void CurveEvalMediator ::evalDiscreteFuncElement(const DiscreteFuncElement* expr, const Array<MultiIndex>& multiIndices, Array<RCP<EvalVector> >& vec) const { int verbo = dfVerb(); Tabs tab1; SUNDANCE_MSG2(verbo , tab1 << "CurveEvalMediator evaluating Discrete Function expr " << expr->toString()); const DiscreteFunctionData* f = DiscreteFunctionData::getData(expr); TEUCHOS_TEST_FOR_EXCEPTION(f==0, std::logic_error, "QuadratureEvalMediator::evalDiscreteFuncElement() called " "with expr that is not a discrete function"); SUNDANCE_MSG2(verbo , tab1 << "After casting DiscreteFunctionData" << expr->toString()); RCP<Array<Array<double> > > localValues; Array<int> cellLIDs_tmp(1); Array<Point> phyPoints; Array<Point> refPoints; Array<Point> refDevs; Array<Point> refNormal; int nCells = cellLID()->size(); RCP<const MapStructure> mapStruct; int myIndex = expr->myIndex(); int nQuad = numQuadPtsForMaxCell_; Array<int> k(multiIndices.size(),0); Teuchos::BLAS<int,double> blas; SUNDANCE_MSG2(verbo , tab1 << "After declaring BLAS: " << expr->toString()); // resize correctly the result vector for (int i=0; i<multiIndices.size(); i++) { vec[i]->resize(nCells*nQuad); } // loop over each cell for (int c=0; c<nCells; c++) { int maxCellLID = (*cellLID())[c]; localValues = rcp(new Array<Array<double> >()); SUNDANCE_MSG2(verbo , tab1 << "Cell:" << c << " of " << nCells << " , maxCellLID:" << maxCellLID ); cellLIDs_tmp[0] = (*cellLID())[c]; SUNDANCE_MSG2(verbo , tab1 << " Before calling f->getLocalValues:" << cellLIDs_tmp.size() << " f==0 : " << (f==0) << " tmp:" << f->mesh().spatialDim()); // - get local values from the DiscreteFunctionElementData mapStruct = f->getLocalValues(maxCellDim(), cellLIDs_tmp , *localValues); SUNDANCE_MSG2(verbo , tab1 << " After getting mapStruct:" << maxCellLID ); SUNDANCE_MSG2(verbo , tab1 << " mapStruct->numBasisChunks():" << mapStruct->numBasisChunks() ); int chunk = mapStruct->chunkForFuncID(myIndex); int funcIndex = mapStruct->indexForFuncID(myIndex); int nFuncs = mapStruct->numFuncs(chunk); SUNDANCE_MSG2(verbo , tab1 << " chunk:" << chunk ); SUNDANCE_MSG2(verbo , tab1 << " funcIndex:" << funcIndex ); SUNDANCE_MSG2(verbo , tab1 << " nFuncs:" << nFuncs ); // the chunk of the function BasisFamily basis = rcp_dynamic_cast<BasisFamilyBase>(mapStruct->basis(chunk)); int nNodesTotal = basis.nReferenceDOFsWithFacets(maxCellType(), maxCellType()); // - get intersection (reference)points from the mesh (if not existent than compute them) if ( mesh().hasCurvePoints( maxCellLID , paramcurve_.myID() )) { mesh().getCurvePoints( maxCellLID , paramcurve_.myID() , refPoints , refDevs , refNormal ); } else // we have to calculate now the points { // calculate the intersection points CurveIntegralCalc::getCurveQuadPoints( maxCellType_ , maxCellLID , mesh() , paramcurve_ , quad_ , refPoints, refDevs , refNormal); // store the intersection point in the mesh mesh().setCurvePoints( maxCellLID , paramcurve_.myID() , refPoints, refDevs , refNormal ); } // loop over each multi-index SUNDANCE_MSG2(verbo , tab1 << " multiIndices.size()" << multiIndices.size() ); for (int i=0; i<multiIndices.size(); i++) { int nDerivResults = 1; if ( multiIndices[i].order() == 1 ) nDerivResults = maxCellDim(); int pDir = 0; int derivNum = 1; MultiIndex mi; SUNDANCE_MSG2(verbo , tab1 << " before asking anything i = " << i); SUNDANCE_MSG2(verbo , tab1 << " multiindex order : " << multiIndices[i].order()); SUNDANCE_MSG2(verbo , tab1 << " multiindex : " << multiIndices[i] ); if (multiIndices[i].order() > 0){ pDir = multiIndices[i].firstOrderDirection(); mi[pDir] = 1; derivNum = mesh().spatialDim(); } Array<Array<double> > result(nQuad*derivNum); Array<Array<Array<double> > > tmp; int offs = nNodesTotal; // resize the result vector for (int deriv = 0 ; deriv < derivNum ; deriv++) { // test weather we have to compute derivative if (multiIndices[i].order() > 0){ // in case of derivatives we set one dimension MultiIndex mi_tmp; mi_tmp[deriv] = 1; SpatialDerivSpecifier deriv(mi_tmp); SUNDANCE_MSG2(verbo , tab1 << "computing derivatives : " << deriv << " on reference cell "); basis.refEval( maxCellType_ , refPoints , deriv, tmp , verbo ); } else { SpatialDerivSpecifier deriv(mi); // --- end eval basis functions SUNDANCE_MSG2(verbo , tab1 << "computing values reference cell "); basis.refEval( maxCellType_ , refPoints , deriv, tmp , verbo ); } SUNDANCE_MSG2(verbo , tab1 << "resize result vector , offs:" << offs); for (int q=0; q<nQuad; q++){ result[nQuad*deriv + q].resize(offs); } // copy the result in an other format SUNDANCE_MSG2(verbo , tab1 << "copy results "); int offs1 = 0; for (int q=0; q<nQuad; q++) { offs1 = 0; for (int d=0; d<basis.dim(); d++) { int nNodes = tmp[d][q].size(); for (int n=0; n<nNodes; n++ , offs1++ ) { result[nQuad*deriv + q][offs1] = tmp[d][q][n]; } } } }// loop over all dimensional derivative // multiply the local results with the coefficients, (matrix vector OP) SUNDANCE_MSG2(verbo , tab1 << "summing up values , funcIndex:" << funcIndex << " offs:" << offs); for (int deriv = 0 ; deriv < derivNum ; deriv++) { for (int q=0; q<nQuad; q++) { double sum = 0.0; // sum over nodes for (int n = 0 ; n < offs ; n++){ sum = sum + result[nQuad*deriv + q][n] * (*localValues)[chunk][funcIndex*offs + n]; } // sum up the result in the 0th element result[nQuad*deriv + q][0] = sum; } } // multiply the result if necesary with the inverse of the Jacobian const CellJacobianBatch& J = JTrans(); if (mi.order()==1) { Tabs tab1; Tabs tab2; SUNDANCE_MSG2(verbo, tab2 << "Jacobian batch nCells=" << J.numCells()); SUNDANCE_MSG2(verbo, tab2 << "Jacobian batch cell dim=" << J.cellDim()); SUNDANCE_MSG2(verbo, tab2 << "Jacobian batch spatial dim=" << J.spatialDim()); // we just multiply the derivative direction component Array<double> invJ; J.getInvJ(c, invJ); for (int q=0; q<nQuad; q++) { double sum = 0.0; for (int deriv = 0 ; deriv < derivNum ; deriv++) { // multiply one row from the J^{-T} matrix with the gradient vector sum = sum + result[nQuad*deriv + q][0] * invJ[derivNum*pDir + deriv]; } // the resulting derivative on the physical cell in the "pDir" direction result[q][0] = sum; } } // --- just copy the result to the "vec" back, the result should be in the "result[q][0]" place---- //SUNDANCE_MSG2(verbo , tab1 << "copy results back "); double* vecPtr = vec[i]->start(); for (int q=0; q<nQuad; q++, k[i]++) { vecPtr[k[i]] = result[q][0]; } SUNDANCE_MSG2(verbo , tab1 << " END copy results back "); } // --- end loop multiindex SUNDANCE_MSG2(verbo , tab1 << " END loop over multiindex "); }// --- end loop over cells SUNDANCE_MSG2(verbo , tab1 << " END loop over cells "); }
ElementIntegral::ElementIntegral(int spatialDim, const CellType& maxCellType, int dim, const CellType& cellType, const BasisFamily& testBasis, int alpha, int testDerivOrder, bool isInternalBdry, const ParametrizedCurve& globalCurve, const Mesh& mesh, int verb) : setupVerb_(verb), integrationVerb_(0), transformVerb_(0), spatialDim_(spatialDim), dim_(dim), isInternalBdry_(isInternalBdry), nFacetCases_(1), testDerivOrder_(testDerivOrder), nRefDerivTest_(ipow(spatialDim, testDerivOrder)), nNodesTest_(testBasis.nReferenceDOFsWithFacets(maxCellType, cellType)), unkDerivOrder_(-1), nRefDerivUnk_(-1), nNodesUnk_(-1), nNodes_(nNodesTest_), order_(1), alpha_(alpha), beta_(-1), cellType_(cellType), maxCellType_(maxCellType), evalCellType_(cellType), testBasis_(testBasis), unkBasis_(), globalCurve_(globalCurve), mesh_(mesh) { Tabs tab0(0); SUNDANCE_MSG2(setupVerb(), tab0 << "constructing 1-form ElementIntegral"); /* if we're integrating a derivative along a facet, we * may need to refer back to the maximal cell. */ bool okToRestrictTestToBdry = basisRestrictableToBoundary(testBasis); Tabs tab1; SUNDANCE_MSG2(setupVerb(), tab1 << "dim=" << dim << " spatialDim=" << spatialDim); if (dim != spatialDim) { if (isInternalBdry) { TEST_FOR_EXCEPT(!okToRestrictTestToBdry); } if (alwaysUseCofacets() || testDerivOrder>0) { Tabs tab2; evalCellType_ = maxCellType_; nFacetCases_ = numFacets(maxCellType, dim); nNodesTest_ = testBasis.nReferenceDOFsWithFacets(maxCellType, maxCellType); SUNDANCE_MSG2(setupVerb(), tab2 << "nNodesTest=" << nNodesTest_); nNodes_ = nNodesTest_; TEST_FOR_EXCEPT(nNodes_ == 0); } else { TEST_FOR_EXCEPT(!okToRestrictTestToBdry); } } SUNDANCE_MSG2(setupVerb(), tab1 << "nNodes=" << nNodes_); }