示例#1
0
bool
Test_MintAndSpend()
{
	try {
		// This test assumes a list of coins were generated in Test_MintCoin()
		if (gCoins[0] == NULL)
		{
			// No coins: mint some.
			Test_MintCoin();
			if (gCoins[0] == NULL) {
				return false;
			}
		}

		// Accumulate the list of generated coins into a fresh accumulator.
		// The first one gets marked as accumulated for a witness, the
		// others just get accumulated normally.
		Accumulator acc(&g_Params->accumulatorParams);
		AccumulatorWitness wAcc(g_Params, acc, gCoins[0]->getPublicCoin());

		for (uint32_t i = 0; i < TESTS_COINS_TO_ACCUMULATE; i++) {
			acc += gCoins[i]->getPublicCoin();
			wAcc +=gCoins[i]->getPublicCoin();
		}

		// Now spend the coin
		SpendMetaData m(1,1);
		CDataStream cc(SER_NETWORK, PROTOCOL_VERSION);
		cc << *gCoins[0];
		PrivateCoin myCoin(g_Params,cc);

		CoinSpend spend(g_Params, myCoin, acc, wAcc, m);

		// Serialize the proof and deserialize into newSpend
		CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
		ss << spend;
		gProofSize = ss.size();
		CoinSpend newSpend(g_Params, ss);

		// See if we can verify the deserialized proof (return our result)
		bool ret =  newSpend.Verify(acc, m);
		
		// Extract the serial number
		Bignum serialNumber = newSpend.getCoinSerialNumber();
		gSerialNumberSize = ceil((double)serialNumber.bitSize() / 8.0);
		
		return ret;
	} catch (runtime_error &e) {
		cout << e.what() << endl;
		return false;
	}

	return false;
}
示例#2
0
Bignum
generateRandomPrime(uint32_t primeBitLen, uint256 in_seed, uint256 *out_seed,
                    uint32_t *prime_gen_counter)
{
	// Verify that primeBitLen is not too small
	if (primeBitLen < 2) {
		throw ZerocoinException("Prime length is too short");
	}

	// If primeBitLen < 33 bits, perform the base case.
	if (primeBitLen < 33) {
		Bignum result(0);

		// Set prime_seed = in_seed, prime_gen_counter = 0.
		uint256     prime_seed = in_seed;
		(*prime_gen_counter) = 0;

		// Loop up to "4 * primeBitLen" iterations.
		while ((*prime_gen_counter) < (4 * primeBitLen)) {

			// Generate a pseudorandom integer "c" of length primeBitLength bits
			uint32_t iteration_count;
			Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count);
#ifdef ZEROCOIN_DEBUG
			cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl;
			cout << "Generated c = " << c << endl;
#endif

			prime_seed += (iteration_count + 1);
			(*prime_gen_counter)++;

			// Set "intc" to be the least odd integer >= "c" we just generated
			uint32_t intc = c.getulong();
			intc = (2 * floor(intc / 2.0)) + 1;
#ifdef ZEROCOIN_DEBUG
			cout << "Should be odd. c = " << intc << endl;
			cout << "The big num is: c = " << c << endl;
#endif

			// Perform trial division on this (relatively small) integer to determine if "intc"
			// is prime. If so, return success.
			if (primalityTestByTrialDivision(intc)) {
				// Return "intc" converted back into a Bignum and "prime_seed". We also updated
				// the variable "prime_gen_counter" in previous statements.
				result = intc;
				*out_seed = prime_seed;

				// Success
				return result;
			}
		} // while()

		// If we reached this point there was an error finding a candidate prime
		// so throw an exception.
		throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm");

		// END OF BASE CASE
	}
	// If primeBitLen >= 33 bits, perform the recursive case.
	else {
		// Recurse to find a new random prime of roughly half the size
		uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1;
		Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter);

		// Generate a random integer "x" of primeBitLen bits using the output
		// of the previous call.
		uint32_t numIterations;
		Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations);
		(*out_seed) += numIterations + 1;

		// Compute "t" = ⎡x / (2 * c0⎤
		// TODO no Ceiling call
		Bignum t = x / (Bignum(2) * c0);

		// Repeat the following procedure until we find a prime (or time out)
		for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) {

			// If ((2 * t * c0) + 1 > 2^{primeBitLen}),
			// then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤.
			if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) {
				t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0);
			}

			// Set c = (2 * t * c0) + 1
			Bignum c = (Bignum(2) * t * c0) + Bignum(1);

			// Increment prime_gen_counter
			(*prime_gen_counter)++;

			// Test "c" for primality as follows:
			// 1. First pick an integer "a" in between 2 and (c - 2)
			Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations);
			a = Bignum(2) + (a % (c - Bignum(3)));
			(*out_seed) += (numIterations + 1);

			// 2. Compute "z" = a^{2*t} mod c
			Bignum z = a.pow_mod(Bignum(2) * t, c);

			// 3. Check if "c" is prime.
			//    Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1
			// If so we return "c" as our result.
			if (c.gcd(z - Bignum(1)).isOne() && z.pow_mod(c0, c).isOne()) {
				// Return "c", out_seed and prime_gen_counter
				// (the latter two of which were already updated)
				return c;
			}

			// 4. If the test did not succeed, increment "t" and loop
			t = t + Bignum(1);
		} // end of test loop
	}

