<8> >() ));

  // // let's draw a little box
  //   vector<double> v0 = makeVertex(0,0,0);
  //   vector<double> v1 = makeVertex(1,0,0);
  //   vector<double> v2 = makeVertex(1,1,0);
  //   vector<double> v3 = makeVertex(0,1,0);
  //   vector<double> v4 = makeVertex(0,0,1);
  //   vector<double> v5 = makeVertex(1,0,1);
  //   vector<double> v6 = makeVertex(1,1,1);
  //   vector<double> v7 = makeVertex(0,1,1);

  //   vector< vector<double> > vertices;
  //   vertices.push_back(v0);
  //   vertices.push_back(v1);
  //   vertices.push_back(v2);
  //   vertices.push_back(v3);
  //   vertices.push_back(v4);
  //   vertices.push_back(v5);
  //   vertices.push_back(v6);
  //   vertices.push_back(v7);

  //   vector<unsigned> hexVertexList;
  //   hexVertexList.push_back(0);
  //   hexVertexList.push_back(1);
  //   hexVertexList.push_back(2);
  //   hexVertexList.push_back(3);
  //   hexVertexList.push_back(4);
  //   hexVertexList.push_back(5);
  //   hexVertexList.push_back(6);
  //   hexVertexList.push_back(7);

  //   // vector<unsigned> triVertexList;
  //   // triVertexList.push_back(2);
  //   // triVertexList.push_back(3);
  //   // triVertexList.push_back(4);

  //   vector< vector<unsigned> > elementVertices;
  //   elementVertices.push_back(hexVertexList);
  //   // elementVertices.push_back(triVertexList);

  //   vector< CellTopoPtrLegacy > cellTopos;
  //   cellTopos.push_back(hex);
  //   // cellTopos.push_back(tri_3);
  //   MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

  //   MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

  //   FunctionPtr x = Function::xn(1);
  //   FunctionPtr y = Function::yn(1);
  //   FunctionPtr z = Function::zn(1);
  //   FunctionPtr function = x + y + z;
  //   FunctionPtr fbdr = Function::restrictToCellBoundary(function);
  //   FunctionPtr vect = Function::vectorize(x, y, z);
  //   vector<FunctionPtr> functions;
  //   functions.push_back(function);
  //   functions.push_back(vect);
  //   vector<string> functionNames;
  //   functionNames.push_back("function");
  //   functionNames.push_back("vect");

  //   // {
  //   //     HDF5Exporter exporter(mesh, "function3", false);
  //   //     exporter.exportFunction(function, "function3");
  //   // }
  //   // {
  //   //     HDF5Exporter exporter(mesh, "boundary3", false);
  //   //     exporter.exportFunction(fbdr, "boundary3");
  //   // }
  //   // {
  //   //     HDF5Exporter exporter(mesh, "vect3", false);
  //   //     exporter.exportFunction(vect, "vect3");
  //   // }
  //   // {
  //   //     HDF5Exporter exporter(mesh, "functions3", false);
  //   //     exporter.exportFunction(functions, functionNames);
  //   // }
  // }
}
示例#7
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  bool steady = args.Input<bool>("--steady", "run steady rather than transient");

  // Optional arguments (have defaults)
  double dt = args.Input("--dt", "time step", 0.25);
  int numTimeSteps = args.Input("--nt", "number of time steps", 20);
  halfWidth = args.Input("--halfWidth", "half width of inlet profile", 1.0);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr beta_n_u_hat = varFactory.fluxVar("\\widehat{\\beta \\cdot n }");
  VarPtr u = varFactory.fieldVar("u");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) =  0.0; // x1
  meshBoundary(0,1) = -2.0; // y1
  meshBoundary(1,0) =  4.0;
  meshBoundary(1,1) = -2.0;
  meshBoundary(2,0) =  4.0;
  meshBoundary(2,1) =  2.0;
  meshBoundary(3,0) =  0.0;
  meshBoundary(3,1) =  2.0;

  int horizontalCells = 8, verticalCells = 8;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                            bf, H1Order, H1Order+pToAdd);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );
  SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) );

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt));

  // v terms:
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_hat, v);

  if (!steady)
  {
    bf->addTerm( u, invDt*v );
    rhs->addTerm( u_prev_time * invDt * v );
  }

  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = bf->graphNorm();
  // ip->addTerm(v);
  // ip->addTerm(beta*v->grad());

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  FunctionPtr u1 = Teuchos::rcp( new InletBC );
  bc->addDirichlet(beta_n_u_hat, lBoundary, -u1);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow);
  mesh->registerSolution(flowResidual);

  // ==================== SET INITIAL GUESS ==========================
  double u_free = 0.0;
  map<int, Teuchos::RCP<Function> > functionMap;
  // functionMap[u->ID()]      = Teuchos::rcp( new ConInletBC
  functionMap[u->ID()]      = Teuchos::rcp( new InletBC );

  prevTimeFlow->projectOntoMesh(functionMap);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  if (enforceLocalConservation)
  {
    if (steady)
    {
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      solution->lagrangeConstraints()->addConstraint(beta_n_u_hat == zero);
    }
    else
    {
      // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction );
      // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) );
      LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_hat) );
      LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) );
      conservedQuantity->addTerm(sourcePart, true);
      solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt);
    }
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    if (steady)
    {
      solution->solve(false);

      if (commRank == 0)
      {
        stringstream outfile;
        outfile << "Convection_" << refIndex;
        exporter.exportSolution(outfile.str());

        // Check local conservation
        FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
        FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
        Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
        cout << "Mass flux: Largest Local = " << fluxImbalances[0]
             << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
      }
    }
    else
    {
      int timestepCount = 0;
      double time_tol = 1e-8;
      double L2_time_residual = 1e9;
      // cout << L2_time_residual <<" "<< time_tol << timestepCount << numTimeSteps << endl;
      while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
      {
        solution->solve(false);
        // Subtract solutions to get residual
        flowResidual->setSolution(solution);
        flowResidual->addSolution(prevTimeFlow, -1.0);
        L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID());

        if (commRank == 0)
        {
          cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;

          stringstream outfile;
          outfile << "TransientConvection_" << refIndex << "-" << timestepCount;
          exporter.exportSolution(outfile.str());

          // Check local conservation
          FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
          FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
          source = -invDt * source;
          Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh);
          cout << "Mass flux: Largest Local = " << fluxImbalances[0]
               << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
        }

        prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
        timestepCount++;
      }
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }

  return 0;
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = coupled robust");

  // Optional arguments (have defaults)
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation", false);
  double Re = args.Input("--Re", "Reynolds number", 40);
  double nu = 1./Re;
  double lambda = Re/2.-sqrt(Re*Re/4+4*pi*pi);
  int maxNewtonIterations = args.Input("--maxIterations", "maximum number of Newton iterations", 20);
  int polyOrder = args.Input("--polyOrder", "polynomial order for field variables", 2);
  int deltaP = args.Input("--deltaP", "how much to enrich test space", 2);
  // string saveFile = args.Input<string>("--meshSaveFile", "file to which to save refinement history", "");
  // string replayFile = args.Input<string>("--meshLoadFile", "file with refinement history to replay", "");
  args.Process();

  // if (commRank==0)
  // {
  //   cout << "saveFile is " << saveFile << endl;
  //   cout << "loadFile is " << replayFile << endl;
  // }

  ////////////////////   PROBLEM DEFINITIONS   ///////////////////////
  int H1Order = polyOrder+1;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  // VarPtr tau11 = varFactory.testVar("tau11", HGRAD);
  // VarPtr tau12 = varFactory.testVar("tau12", HGRAD);
  // VarPtr tau22 = varFactory.testVar("tau22", HGRAD);
  VarPtr tau1 = varFactory.testVar("tau1", HDIV);
  VarPtr tau2 = varFactory.testVar("tau2", HDIV);
  VarPtr v1 = varFactory.testVar("v1", HGRAD);
  VarPtr v2 = varFactory.testVar("v2", HGRAD);
  VarPtr q = varFactory.testVar("q", HGRAD);

  // define trial variables
  VarPtr u1 = varFactory.fieldVar("u1");
  VarPtr u2 = varFactory.fieldVar("u2");
  // VarPtr sigma11 = varFactory.fieldVar("sigma11");
  // VarPtr sigma12 = varFactory.fieldVar("sigma12");
  // VarPtr sigma22 = varFactory.fieldVar("sigma22");
  VarPtr sigma1 = varFactory.fieldVar("sigma1", VECTOR_L2);
  VarPtr sigma2 = varFactory.fieldVar("sigma2", VECTOR_L2);
  VarPtr u1hat = varFactory.traceVar("u1hat");
  VarPtr u2hat = varFactory.traceVar("u2hat");
  VarPtr t1hat = varFactory.fluxVar("t1hat");
  VarPtr t2hat = varFactory.fluxVar("t2hat");
  VarPtr p = varFactory.fieldVar("p");

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);
  double xmin = -0.5;
  double xmax =  1.0;
  double ymin = -0.5;
  double ymax =  1.5;

  meshBoundary(0,0) =  xmin; // x1
  meshBoundary(0,1) =  ymin; // y1
  meshBoundary(1,0) =  xmax;
  meshBoundary(1,1) =  ymin;
  meshBoundary(2,0) =  xmax;
  meshBoundary(2,1) =  ymax;
  meshBoundary(3,0) =  xmin;
  meshBoundary(3,1) =  ymax;

  int horizontalCells = 6, verticalCells = 8;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                            bf, H1Order, H1Order+deltaP);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u1_prev = Function::solution(u1, backgroundFlow);
  FunctionPtr u2_prev = Function::solution(u2, backgroundFlow);
  FunctionPtr sigma1_prev = Function::solution(sigma1, backgroundFlow);
  FunctionPtr sigma2_prev = Function::solution(sigma2, backgroundFlow);
  FunctionPtr p_prev = Function::solution(p, backgroundFlow);
  // FunctionPtr sigma11_prev = Function::solution(sigma11, backgroundFlow);
  // FunctionPtr sigma12_prev = Function::solution(sigma12, backgroundFlow);
  // FunctionPtr sigma22_prev = Function::solution(sigma22, backgroundFlow);

  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  FunctionPtr u1Exact     = Teuchos::rcp( new ExactU1(lambda) );
  FunctionPtr u2Exact     = Teuchos::rcp( new ExactU2(lambda) );
  // FunctionPtr beta = e1 * u1_prev + e2 * u2_prev;

  // ==================== SET INITIAL GUESS ==========================
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u1->ID()] = u1Exact;
  functionMap[u2->ID()] = u2Exact;
  // functionMap[sigma1->ID()] = Function::vectorize(zero,zero);
  // functionMap[sigma2->ID()] = Function::vectorize(zero,zero);
  // functionMap[p->ID()] = zero;

  backgroundFlow->projectOntoMesh(functionMap);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  // // stress equation
  bf->addTerm( 1./nu*sigma1, tau1 );
  bf->addTerm( 1./nu*sigma2, tau2 );
  bf->addTerm( u1, tau1->div() );
  bf->addTerm( u2, tau2->div() );
  bf->addTerm( -u1hat, tau1->dot_normal() );
  bf->addTerm( -u2hat, tau2->dot_normal() );
  // bf->addTerm( 1./(2*nu)*sigma11, tau11 );
  // bf->addTerm( 1./(2*nu)*sigma12, tau12 );
  // bf->addTerm( 1./(2*nu)*sigma12, tau12 );
  // bf->addTerm( 1./(2*nu)*sigma22, tau22 );
  // bf->addTerm( u1, tau11->dx() );
  // bf->addTerm( u1, tau12->dy() );
  // bf->addTerm( u2, tau12->dx() );
  // bf->addTerm( u2, tau22->dy() );
  // bf->addTerm( -u1hat, tau11->times_normal_x() );
  // bf->addTerm( -u1hat, tau12->times_normal_y() );
  // bf->addTerm( -u2hat, tau12->times_normal_x() );
  // bf->addTerm( -u2hat, tau22->times_normal_y() );

  // momentum equation
  bf->addTerm( -2.*u1_prev*u1, v1->dx() );
  bf->addTerm( -u2_prev*u1, v1->dy() );
  bf->addTerm( -u1_prev*u2, v1->dy() );
  bf->addTerm( -u2_prev*u1, v2->dx() );
  bf->addTerm( -u1_prev*u2, v1->dy() );
  bf->addTerm( -2.*u2_prev*u2, v2->dy() );
  bf->addTerm( -p, v1->dx() );
  bf->addTerm( -p, v2->dy() );
  // bf->addTerm( sigma11, v1->dx() );
  // bf->addTerm( sigma12, v1->dy() );
  // bf->addTerm( sigma12, v2->dx() );
  // bf->addTerm( sigma22, v2->dy() );
  bf->addTerm( sigma1, v1->grad() );
  bf->addTerm( sigma2, v2->grad() );
  bf->addTerm( t1hat, v1);
  bf->addTerm( t2hat, v2);

  // continuity equation
  bf->addTerm( -u1, q->dx() );
  bf->addTerm( -u2, q->dy() );
  bf->addTerm( u1hat, q->times_normal_x() );
  bf->addTerm( u2hat, q->times_normal_y() );

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );

  // stress equation
  rhs->addTerm( -u1_prev * tau1->div() );
  rhs->addTerm( -u2_prev * tau2->div() );