	// We only reach this point if the test loop has iterated MAX_PRIMEGEN_ATTEMPTS
	// and failed to identify a valid prime. Throw an exception.
	throw ZerocoinException("Unable to generate random prime (too many tests)");
}
示例#3
0
void
CalculateParams(Params &params, Bignum N, string aux, uint32_t securityLevel)
{
  cout << "GNOSIS DEBUG: CalculateParams in ParamGeneration.cpp" << endl;
	params.initialized = false;
	params.accumulatorParams.initialized = false;
  cout << "GNOSIS DEBUG: aux is " << aux << endl;

	// Verify that |N| is > 1023 bits.
	uint32_t NLen = N.bitSize();
  cout << "GNOSIS DEBUG: NLen is " << NLen << endl;
	if (NLen < 1023) {
		throw ZerocoinException("Modulus must be at least 1023 bits");
	}

	// Verify that "securityLevel" is  at least 80 bits (minimum).
	if (securityLevel < 80) {
		throw ZerocoinException("Security level must be at least 80 bits.");
	}
  cout << "GNOSIS DEBUG: securityLevel is " << securityLevel << endl;

	// Set the accumulator modulus to "N".
	params.accumulatorParams.accumulatorModulus = N;

	// Calculate the required size of the field "F_p" into which
	// we're embedding the coin commitment group. This may throw an
	// exception if the securityLevel is too large to be supported
	// by the current modulus.
	uint32_t pLen = 0;
	uint32_t qLen = 0;
	calculateGroupParamLengths(NLen - 2, securityLevel, &pLen, &qLen);

	// Calculate candidate parameters ("p", "q") for the coin commitment group
	// using a deterministic process based on "N", the "aux" string, and
	// the dedicated string "COMMITMENTGROUP".
	params.coinCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_COMMIT_GROUP),
	                             pLen, qLen);
	// g and h are invalid, since they are now different for each coin; see
	// "Rational Zero" by Garman et al., section 4.4.
	params.coinCommitmentGroup.invalidateGenerators();
	PRINT_BIGNUM("params.coinCommitmentGroup.groupOrder", params.coinCommitmentGroup.groupOrder);
	PRINT_BIGNUM("params.coinCommitmentGroup.modulus", params.coinCommitmentGroup.modulus);

	// Next, we derive parameters for a second Accumulated Value commitment group.
	// This is a Schnorr group with the specific property that the order of the group
	// must be exactly equal to "q" from the commitment group. We set
	// the modulus of the new group equal to "2q+1" and test to see if this is prime.
	params.serialNumberSoKCommitmentGroup = deriveIntegerGroupFromOrder(params.coinCommitmentGroup.modulus);
	PRINT_GROUP_PARAMS(params.serialNumberSoKCommitmentGroup);

	// Calculate the parameters for the internal commitment
	// using the same process.
	params.accumulatorParams.accumulatorPoKCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_AIC_GROUP),
	        qLen + 300, qLen + 1);
	PRINT_GROUP_PARAMS(params.accumulatorParams.accumulatorPoKCommitmentGroup);

	// Calculate the parameters for the accumulator QRN commitment generators. This isn't really
	// a whole group, just a pair of random generators in QR_N.
	uint32_t resultCtr;
	params.accumulatorParams.accumulatorQRNCommitmentGroup.g(generateIntegerFromSeed(NLen - 1,
	        calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPG),
	        &resultCtr).pow_mod(Bignum(2), N));
	params.accumulatorParams.accumulatorQRNCommitmentGroup.h(generateIntegerFromSeed(NLen - 1,
	        calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPH),
	        &resultCtr).pow_mod(Bignum(2), N));
	PRINT_BIGNUM("params.accumulatorParams.accumulatorQRNCommitmentGroup.g", params.accumulatorParams.accumulatorQRNCommitmentGroup.g());
	PRINT_BIGNUM("params.accumulatorParams.accumulatorQRNCommitmentGroup.h", params.accumulatorParams.accumulatorQRNCommitmentGroup.h());

	// Calculate the accumulator base, which we calculate as "u = C**2 mod N"
	// where C is an arbitrary value. In the unlikely case that "u = 1" we increment
	// "C" and repeat.
	Bignum constant(ACCUMULATOR_BASE_CONSTANT);
	params.accumulatorParams.accumulatorBase = Bignum(1);
	for (uint32_t count = 0; count < MAX_ACCUMGEN_ATTEMPTS && params.accumulatorParams.accumulatorBase.isOne(); count++) {
		params.accumulatorParams.accumulatorBase = constant.pow_mod(Bignum(2), params.accumulatorParams.accumulatorModulus);
	}

	// Compute the accumulator range. The upper range is the largest possible coin commitment value.
	// The lower range is sqrt(upper range) + 1. Since OpenSSL doesn't have
	// a square root function we use a slightly higher approximation.
	params.accumulatorParams.maxCoinValue = params.coinCommitmentGroup.modulus;
	params.accumulatorParams.minCoinValue = Bignum(2).pow((params.coinCommitmentGroup.modulus.bitSize() / 2) + 3);

	// If all went well, mark params as successfully initialized.
	params.accumulatorParams.initialized = true;

	// If all went well, mark params as successfully initialized.
	params.initialized = true;
}