  // momentum equation
  rhs->addTerm( 2.*u1_prev*u1_prev * v1->dx() );
  rhs->addTerm( u2_prev*u1_prev    * v1->dy() );
  rhs->addTerm( u1_prev*u2_prev    * v1->dy() );
  rhs->addTerm( u2_prev*u1_prev    * v2->dx() );
  rhs->addTerm( u1_prev*u2_prev    * v1->dy() );
  rhs->addTerm( 2.*u2_prev*u2_prev * v2->dy() );
  // rhs->addTerm( p_prev             * v1->dx() );
  // rhs->addTerm( p_prev             * v2->dy() );
  // rhs->addTerm( -sigma1_prev       * v1->grad() );
  // rhs->addTerm( -sigma2_prev       * v2->grad() );

  // rhs->addTerm( -sigma11_prev * v1->dx() );
  // rhs->addTerm( -sigma12_prev * v1->dy() );
  // rhs->addTerm( -sigma12_prev * v2->dx() );
  // rhs->addTerm( -sigma22_prev * v2->dy() );

  // continuity equation
  rhs->addTerm( u1_prev * q->dx() );
  rhs->addTerm( u2_prev * q->dy() );

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
  }
  else if (norm == 1)
  {
    // ip = bf->l2Norm();
  }

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr left = Teuchos::rcp( new ConstantXBoundary(-0.5) );
  SpatialFilterPtr right = Teuchos::rcp( new ConstantXBoundary(1) );
  SpatialFilterPtr top = Teuchos::rcp( new ConstantYBoundary(-0.5) );
  SpatialFilterPtr bottom = Teuchos::rcp( new ConstantYBoundary(1.5) );
  bc->addDirichlet(u1hat, left, u1Exact);
  bc->addDirichlet(u2hat, left, u2Exact);
  bc->addDirichlet(u1hat, right, u1Exact);
  bc->addDirichlet(u2hat, right, u2Exact);
  bc->addDirichlet(u1hat, top, u1Exact);
  bc->addDirichlet(u2hat, top, u2Exact);
  bc->addDirichlet(u1hat, bottom, u1Exact);
  bc->addDirichlet(u2hat, bottom, u2Exact);

  // zero mean constraint on pressure
  bc->addZeroMeanConstraint(p);

  // pc->addConstraint(u1hat*u2hat-t1hat == zero, top);
  // pc->addConstraint(u2hat*u2hat-t2hat == zero, top);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  // if (enforceLocalConservation) {
  //   solution->lagrangeConstraints()->addConstraint(u1hat->times_normal_x() + u2hat->times_normal_y() == zero);
  // }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(backgroundFlow);

  // Teuchos::RCP< RefinementHistory > refHistory = Teuchos::rcp( new RefinementHistory );
  // mesh->registerObserver(refHistory);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(backgroundFlow, mesh, varFactory);
  stringstream outfile;
  outfile << "kovasznay" << "_" << 0;
  exporter.exportSolution(outfile.str());

  double nonlinearRelativeEnergyTolerance = 1e-5; // used to determine convergence of the nonlinear solution
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2Update = 1e10;
    int iterCount = 0;
    while (L2Update > nonlinearRelativeEnergyTolerance && iterCount < maxNewtonIterations)
    {
      solution->solve(false);
      double u1L2Update = solution->L2NormOfSolutionGlobal(u1->ID());
      double u2L2Update = solution->L2NormOfSolutionGlobal(u2->ID());
      L2Update = sqrt(u1L2Update*u1L2Update + u2L2Update*u2L2Update);

      // Check local conservation
      if (commRank == 0)
      {
        cout << "L2 Norm of Update = " << L2Update << endl;

        // if (saveFile.length() > 0) {
        //   std::ostringstream oss;
        //   oss << string(saveFile) << refIndex ;
        //   cout << "on refinement " << refIndex << " saving mesh file to " << oss.str() << endl;
        //   refHistory->saveToFile(oss.str());
        // }
      }

      // line search algorithm
      double alpha = 1.0;
      backgroundFlow->addSolution(solution, alpha);
      iterCount++;
    }

    if (commRank == 0)
    {
      stringstream outfile;
      outfile << "kovasznay" << "_" << refIndex+1;
      exporter.exportSolution(outfile.str());
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }

  return 0;
}
示例#9
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
#endif

  {
    // 1D tests
    CellTopoPtr line_2 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Line<2> >() ) );

    // let's draw a line
    vector<double> v0 = makeVertex(0);
    vector<double> v1 = makeVertex(1);
    vector<double> v2 = makeVertex(2);

    vector< vector<double> > vertices;
    vertices.push_back(v0);
    vertices.push_back(v1);
    vertices.push_back(v2);

    vector<unsigned> line1VertexList;
    vector<unsigned> line2VertexList;
    line1VertexList.push_back(0);
    line1VertexList.push_back(1);
    line2VertexList.push_back(1);
    line2VertexList.push_back(2);

    vector< vector<unsigned> > elementVertices;
    elementVertices.push_back(line1VertexList);
    elementVertices.push_back(line2VertexList);

    vector< CellTopoPtr > cellTopos;
    cellTopos.push_back(line_2);
    cellTopos.push_back(line_2);
    MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

    MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

    FunctionPtr x = Function::xn(1);
    FunctionPtr function = x;
    FunctionPtr fbdr = Function::restrictToCellBoundary(function);
    vector<FunctionPtr> functions;
    functions.push_back(function);
    functions.push_back(function);
    vector<string> functionNames;
    functionNames.push_back("function1");
    functionNames.push_back("function2");

    {
      XDMFExporter exporter(meshTopology, "function1", false);
      exporter.exportFunction(function, "function1");
    }
    {
      XDMFExporter exporter(meshTopology, "boundary1", false);
      exporter.exportFunction(fbdr, "boundary1");
    }
    {
      XDMFExporter exporter(meshTopology, "functions1", false);
      exporter.exportFunction(functions, functionNames);
    }
  }
  {
    // 2D tests
    CellTopoPtr quad_4 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ) );
    CellTopoPtr tri_3 = Teuchos::rcp( new shards::CellTopology(shards::getCellTopologyData<shards::Triangle<3> >() ) );

    // let's draw a little house
    vector<double> v0 = makeVertex(-1,0);
    vector<double> v1 = makeVertex(1,0);
    vector<double> v2 = makeVertex(1,2);
    vector<double> v3 = makeVertex(-1,2);
    vector<double> v4 = makeVertex(0.0,3);

    vector< vector<double> > vertices;
    vertices.push_back(v0);
    vertices.push_back(v1);
    vertices.push_back(v2);
    vertices.push_back(v3);
    vertices.push_back(v4);

    vector<unsigned> quadVertexList;
    quadVertexList.push_back(0);
    quadVertexList.push_back(1);
    quadVertexList.push_back(2);
    quadVertexList.push_back(3);

    vector<unsigned> triVertexList;
    triVertexList.push_back(3);
    triVertexList.push_back(2);
    triVertexList.push_back(4);

    vector< vector<unsigned> > elementVertices;
    elementVertices.push_back(quadVertexList);
    elementVertices.push_back(triVertexList);

    vector< CellTopoPtr > cellTopos;
    cellTopos.push_back(quad_4);
    cellTopos.push_back(tri_3);
    MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

    MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

    FunctionPtr x2 = Function::xn(2);
    FunctionPtr y2 = Function::yn(2);
    FunctionPtr function = x2 + y2;
    FunctionPtr vect = Function::vectorize(x2, y2);
    FunctionPtr fbdr = Function::restrictToCellBoundary(function);
    vector<FunctionPtr> functions;
    functions.push_back(function);
    functions.push_back(vect);
    vector<string> functionNames;
    functionNames.push_back("function");
    functionNames.push_back("vect");
    vector<FunctionPtr> bdrfunctions;
    bdrfunctions.push_back(fbdr);
    bdrfunctions.push_back(fbdr);
    vector<string> bdrfunctionNames;
    bdrfunctionNames.push_back("bdr1");
    bdrfunctionNames.push_back("bdr2");

    map<int, int> cellIDToNum1DPts;
    cellIDToNum1DPts[1] = 4;

    {
      XDMFExporter exporter(meshTopology, "Grid2D", false);
      // exporter.exportFunction(function, "function2", 0, 10);
      // exporter.exportFunction(vect, "vect2", 1, 10, cellIDToNum1DPts);
      // exporter.exportFunction(fbdr, "boundary2", 0);
      exporter.exportFunction(functions, functionNames, 1, 10);
    }
    {
      XDMFExporter exporter(meshTopology, "BdrGrid2D", false);
      // exporter.exportFunction(function, "function2", 0, 10);
      // exporter.exportFunction(vect, "vect2", 1, 10, cellIDToNum1DPts);
      // exporter.exportFunction(fbdr, "boundary2", 0);
      exporter.exportFunction(bdrfunctions, bdrfunctionNames, 1, 10);
    }

    ////////////////////   DECLARE VARIABLES   ///////////////////////
    // define test variables
    VarFactory varFactory;
    VarPtr tau = varFactory.testVar("tau", HDIV);
    VarPtr v = varFactory.testVar("v", HGRAD);

    // define trial variables
    VarPtr uhat = varFactory.traceVar("uhat");
    VarPtr fhat = varFactory.fluxVar("fhat");
    VarPtr u = varFactory.fieldVar("u");
    VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

    ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
    BFPtr bf = Teuchos::rcp( new BF(varFactory) );
    // tau terms:
    bf->addTerm(sigma, tau);
    bf->addTerm(u, tau->div());
    bf->addTerm(-uhat, tau->dot_normal());

    // v terms:
    bf->addTerm( sigma, v->grad() );
    bf->addTerm( fhat, v);

    ////////////////////   BUILD MESH   ///////////////////////
    int H1Order = 4, pToAdd = 2;
    Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh (meshTopology, bf, H1Order, pToAdd) );

    ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
    IPPtr ip = bf->graphNorm();

    ////////////////////   SPECIFY RHS   ///////////////////////
    RHSPtr rhs = RHS::rhs();
    // Teuchos::RCP<RHS> rhs = Teuchos::rcp( new RHS );
    FunctionPtr one = Function::constant(1.0);
    rhs->addTerm( one * v );

    ////////////////////   CREATE BCs   ///////////////////////
    // Teuchos::RCP<BC> bc = Teuchos::rcp( new BCEasy );
    BCPtr bc = BC::bc();
    FunctionPtr zero = Function::zero();
    SpatialFilterPtr entireBoundary = Teuchos::rcp( new EntireBoundary );
    bc->addDirichlet(uhat, entireBoundary, zero);

    ////////////////////   SOLVE & REFINE   ///////////////////////
    Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
    solution->solve(false);
    RefinementStrategy refinementStrategy( solution, 0.2);

    // Output solution
    FunctionPtr uSoln = Function::solution(u, solution);
    FunctionPtr sigmaSoln = Function::solution(sigma, solution);
    FunctionPtr uhatSoln = Function::solution(uhat, solution);
    FunctionPtr fhatSoln = Function::solution(fhat, solution);
    {
      XDMFExporter exporter(meshTopology, "Poisson", false);
      exporter.exportFunction(uSoln, "u", 0, 4);
      exporter.exportFunction(uSoln, "u", 1, 5);
      exporter.exportFunction(uhatSoln, "uhat", 0, 4);
      exporter.exportFunction(uhatSoln, "uhat", 1, 5);
      // exporter.exportFunction(fhatSoln, "fhat", 0, 4);
      // exporter.exportFunction(fhatSoln, "fhat", 1, 5);
    }
    {
      XDMFExporter exporter(meshTopology, "PoissonSolution", false);
      exporter.exportSolution(solution, mesh, varFactory, 0, 2, cellIDToSubdivision(mesh, 10));
      refinementStrategy.refine(true);
      solution->solve(false);
      exporter.exportSolution(solution, mesh, varFactory, 1, 2, cellIDToSubdivision(mesh, 10));
    }
    // exporter.exportFunction(sigmaSoln, "Poisson-s", "sigma", 0, 5);
    // exporter.exportFunction(uhatSoln, "Poisson-uhat", "uhat", 1, 6);
  }

  {
    // 3D tests
    CellTopoPtr hex = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<8> >() ));

    // let's draw a little box
    vector<double> v0 = makeVertex(0,0,0);
    vector<double> v1 = makeVertex(1,0,0);
    vector<double> v2 = makeVertex(1,1,0);
    vector<double> v3 = makeVertex(0,1,0);
    vector<double> v4 = makeVertex(0,0,1);
    vector<double> v5 = makeVertex(1,0,1);
    vector<double> v6 = makeVertex(1,1,1);
    vector<double> v7 = makeVertex(0,1,1);

    vector< vector<double> > vertices;
    vertices.push_back(v0);
    vertices.push_back(v1);
    vertices.push_back(v2);
    vertices.push_back(v3);
    vertices.push_back(v4);
    vertices.push_back(v5);
    vertices.push_back(v6);
    vertices.push_back(v7);

    vector<unsigned> hexVertexList;
    hexVertexList.push_back(0);
    hexVertexList.push_back(1);
    hexVertexList.push_back(2);
    hexVertexList.push_back(3);
    hexVertexList.push_back(4);
    hexVertexList.push_back(5);
    hexVertexList.push_back(6);
    hexVertexList.push_back(7);

    // vector<unsigned> triVertexList;
    // triVertexList.push_back(2);
    // triVertexList.push_back(3);
    // triVertexList.push_back(4);

    vector< vector<unsigned> > elementVertices;
    elementVertices.push_back(hexVertexList);
    // elementVertices.push_back(triVertexList);

    vector< CellTopoPtr > cellTopos;
    cellTopos.push_back(hex);
    // cellTopos.push_back(tri_3);
    MeshGeometryPtr meshGeometry = Teuchos::rcp( new MeshGeometry(vertices, elementVertices, cellTopos) );

    MeshTopologyPtr meshTopology = Teuchos::rcp( new MeshTopology(meshGeometry) );

    FunctionPtr x = Function::xn(1);
    FunctionPtr y = Function::yn(1);
    FunctionPtr z = Function::zn(1);
    FunctionPtr function = x + y + z;
    FunctionPtr fbdr = Function::restrictToCellBoundary(function);
    FunctionPtr vect = Function::vectorize(x, y, z);
    vector<FunctionPtr> functions;
    functions.push_back(function);
    functions.push_back(vect);
    vector<string> functionNames;
    functionNames.push_back("function");
    functionNames.push_back("vect");

    {
      XDMFExporter exporter(meshTopology, "function3", false);
      exporter.exportFunction(function, "function3");
    }
    {
      XDMFExporter exporter(meshTopology, "boundary3", false);
      exporter.exportFunction(fbdr, "boundary3");
    }
    {
      XDMFExporter exporter(meshTopology, "vect3", false);
      exporter.exportFunction(vect, "vect3");
    }
    {
      XDMFExporter exporter(meshTopology, "functions3", false);
      exporter.exportFunction(functions, functionNames);
    }
  }
}
bool VectorizedBasisTestSuite::testPoisson()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr sigma_n = varFactory->fluxVar("\\widehat{\\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma = varFactory->fieldVar("\\sigma", VECTOR_L2);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( -sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = bf->graphNorm();

  ////////////////////   SPECIFY RHS   ///////////////////////
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = Function::constant(1.0);
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr boundary = SpatialFilter::allSpace();
  FunctionPtr zero = Function::zero();
  bc->addDirichlet(uhat, boundary, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) = 0.0; // x1
  meshBoundary(0,1) = 0.0; // y1
  meshBoundary(1,0) = 1.0;
  meshBoundary(1,1) = 0.0;
  meshBoundary(2,0) = 1.0;
  meshBoundary(2,1) = 1.0;
  meshBoundary(3,0) = 0.0;
  meshBoundary(3,1) = 1.0;

  int horizontalCells = 1, verticalCells = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshFactory::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                            bf, H1Order, H1Order+pToAdd, false);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
#ifdef USE_VTK
  VTKExporter exporter(solution, mesh, varFactory);
#endif

  for (int refIndex=0; refIndex<=4; refIndex++)
  {
    solution->solve(false);
#ifdef USE_VTK
    // output commented out because it's not properly part of the test.
//    stringstream outfile;
//    outfile << "test_" << refIndex;
//    exporter.exportSolution(outfile.str());
#endif

    if (refIndex < 4)
      refinementStrategy.refine(false); // don't print to console
  }
  return success;
}
示例#11
0
int main(int argc, char *argv[])
{
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
  int spaceDim = 2;
#ifdef HAVE_MPI
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args(argc, argv );
#endif
  int minPolyOrder = args.Input<int>("--minPolyOrder", "L^2 (field) minimum polynomial order",0);
  int maxPolyOrder = args.Input<int>("--maxPolyOrder", "L^2 (field) maximum polynomial order",1);
  int minLogElements = args.Input<int>("--minLogElements", "base 2 log of the minimum number of elements in one mesh direction", 0);
  int maxLogElements = args.Input<int>("--maxLogElements", "base 2 log of the maximum number of elements in one mesh direction", 4);
  double Re = args.Input<double>("--Re", "Reynolds number", 40);
//  bool outputStiffnessMatrix = args.Input<bool>("--writeFinalStiffnessToDisk", "write the final stiffness matrix to disk.", false);
  bool computeMaxConditionNumber = args.Input<bool>("--computeMaxConditionNumber", "compute the maximum Gram matrix condition number for final mesh.", false);
  int maxIters = args.Input<int>("--maxIters", "maximum number of Newton-Raphson iterations to take to try to match tolerance", 50);
  double minL2Increment = args.Input<double>("--NRtol", "Newton-Raphson tolerance, L^2 norm of increment", 1e-12);
  string normChoice = args.Input<string>("--norm", "norm choice: graph, compliantGraph, stokesGraph, or stokesCompliantGraph", "graph");

  bool useCondensedSolve = args.Input<bool>("--useCondensedSolve", "use static condensation", true);

  double dt = args.Input<double>("--timeStep", "time step (0 for none)", 0);

  double zmcRho = args.Input<double>("--zmcRho", "zero-mean constraint rho (stabilization parameter)", -1);

//  string replayFile = args.Input<string>("--replayFile", "file with refinement history to replay", "");
//  string saveFile = args.Input<string>("--saveReplay", "file to which to save refinement history", "");

  args.Process();

  int pToAdd = 2; // for optimal test function approximation
  bool useLineSearch = false;
  bool computeRelativeErrors = true; // we'll say false when one of the exact solution components is 0
  bool useEnrichedTraces = true; // enriched traces are the right choice, mathematically speaking
  BasisFactory::basisFactory()->setUseEnrichedTraces(useEnrichedTraces);

  // parse args:
  bool useTriangles = false, useGraphNorm = false, useCompliantNorm = false, useStokesCompliantNorm = false, useStokesGraphNorm = false;

  if (normChoice=="graph")
  {
    useGraphNorm = true;
  }
  else if (normChoice=="compliantGraph")
  {
    useCompliantNorm = true;
  }
  else if (normChoice=="stokesGraph")
  {
    useStokesGraphNorm = true;
  }
  else if (normChoice=="stokesCompliantGraph")
  {
    useStokesCompliantNorm = true;
  }
  else
  {
    if (rank==0) cout << "unknown norm choice.  Exiting.\n";
    exit(-1);
  }

  bool artificialTimeStepping = (dt > 0);

  if (rank == 0)
  {
    cout << "pToAdd = " << pToAdd << endl;
    cout << "useTriangles = "    << (useTriangles   ? "true" : "false") << "\n";
    cout << "norm = " << normChoice << endl;
  }

  // define Kovasznay domain:
  FieldContainer<double> quadPointsKovasznay(4,2);
  // domain from Cockburn Kanschat for Stokes:
  quadPointsKovasznay(0,0) = -0.5; // x1
  quadPointsKovasznay(0,1) =  0.0; // y1
  quadPointsKovasznay(1,0) =  1.5;
  quadPointsKovasznay(1,1) =  0.0;
  quadPointsKovasznay(2,0) =  1.5;
  quadPointsKovasznay(2,1) =  2.0;
  quadPointsKovasznay(3,0) = -0.5;
  quadPointsKovasznay(3,1) =  2.0;

  // Domain from Evans Hughes for Navier-Stokes:
//  quadPointsKovasznay(0,0) =  0.0; // x1
//  quadPointsKovasznay(0,1) = -0.5; // y1
//  quadPointsKovasznay(1,0) =  1.0;
//  quadPointsKovasznay(1,1) = -0.5;
//  quadPointsKovasznay(2,0) =  1.0;
//  quadPointsKovasznay(2,1) =  0.5;
//  quadPointsKovasznay(3,0) =  0.0;
//  quadPointsKovasznay(3,1) =  0.5;

//  double Re = 10.0;  // Cockburn Kanschat Stokes
//  double Re = 40.0; // Evans Hughes Navier-Stokes
//  double Re = 1000.0;

  string formulationTypeStr = "vgp";

  FunctionPtr u1_exact, u2_exact, p_exact;

  int numCellsFineMesh = 20; // for computing a zero-mean pressure
  int H1OrderFineMesh = 5;

//  VGPNavierStokesProblem(double Re, Intrepid::FieldContainer<double> &quadPoints, int horizontalCells,
//                         int verticalCells, int H1Order, int pToAdd,
//                         TFunctionPtr<double> u1_0, TFunctionPtr<double> u2_0, TFunctionPtr<double> f1, TFunctionPtr<double> f2,
//                         bool enrichVelocity = false, bool enhanceFluxes = false)
  
  FunctionPtr zero = Function::zero();
  VGPNavierStokesProblem zeroProblem = VGPNavierStokesProblem(Re, quadPointsKovasznay,
                                       numCellsFineMesh, numCellsFineMesh,
                                       H1OrderFineMesh, pToAdd,
                                       zero, zero, zero, useCompliantNorm || useStokesCompliantNorm);

  VarFactoryPtr varFactory = VGPStokesFormulation::vgpVarFactory();
  VarPtr u1_vgp = varFactory->fieldVar(VGP_U1_S);
  VarPtr u2_vgp = varFactory->fieldVar(VGP_U2_S);
  VarPtr sigma11_vgp = varFactory->fieldVar(VGP_SIGMA11_S);
  VarPtr sigma12_vgp = varFactory->fieldVar(VGP_SIGMA12_S);
  VarPtr sigma21_vgp = varFactory->fieldVar(VGP_SIGMA21_S);
  VarPtr sigma22_vgp = varFactory->fieldVar(VGP_SIGMA22_S);
  VarPtr p_vgp = varFactory->fieldVar(VGP_P_S);


  VarPtr v1_vgp = varFactory->testVar(VGP_V1_S, HGRAD);
  VarPtr v2_vgp = varFactory->testVar(VGP_V2_S, HGRAD);

//  if (rank==0) {
//    cout << "bilinear form with zero background flow:\n";
//    zeroProblem.bf()->printTrialTestInteractions();
//  }

  VGPStokesFormulation stokesForm(1/Re);

  NavierStokesFormulation::setKovasznay(Re, zeroProblem.mesh(), u1_exact, u2_exact, p_exact);

//  if (rank==0) cout << "Stokes bilinearForm: " << stokesForm.bf()->displayString() << endl;
  
  map< string, string > convergenceDataForMATLAB; // key: field file name

  for (int polyOrder = minPolyOrder; polyOrder <= maxPolyOrder; polyOrder++)
  {
    int H1Order = polyOrder + 1;

    int numCells1D = pow(2.0,minLogElements);

    if (rank==0)
    {
      cout << "L^2 order: " << polyOrder << endl;
      cout << "Re = " << Re << endl;
    }

    int kovasznayCubatureEnrichment = 20; // 20 is better than 10 for accurately measuring error on the coarser meshes.

    vector< VGPNavierStokesProblem > problems;
    do
    {
      VGPNavierStokesProblem problem = VGPNavierStokesProblem(Re,quadPointsKovasznay,
                                       numCells1D,numCells1D,
                                       H1Order, pToAdd,
                                       u1_exact, u2_exact, p_exact, useCompliantNorm || useStokesCompliantNorm);

      problem.backgroundFlow()->setCubatureEnrichmentDegree(kovasznayCubatureEnrichment);
      problem.solutionIncrement()->setCubatureEnrichmentDegree(kovasznayCubatureEnrichment);

      problem.backgroundFlow()->setZeroMeanConstraintRho(zmcRho);
      problem.solutionIncrement()->setZeroMeanConstraintRho(zmcRho);

      FunctionPtr dt_inv;

      if (artificialTimeStepping)
      {
        //    // LHS gets u_inc / dt:
        BFPtr bf = problem.bf();
        dt_inv = ParameterFunction::parameterFunction(1.0 / dt); //Teuchos::rcp( new ConstantScalarFunction(1.0 / dt, "\\frac{1}{dt}") );
        bf->addTerm(-dt_inv * u1_vgp, v1_vgp);
        bf->addTerm(-dt_inv * u2_vgp, v2_vgp);
        problem.setIP( bf->graphNorm() ); // graph norm has changed...
      }
      else
      {
        dt_inv = Function::zero();
      }

      problems.push_back(problem);
      if ( useCompliantNorm )
      {
        problem.setIP(problem.vgpNavierStokesFormulation()->scaleCompliantGraphNorm(dt_inv));
      }
      else if (useStokesCompliantNorm)
      {
        VGPStokesFormulation stokesForm(1.0); // pretend Re = 1 in the graph norm
        problem.setIP(stokesForm.scaleCompliantGraphNorm());
      }
      else if (useStokesGraphNorm)
      {
        VGPStokesFormulation stokesForm(1.0); // pretend Re = 1 in the graph norm
        problem.setIP(stokesForm.graphNorm());
      }
      else if (! useGraphNorm )
      {
        // then use the naive:
        problem.setIP(problem.bf()->naiveNorm(spaceDim));
      }
      if (rank==0)
      {
        cout << numCells1D << " x " << numCells1D << ": " << problem.mesh()->numGlobalDofs() << " dofs " << endl;
      }
      numCells1D *= 2;
    }
    while (pow(2.0,maxLogElements) >= numCells1D);

    // note that rhs and bilinearForm aren't really going to be right here, since they
    // involve a background flow which varies over the various problems...
    HConvergenceStudy study(problems[0].exactSolution(),
                            problems[0].mesh()->bilinearForm(),
                            problems[0].exactSolution()->rhs(),
                            problems[0].backgroundFlow()->bc(),
                            problems[0].bf()->graphNorm(),
                            minLogElements, maxLogElements,
                            H1Order, pToAdd, false, useTriangles, false);
    study.setReportRelativeErrors(computeRelativeErrors);
    study.setCubatureDegreeForExact(kovasznayCubatureEnrichment);

    vector< SolutionPtr > solutions;
    numCells1D = pow(2.0,minLogElements);
    for (vector< VGPNavierStokesProblem >::iterator problem = problems.begin();
         problem != problems.end(); problem++)
    {
      SolutionPtr solnIncrement = problem->solutionIncrement();
      FunctionPtr u1_incr = Function::solution(u1_vgp, solnIncrement);
      FunctionPtr u2_incr = Function::solution(u2_vgp, solnIncrement);
      FunctionPtr sigma11_incr = Function::solution(sigma11_vgp, solnIncrement);
      FunctionPtr sigma12_incr = Function::solution(sigma12_vgp, solnIncrement);
      FunctionPtr sigma21_incr = Function::solution(sigma21_vgp, solnIncrement);
      FunctionPtr sigma22_incr = Function::solution(sigma22_vgp, solnIncrement);
      FunctionPtr p_incr = Function::solution(p_vgp, solnIncrement);

//      LinearTermPtr rhsLT = problem->backgroundFlow()->rhs()->linearTerm();
//      if (rank==0) cout << "bilinearForm: " << problems[0].mesh()->bilinearForm()->displayString() << endl;
//      if (rank==0) cout << "RHS: " << rhsLT->displayString() << endl;
      
      FunctionPtr l2_incr = u1_incr * u1_incr + u2_incr * u2_incr + p_incr * p_incr
                            + sigma11_incr * sigma11_incr + sigma12_incr * sigma12_incr
                            + sigma21_incr * sigma21_incr + sigma22_incr * sigma22_incr;
      double weight = 1.0;
      do
      {
        weight = problem->iterate(useLineSearch, useCondensedSolve);

        LinearTermPtr rhsLT = problem->backgroundFlow()->rhs()->linearTerm();
        RieszRep rieszRep(problem->backgroundFlow()->mesh(), problem->backgroundFlow()->ip(), rhsLT);
        rieszRep.computeRieszRep();
        double costFunction = rieszRep.getNorm();
        double incr_norm = sqrt(l2_incr->integrate(problem->mesh()));

        if (rank==0)
        {
          cout << setprecision(6) << scientific;
          cout << "\x1B[2K"; // Erase the entire current line.
          cout << "\x1B[0E"; // Move to the beginning of the current line.
          cout << "Iteration: " << problem->iterationCount() << "; L^2(incr) = " << incr_norm;
          flush(cout);
//          cout << setprecision(6) << scientific;
//          cout << "Took " << weight << "-weighted step for " << numCells1D;
//          cout << " x " << numCells1D << " mesh: " << problem->iterationCount();
//          cout << setprecision(6) << fixed;
//          cout << " iterations; cost function " << costFunction << endl;
        }
      }
      while ((sqrt(l2_incr->integrate(problem->mesh())) > minL2Increment ) && (problem->iterationCount() < maxIters) && (weight != 0));

      if (rank==0) cout << endl;

      solutions.push_back( problem->backgroundFlow() );

      // set the IP to the naive norm for clearer comparison with the best approximation energy error
//      problem->backgroundFlow()->setIP(problem->bf()->naiveNorm());

//      double energyError = problem->backgroundFlow()->energyErrorTotal();
//      if (rank==0) {
//        cout << setprecision(6) << fixed;
//        cout << numCells1D << " x " << numCells1D << ": " << problem->iterationCount();
//        cout << " iterations; actual energy error " << energyError << endl;
//      }
      numCells1D *= 2;
    }

    study.setSolutions(solutions);


    for (int i=0; i<=maxLogElements-minLogElements; i++)
    {
      SolutionPtr bestApproximation = study.bestApproximations()[i];
      VGPNavierStokesFormulation nsFormBest = VGPNavierStokesFormulation(Re, bestApproximation);
      SpatialFilterPtr entireBoundary = Teuchos::rcp( new SpatialFilterUnfiltered ); // SpatialFilterUnfiltered returns true everywhere
      Teuchos::RCP<ExactSolution<double>> exact = nsFormBest.exactSolution(u1_exact, u2_exact, p_exact, entireBoundary);
//      bestApproximation->setIP( nsFormBest.bf()->naiveNorm() );
//      bestApproximation->setRHS( exact->rhs() );

      // use backgroundFlow's IP so that they're comparable
      IPPtr ip = problems[i].backgroundFlow()->ip();
      LinearTermPtr rhsLT = exact->rhs()->linearTerm();
      RieszRep rieszRep(bestApproximation->mesh(), ip, rhsLT);
      rieszRep.computeRieszRep();

      double bestCostFunction = rieszRep.getNorm();
      if (rank==0)
        cout << "best energy error (measured according to the actual solution's test space IP): " << bestCostFunction << endl;
    }

    map< int, double > energyNormWeights;
    if (useCompliantNorm)
    {
      energyNormWeights[u1_vgp->ID()] = 1.0; // should be 1/h
      energyNormWeights[u2_vgp->ID()] = 1.0; // should be 1/h
      energyNormWeights[sigma11_vgp->ID()] = Re; // 1/mu
      energyNormWeights[sigma12_vgp->ID()] = Re; // 1/mu
      energyNormWeights[sigma21_vgp->ID()] = Re; // 1/mu
      energyNormWeights[sigma22_vgp->ID()] = Re; // 1/mu
      if (Re < 1)   // assuming we're using the experimental small Re thing
      {
        energyNormWeights[p_vgp->ID()] = Re;
      }
      else
      {
        energyNormWeights[p_vgp->ID()] = 1.0;
      }
    }
    else
    {
      energyNormWeights[u1_vgp->ID()] = 1.0;
      energyNormWeights[u2_vgp->ID()] = 1.0;
      energyNormWeights[sigma11_vgp->ID()] = 1.0;
      energyNormWeights[sigma12_vgp->ID()] = 1.0;
      energyNormWeights[sigma21_vgp->ID()] = 1.0;
      energyNormWeights[sigma22_vgp->ID()] = 1.0;
      energyNormWeights[p_vgp->ID()] = 1.0;
    }
    vector<double> bestEnergy = study.weightedL2Error(energyNormWeights,true);
    vector<double> solnEnergy = study.weightedL2Error(energyNormWeights,false);

    map<int, double> velocityWeights;
    velocityWeights[u1_vgp->ID()] = 1.0;
    velocityWeights[u2_vgp->ID()] = 1.0;
    vector<double> bestVelocityError = study.weightedL2Error(velocityWeights,true);
    vector<double> solnVelocityError = study.weightedL2Error(velocityWeights,false);

    map<int, double> pressureWeight;
    pressureWeight[p_vgp->ID()] = 1.0;
    vector<double> bestPressureError = study.weightedL2Error(pressureWeight,true);
    vector<double> solnPressureError = study.weightedL2Error(pressureWeight,false);

    if (rank==0)
    {
      cout << setw(25);
      cout << "Solution Energy Error:" << setw(25) << "Best Energy Error:" << endl;
      cout << scientific << setprecision(1);
      for (int i=0; i<bestEnergy.size(); i++)
      {
        cout << setw(25) << solnEnergy[i] << setw(25) << bestEnergy[i] << endl;
      }
      cout << setw(25);
      cout << "Solution Velocity Error:" << setw(25) << "Best Velocity Error:" << endl;
      cout << scientific << setprecision(1);
      for (int i=0; i<bestEnergy.size(); i++)
      {
        cout << setw(25) << solnVelocityError[i] << setw(25) << bestVelocityError[i] << endl;
      }
      cout << setw(25);
      cout << "Solution Pressure Error:" << setw(25) << "Best Pressure Error:" << endl;
      cout << scientific << setprecision(1);
      for (int i=0; i<bestEnergy.size(); i++)
      {
        cout << setw(25) << solnPressureError[i] << setw(25) << bestPressureError[i] << endl;
      }

      vector< string > tableHeaders;
      vector< vector<double> > dataTable;
      vector< double > meshWidths;
      for (int i=minLogElements; i<=maxLogElements; i++)
      {
        double width = pow(2.0,i);
        meshWidths.push_back(width);
      }

      tableHeaders.push_back("mesh_width");
      dataTable.push_back(meshWidths);
      tableHeaders.push_back("soln_energy_error");
      dataTable.push_back(solnEnergy);
      tableHeaders.push_back("best_energy_error");
      dataTable.push_back(bestEnergy);

      tableHeaders.push_back("soln_velocity_error");
      dataTable.push_back(solnVelocityError);
      tableHeaders.push_back("best_velocity_error");
      dataTable.push_back(bestVelocityError);

      tableHeaders.push_back("soln_pressure_error");
      dataTable.push_back(solnPressureError);
      tableHeaders.push_back("best_pressure_error");
      dataTable.push_back(bestPressureError);

      ostringstream fileNameStream;
      fileNameStream << "nsStudy_Re" << Re << "k" << polyOrder << "_results.dat";

      DataIO::outputTableToFile(tableHeaders,dataTable,fileNameStream.str());
    }

    if (rank == 0)
    {
      cout << study.TeXErrorRateTable();
      vector<int> primaryVariables;
      stokesForm.primaryTrialIDs(primaryVariables);
      vector<int> fieldIDs,traceIDs;
      vector<string> fieldFileNames;
      stokesForm.trialIDs(fieldIDs,traceIDs,fieldFileNames);
      cout << "******** Best Approximation comparison: ********\n";
      cout << study.TeXBestApproximationComparisonTable(primaryVariables);

      ostringstream filePathPrefix;
      filePathPrefix << "navierStokes/" << formulationTypeStr << "_p" << polyOrder << "_velpressure";
      study.TeXBestApproximationComparisonTable(primaryVariables,filePathPrefix.str());
      filePathPrefix.str("");
      filePathPrefix << "navierStokes/" << formulationTypeStr << "_p" << polyOrder << "_all";
      study.TeXBestApproximationComparisonTable(fieldIDs);

      for (int i=0; i<fieldIDs.size(); i++)
      {
        int fieldID = fieldIDs[i];
        int traceID = traceIDs[i];
        string fieldName = fieldFileNames[i];
        ostringstream filePathPrefix;
        filePathPrefix << "navierStokes/" << fieldName << "_p" << polyOrder;
        bool writeMATLABplotData = false;
        study.writeToFiles(filePathPrefix.str(),fieldID,traceID, writeMATLABplotData);
      }

      for (int i=0; i<primaryVariables.size(); i++)
      {
        string convData = study.convergenceDataMATLAB(primaryVariables[i], minPolyOrder);
        cout << convData;
        convergenceDataForMATLAB[fieldFileNames[i]] += convData;
      }

      filePathPrefix.str("");
      filePathPrefix << "navierStokes/" << formulationTypeStr << "_p" << polyOrder << "_numDofs";
      cout << study.TeXNumGlobalDofsTable();
    }
    if (computeMaxConditionNumber)
    {
      for (int i=minLogElements; i<=maxLogElements; i++)
      {
        SolutionPtr soln = study.getSolution(i);
        ostringstream fileNameStream;
        fileNameStream << "nsStudy_maxConditionIPMatrix_" << i << ".dat";
        IPPtr ip = Teuchos::rcp( dynamic_cast< IP* >(soln->ip().get()), false );
        bool jacobiScalingTrue = true;
        double maxConditionNumber = MeshUtilities::computeMaxLocalConditionNumber(ip, soln->mesh(), jacobiScalingTrue, fileNameStream.str());
        if (rank==0)
        {
          cout << "max Gram matrix condition number estimate for logElements " << i << ": "  << maxConditionNumber << endl;
          cout << "putative worst-conditioned Gram matrix written to: " << fileNameStream.str() << "." << endl;
        }
      }
    }
  }
  if (rank==0)
  {
    ostringstream filePathPrefix;
    filePathPrefix << "navierStokes/" << formulationTypeStr << "_";
    for (map<string,string>::iterator convIt = convergenceDataForMATLAB.begin(); convIt != convergenceDataForMATLAB.end(); convIt++)
    {
      string fileName = convIt->first + ".m";
      string data = convIt->second;
      fileName = filePathPrefix.str() + fileName;
      ofstream fout(fileName.c_str());
      fout << data;
      fout.close();
    }
  }

}
示例#12
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  bool graphNorm = args.Input<bool>("--graphNorm", "use the graph norm rather than robust test norm");

  // Optional arguments (have defaults)
  bool highLiftAirfoil = args.Input("--highLift", "use high lift airfoil rather than NACA0012", false);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.25);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (graphNorm)
  {
    ip = bf->graphNorm();
  }
  else
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    if (!enforceLocalConservation)
      ip->addTerm( ip_scaling * v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (enforceLocalConservation)
      ip->addZeroMeanTerm( v );
  }

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tBoundary = Teuchos::rcp( new TopBoundary );
  SpatialFilterPtr bBoundary = Teuchos::rcp( new BottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  SpatialFilterPtr airfoilInflowBoundary = Teuchos::rcp( new AirfoilInflowBoundary(beta) );
  SpatialFilterPtr airfoilOutflowBoundary = Teuchos::rcp( new AirfoilOutflowBoundary(beta) );
  FunctionPtr u0 = Teuchos::rcp( new ZeroBC );
  FunctionPtr u1 = Teuchos::rcp( new OneBC );
  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, u0);
  bc->addDirichlet(beta_n_u_minus_sigma_n, bBoundary, u0);
  // bc->addDirichlet(uhat, airfoilInflowBoundary, u1);
  // bc->addDirichlet(uhat, tBoundary, u0);

  bc->addDirichlet(beta_n_u_minus_sigma_n, airfoilInflowBoundary, beta*n*u1);
  bc->addDirichlet(uhat, airfoilOutflowBoundary, u1);

  // pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == u0, rBoundary);
  // pc->addConstraint(beta*uhat->times_normal() - beta_n_u_minus_sigma_n == u0, tBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 3, pToAdd = 2;
  Teuchos::RCP<Mesh> mesh;
  if (highLiftAirfoil)
    mesh = Mesh::readTriangle(Camellia_MeshDir+"HighLift/HighLift.1", bf, H1Order, pToAdd);
  else
    mesh = Mesh::readTriangle(Camellia_MeshDir+"NACA0012/NACA0012.1", bf, H1Order, pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    if (commRank == 0)
    {
      stringstream outfile;
      if (highLiftAirfoil)
        outfile << "highlift_" << refIndex;
      else
        outfile << "naca0012_" << refIndex;
      exporter.exportSolution(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
    {
      // refinementStrategy.refine(commRank==0); // print to console on commRank 0
      // Try pseudo-hp adaptive
      vector<int> cellsToRefine;
      vector<int> cells_h;
      vector<int> cells_p;
      refinementStrategy.getCellsAboveErrorThreshhold(cellsToRefine);
      for (int i=0; i < cellsToRefine.size(); i++)
        if (sqrt(mesh->getCellMeasure(cellsToRefine[i])) < epsilon)
        {
          int pOrder = mesh->cellPolyOrder(cellsToRefine[i]);
          if (pOrder < 8)
            cells_p.push_back(cellsToRefine[i]);
          else
            cells_h.push_back(cellsToRefine[i]);
        }
        else
          cells_h.push_back(cellsToRefine[i]);
      refinementStrategy.pRefineCells(mesh, cells_p);
      refinementStrategy.hRefineCells(mesh, cells_h);
    }
  }

  return 0;
}
int main(int argc, char *argv[])
{
#ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS
  cout << "NOTE: enabling floating point exceptions for divide by zero.\n";
  _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
  int rank = Teuchos::GlobalMPISession::getRank();

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  bool useCondensedSolve = false; // condensed solve not yet compatible with minimum rule meshes

  int numGridPoints = 32; // in x,y -- idea is to keep the overall order of approximation constant
  int k = 4; // poly order for u
  double theta = 0.5;
  int numTimeSteps = 2000;
  int numCells = -1; // in x, y (-1 so we can set a default if unset from the command line.)
  int numFrames = 50;
  int delta_k = 2;   // test space enrichment: should be 2 for 2D
  bool useMumpsIfAvailable  = true;
  bool convertSolutionsToVTK = false; // when true assumes we've already run with precisely the same options, except without VTK support (so we have a bunch of .soln files)
  bool usePeriodicBCs = false;
  bool useConstantConvection = false;

  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");

  cmdp.setOption("numCells",&numCells,"number of cells in x and y directions");
  cmdp.setOption("theta",&theta,"theta weight for time-stepping");
  cmdp.setOption("numTimeSteps",&numTimeSteps,"number of time steps");
  cmdp.setOption("numFrames",&numFrames,"number of frames for export");

  cmdp.setOption("usePeriodicBCs", "useDirichletBCs", &usePeriodicBCs);
  cmdp.setOption("useConstantConvection", "useVariableConvection", &useConstantConvection);

  cmdp.setOption("useCondensedSolve", "useUncondensedSolve", &useCondensedSolve, "use static condensation to reduce the size of the global solve");
  cmdp.setOption("useMumps", "useKLU", &useMumpsIfAvailable, "use MUMPS (if available)");
  cmdp.setOption("convertPreComputedSolutionsToVTK", "computeSolutions", &convertSolutionsToVTK);

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  bool saveSolutionFiles = true;

  if (numCells==-1) numCells = numGridPoints / k;

  if (rank==0)
  {
    cout << "solving on " << numCells << " x " << numCells << " mesh " << "of order " << k << ".\n";
  }

  set<int> timeStepsToExport;
  timeStepsToExport.insert(numTimeSteps);

  int timeStepsPerFrame = numTimeSteps / (numFrames - 1);
  if (timeStepsPerFrame==0) timeStepsPerFrame = 1;
  for (int n=0; n<numTimeSteps; n += timeStepsPerFrame)
  {
    timeStepsToExport.insert(n);
  }

  int H1Order = k + 1;

  const static double PI  = 3.141592653589793238462;

  double dt = 2 * PI / numTimeSteps;

  VarFactory varFactory;
  // traces:
  VarPtr qHat = varFactory.fluxVar("\\widehat{q}");

  // fields:
  VarPtr u = varFactory.fieldVar("u", L2);

  // test functions:
  VarPtr v = varFactory.testVar("v", HGRAD);

  FunctionPtr x = Function::xn(1);
  FunctionPtr y = Function::yn(1);

  FunctionPtr c;
  if (useConstantConvection)
  {
    c = Function::vectorize(Function::constant(0.5), Function::constant(0.5));
  }
  else
  {
    c = Function::vectorize(y-0.5, 0.5-x);
  }
//  FunctionPtr c = Function::vectorize(y, x);
  FunctionPtr n = Function::normal();

  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  bf->addTerm(u / dt, v);
  bf->addTerm(- theta * u, c * v->grad());
//  bf->addTerm(theta * u_hat, (c * n) * v);
  bf->addTerm(qHat, v);

  double width = 2.0, height = 2.0;
  int horizontalCells = numCells, verticalCells = numCells;
  double x0 = -0.5;
  double y0 = -0.5;

  if (usePeriodicBCs)
  {
    x0 = 0.0;
    y0 = 0.0;
    width = 1.0;
    height = 1.0;
  }

  BCPtr bc = BC::bc();

  SpatialFilterPtr inflowFilter  = Teuchos::rcp( new InflowFilterForClockwisePlanarRotation (x0,x0+width,y0,y0+height,0.5,0.5));

  vector< PeriodicBCPtr > periodicBCs;
  if (! usePeriodicBCs)
  {
    //  bc->addDirichlet(u_hat, SpatialFilter::allSpace(), Function::zero());
    bc->addDirichlet(qHat, inflowFilter, Function::zero()); // zero BCs enforced at the inflow boundary.
  }
  else
  {
    periodicBCs.push_back(PeriodicBC::xIdentification(x0, x0+width));
    periodicBCs.push_back(PeriodicBC::yIdentification(y0, y0+height));
  }

  MeshPtr mesh = MeshFactory::quadMeshMinRule(bf, H1Order, delta_k, width, height,
                 horizontalCells, verticalCells, false, x0, y0, periodicBCs);

  FunctionPtr u0 = Teuchos::rcp( new Cone_U0(0.0, 0.25, 0.1, 1.0, usePeriodicBCs) );

  RHSPtr initialRHS = RHS::rhs();
  initialRHS->addTerm(u0 / dt * v);
  initialRHS->addTerm((1-theta) * u0 * c * v->grad());

  IPPtr ip;
//  ip = Teuchos::rcp( new IP );
//  ip->addTerm(v);
//  ip->addTerm(c * v->grad());
  ip = bf->graphNorm();

  // create two Solution objects; we'll switch between these for time steps
  SolutionPtr soln0 = Solution::solution(mesh, bc, initialRHS, ip);
  soln0->setCubatureEnrichmentDegree(5);
  FunctionPtr u_soln0 = Function::solution(u, soln0);
  FunctionPtr qHat_soln0 = Function::solution(qHat, soln0);

  RHSPtr rhs1 = RHS::rhs();
  rhs1->addTerm(u_soln0 / dt * v);
  rhs1->addTerm((1-theta) * u_soln0 * c * v->grad());

  SolutionPtr soln1 = Solution::solution(mesh, bc, rhs1, ip);
  soln1->setCubatureEnrichmentDegree(5);
  FunctionPtr u_soln1 = Function::solution(u, soln1);
  FunctionPtr qHat_soln1 = Function::solution(qHat, soln1);

  RHSPtr rhs2 = RHS::rhs(); // after the first solve on soln0, we'll swap out initialRHS for rhs2
  rhs2->addTerm(u_soln1 / dt * v);
  rhs2->addTerm((1-theta) * u_soln1 * c * v->grad());

  Teuchos::RCP<Solver> solver = Teuchos::rcp( new KluSolver );

#ifdef HAVE_AMESOS_MUMPS
  if (useMumpsIfAvailable) solver = Teuchos::rcp( new MumpsSolver );
#endif

//  double energyErrorSum = 0;

  ostringstream filePrefix;
  filePrefix << "convectingCone_k" << k << "_t";
  int frameNumber = 0;

#ifdef USE_HDF5
  ostringstream dir_name;
  dir_name << "convectingCone_k" << k;
  HDF5Exporter exporter(mesh,dir_name.str());
#endif

#ifdef USE_VTK
  VTKExporter soln0Exporter(soln0,mesh,varFactory);
  VTKExporter soln1Exporter(soln1,mesh,varFactory);
#endif

  if (convertSolutionsToVTK)
  {
#ifdef USE_VTK
    if (rank==0)
    {
      cout << "Converting .soln files to VTK.\n";
      for (int frameNumber=0; frameNumber<=numFrames; frameNumber++)
      {
        ostringstream filename;
        filename << filePrefix.str() << frameNumber << ".soln";
        soln0->readFromFile(filename.str());
        filename.str("");
        filename << filePrefix.str() << frameNumber;
        soln0Exporter.exportFields(filename.str());
      }
    }
#else
    if (rank==0) cout << "Driver was built without USE_VTK defined.  This must be defined to convert solution files to VTK files.\n";
#endif
    exit(0);
  }

  if (timeStepsToExport.find(0) != timeStepsToExport.end())
  {
    map<int,FunctionPtr> solnMap;
    solnMap[u->ID()] = u0; // project field variables
    if (rank==0) cout << "About to project initial solution onto mesh.\n";
    soln0->projectOntoMesh(solnMap);
    if (rank==0) cout << "...projected initial solution onto mesh.\n";
    ostringstream filename;
    filename << filePrefix.str() << frameNumber++;
    if (rank==0) cout << "About to export initial solution.\n";
#ifdef USE_VTK
    if (rank==0) soln0Exporter.exportFields(filename.str());
#endif
#ifdef USE_HDF5
    exporter.exportSolution(soln0, varFactory,0);
#endif
    if (saveSolutionFiles)
    {
      if (rank==0)
      {
        filename << ".soln";
        soln0->writeToFile(filename.str());
        cout << endl << "wrote " << filename.str() << endl;
      }
    }
    if (rank==0) cout << "...exported initial solution.\n";
  }

  if (rank==0) cout << "About to solve initial time step.\n";
  // first time step:
  soln0->setReportTimingResults(true); // added to gain insight into why MPI blocks in some cases on the server...
  if (useCondensedSolve) soln0->condensedSolve(solver);
  else soln0->solve(solver);
  soln0->setReportTimingResults(false);
//  energyErrorSum += soln0->energyErrorTotal();
  soln0->setRHS(rhs2);
  if (rank==0) cout << "Solved initial time step.\n";

  if (timeStepsToExport.find(1) != timeStepsToExport.end())
  {
    ostringstream filename;
    filename << filePrefix.str() << frameNumber++;
#ifdef USE_VTK
    if (rank==0) soln0Exporter.exportFields(filename.str());
#endif
#ifdef USE_HDF5
    exporter.exportSolution(soln0, varFactory);
#endif
    if (saveSolutionFiles)
    {
      if (rank==0)
      {
        filename << ".soln";
        soln0->writeToFile(filename.str());
        cout << endl << "wrote " << filename.str() << endl;
      }
    }
  }

  bool reportTimings = false;

  for (int n=1; n<numTimeSteps; n++)
  {
    bool odd = (n%2)==1;
    SolutionPtr soln_n = odd ? soln1 : soln0;
    if (useCondensedSolve) soln_n->solve(solver);
    else soln_n->solve(solver);
    if (reportTimings)
    {
      if (rank==0) cout << "time step " << n << ", timing report:\n";
      soln_n->reportTimings();
    }
    if (rank==0)
    {
      cout << "\x1B[2K"; // Erase the entire current line.
      cout << "\x1B[0E"; // Move to the beginning of the current line.
      cout << "Solved time step: " << n;
      flush(cout);
    }
    if (timeStepsToExport.find(n+1)!=timeStepsToExport.end())
    {
      ostringstream filename;
      filename << filePrefix.str() << frameNumber++;
#ifdef USE_VTK
      if (rank==0)
      {
        if (odd)
        {
          soln1Exporter.exportFields(filename.str());
        }
        else
        {
          soln0Exporter.exportFields(filename.str());
        }
      }
#endif
#ifdef USE_HDF5
      double t = n * dt;
      if (odd)
      {
        exporter.exportSolution(soln1, varFactory, t);
      }
      else
      {
        exporter.exportSolution(soln0, varFactory, t);
      }
#endif
      if (saveSolutionFiles)
      {
        if (rank==0)
        {
          filename << ".soln";
          if (odd)
          {
            soln1->writeToFile(filename.str());
          }
          else
          {
            soln0->writeToFile(filename.str());
          }
          cout << endl << "wrote " << filename.str() << endl;
        }
      }
    }
//    energyErrorSum += soln_n->energyErrorTotal();
  }

//  if (rank==0) cout << "energy error, sum over all time steps: " << energyErrorSum << endl;

  return 0;
}
int main(int argc, char *argv[]) {
  // TODO: figure out the right thing to do here...
  // may want to modify argc and argv before we make the following call:
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
  
#ifdef HAVE_MPI
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args(argc, argv );
#endif
  
  int polyOrder, pToAdd;
  try {
    // read args:
    polyOrder = args.Input<int>("--polyOrder", "L^2 (field) polynomial order");
    pToAdd = args.Input<int>("--delta_p", "delta p for test enrichment", 2);
    args.Process();
  } catch ( choice::ArgException& e )
  {
    exit(0);
  }
  
  int H1Order = polyOrder + 1;
  
  bool useCompliantGraphNorm = false;   // weights to improve conditioning of the local problems
  bool useExtendedPrecisionForOptimalTestInversion = false;

  /////////////////////////// "VGP_CONFORMING" VERSION ///////////////////////

  // fluxes and traces:
  VarPtr u1hat, u2hat, t1n, t2n;
  // fields for SGP:
  VarPtr phi, p, sigma11, sigma12, sigma21, sigma22;
  // fields specific to VGP:
  VarPtr u1, u2;
  
  BFPtr stokesBF;
  IPPtr qoptIP;
  
  double mu = 1;
  
  FunctionPtr h = Teuchos::rcp( new hFunction() );
  
  VarPtr tau1,tau2,v1,v2,q;
  VarFactory varFactory;
  tau1 = varFactory.testVar("\\tau_1", HDIV);
  tau2 = varFactory.testVar("\\tau_2", HDIV);
  v1 = varFactory.testVar("v_1", HGRAD);
  v2 = varFactory.testVar("v_2", HGRAD);
  q = varFactory.testVar("q", HGRAD);
  
  u1hat = varFactory.traceVar("\\widehat{u}_1");
  u2hat = varFactory.traceVar("\\widehat{u}_2");
  
  t1n = varFactory.fluxVar("\\widehat{t_{1n}}");
  t2n = varFactory.fluxVar("\\widehat{t_{2n}}");
  if (!useCompliantGraphNorm) {
    u1 = varFactory.fieldVar("u_1");
    u2 = varFactory.fieldVar("u_2");
  } else {
    u1 = varFactory.fieldVar("u_1", HGRAD);
    u2 = varFactory.fieldVar("u_2", HGRAD);
  }
  sigma11 = varFactory.fieldVar("\\sigma_11");
  sigma12 = varFactory.fieldVar("\\sigma_12");
  sigma21 = varFactory.fieldVar("\\sigma_21");
  sigma22 = varFactory.fieldVar("\\sigma_22");
  p = varFactory.fieldVar("p");
  
  stokesBF = Teuchos::rcp( new BF(varFactory) );  
  // tau1 terms:
  stokesBF->addTerm(u1,tau1->div());
  stokesBF->addTerm(sigma11,tau1->x()); // (sigma1, tau1)
  stokesBF->addTerm(sigma12,tau1->y());
  stokesBF->addTerm(-u1hat, tau1->dot_normal());
  
  // tau2 terms:
  stokesBF->addTerm(u2, tau2->div());
  stokesBF->addTerm(sigma21,tau2->x()); // (sigma2, tau2)
  stokesBF->addTerm(sigma22,tau2->y());
  stokesBF->addTerm(-u2hat, tau2->dot_normal());
  
  // v1:
  stokesBF->addTerm(mu * sigma11,v1->dx()); // (mu sigma1, grad v1) 
  stokesBF->addTerm(mu * sigma12,v1->dy());
  stokesBF->addTerm( - p, v1->dx() );
  stokesBF->addTerm( -t1n, v1);
  
  // v2:
  stokesBF->addTerm(mu * sigma21,v2->dx()); // (mu sigma2, grad v2)
  stokesBF->addTerm(mu * sigma22,v2->dy());
  stokesBF->addTerm( -p, v2->dy());
  stokesBF->addTerm( -t2n, v2);
  
  // q:
  stokesBF->addTerm(-u1,q->dx()); // (-u, grad q)
  stokesBF->addTerm(-u2,q->dy());
  stokesBF->addTerm(u1hat->times_normal_x() + u2hat->times_normal_y(), q);
  
  if (rank==0)
    stokesBF->printTrialTestInteractions();
  
  stokesBF->setUseExtendedPrecisionSolveForOptimalTestFunctions(useExtendedPrecisionForOptimalTestInversion);

  mesh = MeshFactory::quadMesh(stokesBF, H1Order, pToAdd);
  
  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  
  ////////////////////   CREATE RHS   ///////////////////////
  RHSPtr rhs = RHS::rhs(); // zero for now...
  
  IPPtr ip;
  
  qoptIP = Teuchos::rcp(new IP());
      
  if (useCompliantGraphNorm) {
    qoptIP->addTerm( mu * v1->dx() + tau1->x() ); // sigma11
    qoptIP->addTerm( mu * v1->dy() + tau1->y() ); // sigma12
    qoptIP->addTerm( mu * v2->dx() + tau2->x() ); // sigma21
    qoptIP->addTerm( mu * v2->dy() + tau2->y() ); // sigma22
    qoptIP->addTerm( mu * v1->dx() + mu * v2->dy() );   // pressure
    qoptIP->addTerm( h * tau1->div() - h * q->dx() );   // u1
    qoptIP->addTerm( h * tau2->div() - h * q->dy());    // u2
    
    qoptIP->addTerm( (mu / h) * v1 );
    qoptIP->addTerm( (mu / h) * v2 );
    qoptIP->addTerm( q );
    qoptIP->addTerm( tau1 );
    qoptIP->addTerm( tau2 );
  } else { // standard graph norm, then
    qoptIP = stokesBF->graphNorm();
  }

  ip = qoptIP;
  
  if (rank==0) 
    ip->printInteractions();
  
  // aim is just to answer one simple question:
  // have I figured out a trial-space preimage for optimal test function (q=1, tau=0, v=0)?
  
  SolutionPtr soln = Teuchos::rcp(new Solution(mesh));
  
  FunctionPtr x = Function::xn();
  FunctionPtr y = Function::yn();
  
  // u1 = u1_hat = x / 2
  FunctionPtr u1_exact = x / 2;
  
  // u2 = u2_hat = y / 2
  FunctionPtr u2_exact = y / 2;
  
  // sigma = 0.5 * I
  FunctionPtr sigma11_exact = Function::constant(0.5);
  FunctionPtr sigma22_exact = Function::constant(0.5);
  
  // tn_hat = 0.5 * n
  FunctionPtr n = Function::normal();
  FunctionPtr t1n_exact = n->x() / 2;
  FunctionPtr t2n_exact = n->y() / 2;
  
  map<int, FunctionPtr > exact_soln;
  exact_soln[u1->ID()] = u1_exact;
  exact_soln[u1hat->ID()] = u1_exact;
  exact_soln[u2->ID()] = u2_exact;
  exact_soln[u2hat->ID()] = u2_exact;
  exact_soln[sigma11->ID()] = sigma11_exact;
  exact_soln[sigma22->ID()] = sigma22_exact;
  exact_soln[t1n->ID()] = t1n_exact;
  exact_soln[t2n->ID()] = t2n_exact;
  
  exact_soln[p->ID()] = Function::zero();
  exact_soln[sigma12->ID()] = Function::zero();
  exact_soln[sigma21->ID()] = Function::zero();
  
  soln->projectOntoMesh(exact_soln);
  
  LinearTermPtr soln_functional = stokesBF->testFunctional(soln);
  
  RieszRepPtr rieszRep = Teuchos::rcp( new RieszRep(mesh, ip, soln_functional) );
  
  rieszRep->computeRieszRep();
  
  // get test functions:
  FunctionPtr q_fxn = Teuchos::rcp( new RepFunction(q, rieszRep) );
  FunctionPtr v1_fxn = Teuchos::rcp( new RepFunction(v1, rieszRep) );
  FunctionPtr v2_fxn = Teuchos::rcp( new RepFunction(v2, rieszRep) );
  FunctionPtr tau1_fxn = Teuchos::rcp( new RepFunction(tau1, rieszRep) );
  FunctionPtr tau2_fxn = Teuchos::rcp( new RepFunction(tau2, rieszRep) );
  
  cout << "L2 norm of (q-1) : " << (q_fxn - 1)->l2norm(mesh) << endl;
  cout << "L2 norm of (v1) : " << (v1_fxn)->l2norm(mesh) << endl;
  cout << "L2 norm of (v2) : " << (v2_fxn)->l2norm(mesh) << endl;
  cout << "L2 norm of (tau1) : " << (tau1_fxn)->l2norm(mesh) << endl;
  cout << "L2 norm of (tau2) : " << (tau2_fxn)->l2norm(mesh) << endl;
  
  VTKExporter exporter(soln, mesh, varFactory);
  exporter.exportSolution("conservationPreimage", H1Order*2);

  cout << "Checking that the soln_functional is what I expect:\n";
  
  FunctionPtr xyVector = Function::vectorize(x, y);
  
  cout << "With v1 = x, integral: " << integralOverMesh(soln_functional, v1, x) << endl;
  cout << "With v2 = y, integral: " << integralOverMesh(soln_functional, v2, y) << endl;
  cout << "With tau1=(x,y), integral: " << integralOverMesh(soln_functional, tau1, xyVector) << endl;
  cout << "With tau2=(x,y), integral: " << integralOverMesh(soln_functional, tau2, xyVector) << endl;
  cout << "With q   =x, integral: " << integralOverMesh(soln_functional, q, x) << endl;
  
  cout << "(Expect 0s all around, except for q, where we expect (1,x) == 0.5.)\n";
  return 0;
}
示例#15
0
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("sigma1");
  VarPtr sigma2 = varFactory.fieldVar("sigma2");

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma1, tau->x());
  bf->addTerm(sigma2, tau->y());
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma1, v->dx() );
  bf->addTerm( sigma2, v->dy() );
  bf->addTerm( -sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = bf->graphNorm();

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );

  SpatialFilterPtr inflow = Teuchos::rcp( new Inflow );
  bc->addDirichlet(uhat, inflow, zero);

  SpatialFilterPtr leadingWedge = Teuchos::rcp( new LeadingWedge );
  bc->addDirichlet(uhat, leadingWedge, zero);

  SpatialFilterPtr trailingWedge = Teuchos::rcp( new TrailingWedge );
  bc->addDirichlet(sigma_n, trailingWedge, zero);
  // bc->addDirichlet(uhat, trailingWedge, zero);

  SpatialFilterPtr top = Teuchos::rcp( new Top );
  bc->addDirichlet(uhat, top, zero);

  SpatialFilterPtr outflow = Teuchos::rcp( new Outflow );
  bc->addDirichlet(uhat, outflow, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  bool allQuads = true;
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  vector< FieldContainer<double> > vertices;
  FieldContainer<double> pt(2);
  vector< vector<int> > elementIndices;
  vector<int> q(4);
  vector<int> t(3);

  if (allQuads)
  {
    pt(0) = -halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);

    q[0] = 0;
    q[1] = 1;
    q[2] = 4;
    q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 1;
    q[1] = 2;
    q[2] = 3;
    q[3] = 4;
    elementIndices.push_back(q);
  }
  else
  {
    pt(0) = -halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  0;
    vertices.push_back(pt);

    t[0] = 0;
    t[1] = 1;
    t[2] = 7;
    elementIndices.push_back(t);
    t[0] = 1;
    t[1] = 2;
    t[2] = 3;
    elementIndices.push_back(t);
    q[0] = 1;
    q[1] = 3;
    q[2] = 4;
    q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 7;
    q[1] = 1;
    q[2] = 5;
    q[3] = 6;
    elementIndices.push_back(q);
  }

  Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh(vertices, elementIndices, bf, H1Order, pToAdd) );

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    if (rank==0)
    {
      stringstream outfile;
      outfile << "poissonwedge_" << refIndex;
      solution->writeToVTK(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
    {
      // refinementStrategy.refine(rank==0); // print to console on rank 0
      vector<int> cellsToRefine;
      vector<int> cells_h;
      vector<int> cells_p;
      refinementStrategy.getCellsAboveErrorThreshhold(cellsToRefine);
      for (int i=0; i < cellsToRefine.size(); i++)
        if (sqrt(mesh->getCellMeasure(cellsToRefine[i])) < 1e-3)
        {
          int pOrder = mesh->cellPolyOrder(cellsToRefine[i]);
          if (allQuads)
            cells_p.push_back(cellsToRefine[i]);
          else if (pOrder < 8)
            cells_p.push_back(cellsToRefine[i]);
          else
            cout << "Reached cell size and polynomial order limits" << endl;
          //   cells_h.push_back(cellsToRefine[i]);
        }
        else
          cells_h.push_back(cellsToRefine[i]);
      refinementStrategy.pRefineCells(mesh, cells_p);
      refinementStrategy.hRefineCells(mesh, cells_h);
    }
  }

  return 0;
}
示例#16
0
int main(int argc, char *argv[])
{
  // Process command line arguments
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr beta_n_u_hat = varFactory.fluxVar("\\widehat{\\beta \\cdot n }");
  VarPtr u = varFactory.fieldVar("u");

  FunctionPtr beta = Teuchos::rcp(new Beta());

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) = -1.0; // x1
  meshBoundary(0,1) = -1.0; // y1
  meshBoundary(1,0) =  1.0;
  meshBoundary(1,1) = -1.0;
  meshBoundary(2,0) =  1.0;
  meshBoundary(2,1) =  1.0;
  meshBoundary(3,0) = -1.0;
  meshBoundary(3,1) =  1.0;

  int horizontalCells = 32, verticalCells = 32;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
                            confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );
  SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );

  FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) );

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt));

  // v terms:
  confusionBF->addTerm( beta * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_hat, v);

  confusionBF->addTerm( u, invDt*v );
  rhs->addTerm( u_prev_time * invDt * v );

  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // robust test norm
  IPPtr ip = confusionBF->graphNorm();
  // IPPtr ip = Teuchos::rcp(new IP);
  // ip->addTerm(v);
  // ip->addTerm(invDt*v - beta*v->grad());

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary(beta) );
  FunctionPtr u0 = Teuchos::rcp( new ConstantScalarFunction(0) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  bc->addDirichlet(beta_n_u_hat, inflowBoundary, beta*n*u0);

  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow);
  mesh->registerSolution(flowResidual);

  // ==================== SET INITIAL GUESS ==========================
  FunctionPtr u_init = Teuchos::rcp(new InitialCondition());
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()]      = u_init;

  prevTimeFlow->projectOntoMesh(functionMap);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  // if (enforceLocalConservation) {
  //   // FunctionPtr parity = Teuchos::rcp<Function>( new SideParityFunction );
  //   // LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(parity, beta_n_u_minus_sigma_n) );
  //   LinearTermPtr conservedQuantity = Teuchos::rcp<LinearTerm>( new LinearTerm(1.0, beta_n_u_minus_sigma_n) );
  //   LinearTermPtr sourcePart = Teuchos::rcp<LinearTerm>( new LinearTerm(invDt, u) );
  //   conservedQuantity->addTerm(sourcePart, true);
  //   solution->lagrangeConstraints()->addConstraint(conservedQuantity == u_prev_time * invDt);
  // }

  int timestepCount = 0;
  double time_tol = 1e-8;
  double L2_time_residual = 1e9;
  while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
  {
    solution->solve(false);
    // Subtract solutions to get residual
    flowResidual->setSolution(solution);
    flowResidual->addSolution(prevTimeFlow, -1.0);
    L2_time_residual = flowResidual->L2NormOfSolutionGlobal(u->ID());

    if (rank == 0)
    {
      cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;

      stringstream outfile;
      outfile << "rotatingCylinder_" << timestepCount;
      solution->writeToVTK(outfile.str(), 5);

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_hat) );
      FunctionPtr source = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      source = invDt * source;
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, source, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
    timestepCount++;
  }

  return 0;
}
示例#17
0
int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);

  Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
  Epetra_SerialComm Comm;
#endif

  int commRank = Teuchos::GlobalMPISession::getRank();

  Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to.

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  // problem parameters:
  double mu = 0.1;
  double permCoef = 1e4;
  int numRefs = 0;
  int k = 2, delta_k = 2;
  string norm = "Graph";
  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("numRefs",&numRefs,"number of refinements");
  cmdp.setOption("norm", &norm, "norm");
  cmdp.setOption("mu", &mu, "mu");
  cmdp.setOption("permCoef", &permCoef, "Permeability coefficient");

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  FunctionPtr zero = TFunction<double>::zero();
  FunctionPtr one = TFunction<double>::constant(1);
  FunctionPtr sin2pix = Teuchos::rcp( new Sin_ax(2*pi) );
  FunctionPtr cos2pix = Teuchos::rcp( new Cos_ax(2*pi) );
  FunctionPtr sin2piy = Teuchos::rcp( new Sin_ay(2*pi) );
  FunctionPtr cos2piy = Teuchos::rcp( new Cos_ay(2*pi) );
  FunctionPtr u1_exact = sin2pix*cos2piy;
  FunctionPtr u2_exact = -cos2pix*sin2piy;
  FunctionPtr x2 = TFunction<double>::xn(2);
  FunctionPtr y2 = TFunction<double>::yn(2);
  FunctionPtr p_exact = x2*y2 - 1./9;
  FunctionPtr permInv = permCoef*(sin2pix + 1.1);

  VarFactoryPtr vf = VarFactory::varFactory();
  //fields:
  VarPtr sigma1 = vf->fieldVar("sigma1", VECTOR_L2);
  VarPtr sigma2 = vf->fieldVar("sigma2", VECTOR_L2);
  VarPtr u1 = vf->fieldVar("u1", L2);
  VarPtr u2 = vf->fieldVar("u2", L2);
  VarPtr p = vf->fieldVar("p", L2);

  // traces:
  VarPtr u1hat = vf->traceVar("u1hat");
  VarPtr u2hat = vf->traceVar("u2hat");
  VarPtr t1c = vf->fluxVar("t1c");
  VarPtr t2c = vf->fluxVar("t2c");

  // test:
  VarPtr v1 = vf->testVar("v1", HGRAD);
  VarPtr v2 = vf->testVar("v2", HGRAD);
  VarPtr tau1 = vf->testVar("tau1", HDIV);
  VarPtr tau2 = vf->testVar("tau2", HDIV);
  VarPtr q = vf->testVar("q", HGRAD);

  BFPtr bf = Teuchos::rcp( new BF(vf) );

  bf->addTerm(1./mu*sigma1, tau1);
  bf->addTerm(1./mu*sigma2, tau2);
  bf->addTerm(u1, tau1->div());
  bf->addTerm(u2, tau2->div());
  bf->addTerm(-u1hat, tau1->dot_normal());
  bf->addTerm(-u2hat, tau2->dot_normal());

  bf->addTerm(sigma1, v1->grad());
  bf->addTerm(sigma2, v2->grad());
  bf->addTerm(-p, v1->dx());
  bf->addTerm(-p, v2->dy());
  bf->addTerm(t1c, v1);
  bf->addTerm(t2c, v2);
  bf->addTerm(mu*permInv*u1, v1);
  bf->addTerm(mu*permInv*u2, v2);

  bf->addTerm(-u1, q->dx());
  bf->addTerm(-u2, q->dy());
  bf->addTerm(u1hat, q->times_normal_x());
  bf->addTerm(u2hat, q->times_normal_y());

  RHSPtr rhs = RHS::rhs();

  BCPtr bc = BC::bc();

  SpatialFilterPtr y_equals_one = SpatialFilter::matchingY(1.0);
  SpatialFilterPtr y_equals_zero = SpatialFilter::matchingY(0);
  SpatialFilterPtr x_equals_one = SpatialFilter::matchingX(1.0);
  SpatialFilterPtr x_equals_zero = SpatialFilter::matchingX(0.0);
  bc->addDirichlet(u1hat, y_equals_zero, u1_exact);
  bc->addDirichlet(u2hat, y_equals_zero, u2_exact);
  bc->addDirichlet(u1hat, x_equals_zero, u1_exact);
  bc->addDirichlet(u2hat, x_equals_zero, u2_exact);
  bc->addDirichlet(u1hat, y_equals_one, u1_exact);
  bc->addDirichlet(u2hat, y_equals_one, u2_exact);
  bc->addDirichlet(u1hat, x_equals_one, u1_exact);
  bc->addDirichlet(u2hat, x_equals_one, u2_exact);
  bc->addZeroMeanConstraint(p);

  MeshPtr mesh = MeshFactory::quadMesh(bf, k+1, delta_k, 1, 1, 4, 4);

  map<string, IPPtr> brinkmanIPs;
  brinkmanIPs["Graph"] = bf->graphNorm();

  brinkmanIPs["Decoupled"] = Teuchos::rcp(new IP);
  brinkmanIPs["Decoupled"]->addTerm(tau1);
  brinkmanIPs["Decoupled"]->addTerm(tau2);
  brinkmanIPs["Decoupled"]->addTerm(tau1->div());
  brinkmanIPs["Decoupled"]->addTerm(tau2->div());
  brinkmanIPs["Decoupled"]->addTerm(permInv*v1);
  brinkmanIPs["Decoupled"]->addTerm(permInv*v2);
  brinkmanIPs["Decoupled"]->addTerm(v1->grad());
  brinkmanIPs["Decoupled"]->addTerm(v2->grad());
  brinkmanIPs["Decoupled"]->addTerm(q);
  brinkmanIPs["Decoupled"]->addTerm(q->grad());

  // brinkmanIPs["CoupledRobust"] = Teuchos::rcp(new IP);
  // brinkmanIPs["CoupledRobust"]->addTerm(tau->div()-beta*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(one/Function<double>::h(),Function<double>::constant(1./sqrt(epsilon)))*tau);
  // brinkmanIPs["CoupledRobust"]->addTerm(sqrt(epsilon)*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(beta*v->grad());
  // brinkmanIPs["CoupledRobust"]->addTerm(Function<double>::min(sqrt(epsilon)*one/Function<double>::h(),one)*v);

  IPPtr ip = brinkmanIPs[norm];

  SolutionPtr soln = TSolution<double>::solution(mesh, bc, rhs, ip);

  double threshold = 0.20;
  RefinementStrategy refStrategy(soln, threshold);

  ostringstream refName;
  refName << "brinkman";
  HDF5Exporter exporter(mesh,refName.str());

  for (int refIndex=0; refIndex <= numRefs; refIndex++)
  {
    soln->solve(false);

    double energyError = soln->energyErrorTotal();
    if (commRank == 0)
    {
      // if (refIndex > 0)
      // refStrategy.printRefinementStatistics(refIndex-1);
      cout << "Refinement:\t " << refIndex << " \tElements:\t " << mesh->numActiveElements()
           << " \tDOFs:\t " << mesh->numGlobalDofs() << " \tEnergy Error:\t " << energyError << endl;
    }

    exporter.exportSolution(soln, refIndex);

    if (refIndex != numRefs)
      refStrategy.refine();
  }

  return 0;
}
示例#18
0
int main(int argc, char *argv[])
{
#ifdef ENABLE_INTEL_FLOATING_POINT_EXCEPTIONS
  cout << "NOTE: enabling floating point exceptions for divide by zero.\n";
  _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~_MM_MASK_INVALID);
#endif

  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
  int rank = Teuchos::GlobalMPISession::getRank();

#ifdef HAVE_MPI
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
  //cout << "rank: " << rank << " of " << numProcs << endl;
#else
  Epetra_SerialComm Comm;
#endif

  Comm.Barrier(); // set breakpoint here to allow debugger attachment to other MPI processes than the one you automatically attached to.

  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options

  double minTol = 1e-8;

  bool use3D = false;
  int refCount = 10;

  int k = 4; // poly order for field variables
  int delta_k = use3D ? 3 : 2;   // test space enrichment
  int k_coarse = 0;

  bool useMumps = true;
  bool useGMGSolver = true;

  bool enforceOneIrregularity = true;
  bool useStaticCondensation = false;
  bool conformingTraces = false;
  bool useDiagonalScaling = false; // of the global stiffness matrix in GMGSolver

  bool printRefinementDetails = false;

  bool useWeightedGraphNorm = true; // graph norm scaled according to units, more or less

  int numCells = 2;

  int AztecOutputLevel = 1;
  int gmgMaxIterations = 10000;
  int smootherOverlap = 0;
  double relativeTol = 1e-6;
  double D = 1.0; // characteristic length scale

  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("k_coarse", &k_coarse, "polynomial order for field variables on coarse mesh");
  cmdp.setOption("numRefs",&refCount,"number of refinements");
  cmdp.setOption("D", &D, "domain dimension");
  cmdp.setOption("useConformingTraces", "useNonConformingTraces", &conformingTraces);
  cmdp.setOption("enforceOneIrregularity", "dontEnforceOneIrregularity", &enforceOneIrregularity);

  cmdp.setOption("smootherOverlap", &smootherOverlap, "overlap for smoother");

  cmdp.setOption("printRefinementDetails", "dontPrintRefinementDetails", &printRefinementDetails);
  cmdp.setOption("azOutput", &AztecOutputLevel, "Aztec output level");
  cmdp.setOption("numCells", &numCells, "number of cells in the initial mesh");
  cmdp.setOption("useScaledGraphNorm", "dontUseScaledGraphNorm", &useWeightedGraphNorm);
//  cmdp.setOption("gmgTol", &gmgTolerance, "tolerance for GMG convergence");
  cmdp.setOption("relativeTol", &relativeTol, "Energy error-relative tolerance for iterative solver.");
  cmdp.setOption("gmgMaxIterations", &gmgMaxIterations, "tolerance for GMG convergence");

  bool enhanceUField = false;
  cmdp.setOption("enhanceUField", "dontEnhanceUField", &enhanceUField);
  cmdp.setOption("useStaticCondensation", "dontUseStaticCondensation", &useStaticCondensation);

  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL)
  {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }

  double width = D, height = D, depth = D;

  VarFactory varFactory;
  // fields:
  VarPtr u = varFactory.fieldVar("u", L2);
  VarPtr sigma = varFactory.fieldVar("\\sigma", VECTOR_L2);

  FunctionPtr n = Function::normal();
  // traces:
  VarPtr u_hat;

  if (conformingTraces)
  {
    u_hat = varFactory.traceVar("\\widehat{u}", u);
  }
  else
  {
    cout << "Note: using non-conforming traces.\n";
    u_hat = varFactory.traceVar("\\widehat{u}", u, L2);
  }
  VarPtr sigma_n_hat = varFactory.fluxVar("\\widehat{\\sigma}_{n}", sigma * n);

  // test functions:
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  BFPtr poissonBF = Teuchos::rcp( new BF(varFactory) );
  FunctionPtr alpha = Function::constant(1); // viscosity

  // tau terms:
  poissonBF->addTerm(sigma / alpha, tau);
  poissonBF->addTerm(-u, tau->div()); // (sigma1, tau1)
  poissonBF->addTerm(u_hat, tau * n);

  // v terms:
  poissonBF->addTerm(- sigma, v->grad()); // (mu sigma1, grad v1)
  poissonBF->addTerm( sigma_n_hat, v);

  int horizontalCells = numCells, verticalCells = numCells, depthCells = numCells;

  vector<double> domainDimensions;
  domainDimensions.push_back(width);
  domainDimensions.push_back(height);

  vector<int> elementCounts;
  elementCounts.push_back(horizontalCells);
  elementCounts.push_back(verticalCells);

  if (use3D)
  {
    domainDimensions.push_back(depth);
    elementCounts.push_back(depthCells);
  }

  MeshPtr mesh, k0Mesh;

  int H1Order = k + 1;
  int H1Order_coarse = k_coarse + 1;
  if (!use3D)
  {
    Teuchos::ParameterList pl;

    map<int,int> trialOrderEnhancements;

    if (enhanceUField)
    {
      trialOrderEnhancements[u->ID()] = 1;
    }

    BFPtr poissonBilinearForm = poissonBF;

    pl.set("useMinRule", true);
    pl.set("bf",poissonBilinearForm);
    pl.set("H1Order", H1Order);
    pl.set("delta_k", delta_k);
    pl.set("horizontalElements", horizontalCells);
    pl.set("verticalElements", verticalCells);
    pl.set("divideIntoTriangles", false);
    pl.set("useConformingTraces", conformingTraces);
    pl.set("trialOrderEnhancements", &trialOrderEnhancements);
    pl.set("x0",(double)0);
    pl.set("y0",(double)0);
    pl.set("width", width);
    pl.set("height",height);

    mesh = MeshFactory::quadMesh(pl);

    pl.set("H1Order", H1Order_coarse);
    k0Mesh = MeshFactory::quadMesh(pl);

  }
  else
  {
    mesh = MeshFactory::rectilinearMesh(poissonBF, domainDimensions, elementCounts, H1Order, delta_k);
    k0Mesh = MeshFactory::rectilinearMesh(poissonBF, domainDimensions, elementCounts, H1Order_coarse, delta_k);
  }

  mesh->registerObserver(k0Mesh); // ensure that the k0 mesh refinements track those of the solution mesh

  RHSPtr rhs = RHS::rhs(); // zero
  FunctionPtr sin_pi_x = Teuchos::rcp( new Sin_ax(PI/D) );
  FunctionPtr sin_pi_y = Teuchos::rcp( new Sin_ay(PI/D) );
  FunctionPtr u_exact = sin_pi_x * sin_pi_y;
  FunctionPtr f = -(2.0 * PI * PI / (D * D)) * sin_pi_x * sin_pi_y;
  rhs->addTerm( f * v );

  BCPtr bc = BC::bc();
  SpatialFilterPtr boundary = SpatialFilter::allSpace();

  bc->addDirichlet(u_hat, boundary, u_exact);

  IPPtr graphNorm;

  FunctionPtr h = Teuchos::rcp( new hFunction() );

  if (useWeightedGraphNorm)
  {
    graphNorm = IP::ip();
    graphNorm->addTerm( tau->div() ); // u
    graphNorm->addTerm( (h / alpha) * tau - h * v->grad() ); // sigma
    graphNorm->addTerm( v ); // boundary term (adjoint to u)
    graphNorm->addTerm( h * tau );

//    // new effort, with the idea that the test norm should be considered in reference space, basically
//    graphNorm = IP::ip();
//    graphNorm->addTerm( tau->div() ); // u
//    graphNorm->addTerm( tau / h - v->grad() ); // sigma
//    graphNorm->addTerm( v / h ); // boundary term (adjoint to u)
//    graphNorm->addTerm( tau / h );
  }
  else
  {
    map<int, double> trialWeights; // on the squared terms in the trial space norm
    trialWeights[u->ID()] = 1.0 / (D * D);
    trialWeights[sigma->ID()] = 1.0;
    graphNorm = poissonBF->graphNorm(trialWeights, 1.0); // 1.0: weight on the L^2 terms
  }

  SolutionPtr solution = Solution::solution(mesh, bc, rhs, graphNorm);
  solution->setUseCondensedSolve(useStaticCondensation);

  mesh->registerSolution(solution); // sign up for projection of old solution onto refined cells.

  double energyThreshold = 0.2;
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  refinementStrategy.setReportPerCellErrors(true);
  refinementStrategy.setEnforceOneIrregularity(enforceOneIrregularity);

  Teuchos::RCP<Solver> coarseSolver, fineSolver;
  if (useMumps)
  {
#ifdef HAVE_AMESOS_MUMPS
    coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) );
#else
    cout << "useMumps=true, but MUMPS is not available!\n";
    exit(0);
#endif
  }
  else
  {
    coarseSolver = Teuchos::rcp( new KluSolver );
  }
  GMGSolver* gmgSolver;

  if (useGMGSolver)
  {
    double tol = relativeTol;
    int maxIters = gmgMaxIterations;
    BCPtr zeroBCs = bc->copyImposingZero();
    gmgSolver = new GMGSolver(zeroBCs, k0Mesh, graphNorm, mesh, solution->getDofInterpreter(),
                              solution->getPartitionMap(), maxIters, tol, coarseSolver,
                              useStaticCondensation);

    gmgSolver->setAztecOutput(AztecOutputLevel);
    gmgSolver->setUseConjugateGradient(true);
    gmgSolver->gmgOperator()->setSmootherType(GMGOperator::IFPACK_ADDITIVE_SCHWARZ);
    gmgSolver->gmgOperator()->setSmootherOverlap(smootherOverlap);

    fineSolver = Teuchos::rcp( gmgSolver );
  }
  else
  {
    fineSolver = coarseSolver;
  }

//  if (rank==0) cout << "experimentally starting by solving with MUMPS on the fine mesh.\n";
//  solution->solve( Teuchos::rcp( new MumpsSolver) );

  solution->solve(fineSolver);

#ifdef HAVE_EPETRAEXT_HDF5
  ostringstream dir_name;
  dir_name << "poissonCavityFlow_k" << k;
  HDF5Exporter exporter(mesh,dir_name.str());
  exporter.exportSolution(solution,varFactory,0);
#endif

#ifdef HAVE_AMESOS_MUMPS
  if (useMumps) coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) );
#endif

  solution->reportTimings();
  if (useGMGSolver) gmgSolver->gmgOperator()->reportTimings();
  for (int refIndex=0; refIndex < refCount; refIndex++)
  {
    double energyError = solution->energyErrorTotal();
    GlobalIndexType numFluxDofs = mesh->numFluxDofs();
    if (rank==0)
    {
      cout << "Before refinement " << refIndex << ", energy error = " << energyError;
      cout << " (using " << numFluxDofs << " trace degrees of freedom)." << endl;
    }
    bool printToConsole = printRefinementDetails && (rank==0);
    refinementStrategy.refine(printToConsole);

    if (useStaticCondensation)
    {
      CondensedDofInterpreter* condensedDofInterpreter = dynamic_cast<CondensedDofInterpreter*>(solution->getDofInterpreter().get());
      if (condensedDofInterpreter != NULL)
      {
        condensedDofInterpreter->reinitialize();
      }
    }

    GlobalIndexType fineDofs = mesh->globalDofCount();
    GlobalIndexType coarseDofs = k0Mesh->globalDofCount();
    if (rank==0)
    {
      cout << "After refinement, coarse mesh has " << k0Mesh->numActiveElements() << " elements and " << coarseDofs << " dofs.\n";
      cout << "  Fine mesh has " << mesh->numActiveElements() << " elements and " << fineDofs << " dofs.\n";
    }

    if (!use3D)
    {
      ostringstream fineMeshLocation, coarseMeshLocation;
      fineMeshLocation << "poissonFineMesh_k" << k << "_ref" << refIndex;
      GnuPlotUtil::writeComputationalMeshSkeleton(fineMeshLocation.str(), mesh, true); // true: label cells
      coarseMeshLocation << "poissonCoarseMesh_k" << k << "_ref" << refIndex;
      GnuPlotUtil::writeComputationalMeshSkeleton(coarseMeshLocation.str(), k0Mesh, true); // true: label cells
    }

    if (useGMGSolver)   // create fresh fineSolver now that the meshes have changed:
    {
#ifdef HAVE_AMESOS_MUMPS
      if (useMumps) coarseSolver = Teuchos::rcp( new MumpsSolver(512, true) );
#endif
      double tol = max(relativeTol * energyError, minTol);
      int maxIters = gmgMaxIterations;
      BCPtr zeroBCs = bc->copyImposingZero();
      gmgSolver = new GMGSolver(zeroBCs, k0Mesh, graphNorm, mesh, solution->getDofInterpreter(),
                                solution->getPartitionMap(), maxIters, tol, coarseSolver, useStaticCondensation);
      gmgSolver->setAztecOutput(AztecOutputLevel);
      gmgSolver->setUseDiagonalScaling(useDiagonalScaling);
      fineSolver = Teuchos::rcp( gmgSolver );
    }

    solution->solve(fineSolver);
    solution->reportTimings();
    if (useGMGSolver) gmgSolver->gmgOperator()->reportTimings();

#ifdef HAVE_EPETRAEXT_HDF5
    exporter.exportSolution(solution,varFactory,refIndex+1);
#endif
  }
  double energyErrorTotal = solution->energyErrorTotal();

  GlobalIndexType numFluxDofs = mesh->numFluxDofs();
  GlobalIndexType numGlobalDofs = mesh->numGlobalDofs();
  if (rank==0)
  {
    cout << "Final mesh has " << mesh->numActiveElements() << " elements and " << numFluxDofs << " trace dofs (";
    cout << numGlobalDofs << " total dofs, including fields).\n";
    cout << "Final energy error: " << energyErrorTotal << endl;
  }

#ifdef HAVE_EPETRAEXT_HDF5
  exporter.exportSolution(solution,varFactory,0);
#endif

  if (!use3D)
  {
    GnuPlotUtil::writeComputationalMeshSkeleton("poissonRefinedMesh", mesh, true);
  }

  coarseSolver = Teuchos::rcp((Solver*) NULL); // without this when useMumps = true and running on one rank, we see a crash on exit, which may have to do with MPI being finalized before coarseSolver is deleted.

  return 0;
}
示例#19
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int commRank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  // Required arguments
  double epsilon = args.Input<double>("--epsilon", "diffusion parameter");
  int numRefs = args.Input<int>("--numRefs", "number of refinement steps");
  bool enforceLocalConservation = args.Input<bool>("--conserve", "enforce local conservation");
  int norm = args.Input<int>("--norm", "0 = graph\n    1 = robust\n    2 = modified robust");

  // Optional arguments (have defaults)
  bool zeroL2 = args.Input("--zeroL2", "take L2 term on v in robust norm to zero", true);
  args.Process();

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr fhat = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma = varFactory.fieldVar("sigma", VECTOR_L2);

  ////////////////////   BUILD MESH   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) = 0.0; // x1
  meshBoundary(0,1) = 0.0; // y1
  meshBoundary(1,0) = 1.0;
  meshBoundary(1,1) = 0.0;
  meshBoundary(2,0) = 1.0;
  meshBoundary(2,1) = 1.0;
  meshBoundary(3,0) = 0.0;
  meshBoundary(3,1) = 1.0;

  int horizontalCells = 4, verticalCells = 4;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
      bf, H1Order, H1Order+pToAdd, false);

  vector<double> beta;
  beta.push_back(2.0);
  beta.push_back(1.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  // tau terms:
  bf->addTerm(sigma / epsilon, tau);
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma, v->grad() );
  bf->addTerm( beta * u, - v->grad() );
  bf->addTerm( fhat, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);
  if (norm == 0)
  {
    ip = bf->graphNorm();
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Robust norm
  else if (norm == 1)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    // Weight these two terms for inflow
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }
  // Modified robust norm
  else if (norm == 2)
  {
    // robust test norm
    FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling );
    // FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
    if (!zeroL2)
      ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm( beta * v->grad() );
    ip->addTerm( tau->div() - beta*v->grad() );
    ip->addTerm( ip_scaling/sqrt(epsilon) * tau );
    if (zeroL2)
      ip->addZeroMeanTerm( h2_scaling*v );
  }

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowBoundary );
  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, outflowBoundary, u0);

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(fhat, inflowBoundary, beta*n*u0);

  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
  // pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  // solution->setFilter(pc);

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(fhat == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );
  VTKExporter exporter(solution, mesh, varFactory);
  ofstream errOut;
  if (commRank == 0)
    errOut.open("confusion_err.txt");

  for (int refIndex=0; refIndex<=numRefs; refIndex++){
    solution->solve(false);

    double energy_error = solution->energyErrorTotal();
    if (commRank==0){
      stringstream outfile;
      outfile << "confusion_" << refIndex;
      exporter.exportSolution(outfile.str());
      // solution->writeToVTK(outfile.str());

      // Check local conservation
      FunctionPtr flux = Function::solution(fhat, solution);
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
        << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;

      errOut << mesh->numGlobalDofs() << " " << energy_error << " "
        << fluxImbalances[0] << " " << fluxImbalances[1] << " " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
      refinementStrategy.refine(commRank==0); // print to console on commRank 0
  }
  if (commRank == 0)
    errOut.close();

  return 0;
}