示例#1
0
文件: energydiff.cpp 项目: imago/mfes
void NumProcEnergyCalc :: Do(LocalHeap & lh)
{
	  
	double result = 0;
	double potential = 0;
	double conversion = 1.602176565e-19 * 6.02214129e23 * 0.5 / 1000.0;

	const BilinearFormIntegrator & bfi = (bfa) ? *bfa->GetIntegrator(0) : *gfu->GetFESpace().GetIntegrator();
	const BilinearFormIntegrator & bfi2 =  (bfa) ? *bfa->GetIntegrator(0) : *gfu->GetFESpace().GetIntegrator();
	
	cout.precision(dbl::digits10);

	for(unsigned int kk=0; kk<molecule.size(); kk++)	
	{
		Atom currentAtom = molecule.at(kk);
		point(0) = currentAtom.x;
		point(1) = currentAtom.y;
		point(2) = currentAtom.z;
		
		FlatVector<double> pflux(bfi.DimFlux(), lh);
		CalcPointFlux (ma, *gfu, point, domains,
				pflux, bfi, applyd, lh, component);
	      
		result = pflux(0);

		if (showsteps)
			cout << "(" << pflux(0)*conversion;
	      
		CalcPointFlux (ma, *gfu0, point, domains,
				pflux, bfi2, applyd, lh, component);

		result -= pflux(0); 
		if (showsteps)
			cout << " - " << pflux(0)*conversion << ")*" << currentAtom.charge << " = " << currentAtom.charge * result*conversion << endl;

	      
		potential += currentAtom.charge * result;

	}

	double energy;
	energy = (1.602176565e-19 * 6.02214129e23 * 0.5 * potential)/1000;

	if (MyMPI_GetNTasks() == 1 || MyMPI_GetId() != 0){
		ofstream resultFile;
		resultFile.open("result.out");
		resultFile << "The energy difference is " << energy << " [kJ/mol].\n";
		resultFile.close();
		cout << "The energy difference is " << setprecision(12) << energy << " [kJ/mol].\n";
	}
        
	pde.GetVariable(variablename,true) = result;
}
示例#2
0
/*virtual*/ Operand* InnerProductScalar::Simplify( const SimplificationContext& simplificationContext )
{
	if( exponent == 0 )
	{
		NumericScalar* numericScalar = new NumericScalar();
		numericScalar->SetReal( 1.0 );
		return numericScalar;
	}

	BilinearForm* bilinearForm = BilinearForm::Get();
	if( !bilinearForm )
		return 0;

	double result;
	if( !bilinearForm->Evaluate( nameA, nameB, result ) )
		return 0;

	NumericScalar* numericScalar = new NumericScalar();
	numericScalar->SetReal( result );
	return numericScalar;
}
示例#3
0
文件: ex15.cpp 项目: LLNL/mfem
void UpdateProblem(Mesh &mesh, FiniteElementSpace &fespace,
                   GridFunction &x, BilinearForm &a, LinearForm &b)
{
   // Update the space: recalculate the number of DOFs and construct a matrix
   // that will adjust any GridFunctions to the new mesh state.
   fespace.Update();

   // Interpolate the solution on the new mesh by applying the transformation
   // matrix computed in the finite element space. Multiple GridFunctions could
   // be updated here.
   x.Update();

   // Free any transformation matrices to save memory.
   fespace.UpdatesFinished();

   // Inform the linear and bilinear forms that the space has changed.
   a.Update();
   b.Update();
}
示例#4
0
文件: ex2.cpp 项目: Kyushick/sight
int main (int argc, char *argv[])
{
   Mesh *mesh;

   SightInit(argc, argv, "ex1", "dbg.MFEM.ex2");

   if (argc == 1)
   {
      cout << "\nUsage: ex2 <mesh_file>\n" << endl;
      return 1;
   }

   // 1. Read the mesh from the given mesh file. We can handle triangular,
   //    quadrilateral, tetrahedral or hexahedral elements with the same code.
   ifstream imesh(argv[1]);
   if (!imesh)
   {
      cerr << "\nCan not open mesh file: " << argv[1] << '\n' << endl;
      return 2;
   }
   mesh = new Mesh(imesh, 1, 1);
   imesh.close();

   if (mesh->attributes.Max() < 2 || mesh->bdr_attributes.Max() < 2)
   {
      cerr << "\nInput mesh should have at least two materials and "
           << "two boundary attributes! (See schematic in ex2.cpp)\n"
           << endl;
      return 3;
   }

   int dim = mesh->Dimension();

   // 2. Select the order of the finite element discretization space. For NURBS
   //    meshes, we increase the order by degree elevation.
   int p;
   if(argc==3) p = atoi(argv[2]);
   else {
     cout << "Enter finite element space order --> " << flush;
     cin >> p;
   }

   if (mesh->NURBSext && p > mesh->NURBSext->GetOrder())
      mesh->DegreeElevate(p - mesh->NURBSext->GetOrder());

   // 3. Refine the mesh to increase the resolution. In this example we do
   //    'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
   //    largest number that gives a final mesh with no more than 5,000
   //    elements.
   {
      int ref_levels =
         (int)floor(log(5000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
         mesh->UniformRefinement();
   }

   // 4. Define a finite element space on the mesh. Here we use vector finite
   //    elements, i.e. dim copies of a scalar finite element space. The vector
   //    dimension is specified by the last argument of the FiniteElementSpace
   //    constructor. For NURBS meshes, we use the (degree elevated) NURBS space
   //    associated with the mesh nodes.
   FiniteElementCollection *fec;
   FiniteElementSpace *fespace;
   if (mesh->NURBSext)
   {
      fec = NULL;
      fespace = mesh->GetNodes()->FESpace();
   }
   else
   {
      fec = new H1_FECollection(p, dim);
      fespace = new FiniteElementSpace(mesh, fec, dim);
   }
   dbg << "Number of unknowns: " << fespace->GetVSize() << endl
        << "Assembling: " << flush;

   // 5. Set up the linear form b(.) which corresponds to the right-hand side of
   //    the FEM linear system. In this case, b_i equals the boundary integral
   //    of f*phi_i where f represents a "pull down" force on the Neumann part
   //    of the boundary and phi_i are the basis functions in the finite element
   //    fespace. The force is defined by the VectorArrayCoefficient object f,
   //    which is a vector of Coefficient objects. The fact that f is non-zero
   //    on boundary attribute 2 is indicated by the use of piece-wise constants
   //    coefficient for its last component.
   VectorArrayCoefficient f(dim);
   for (int i = 0; i < dim-1; i++)
      f.Set(i, new ConstantCoefficient(0.0));
   {
      Vector pull_force(mesh->bdr_attributes.Max());
      pull_force = 0.0;
      pull_force(1) = -1.0e-2;
      f.Set(dim-1, new PWConstCoefficient(pull_force));
   }

   LinearForm *b = new LinearForm(fespace);
   b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f));
   dbg << "r.h.s. ... " << flush;
   b->Assemble();

   // 6. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x with initial guess of zero,
   //    which satisfies the boundary conditions.
   GridFunction x(fespace);
   x = 0.0;

   // 7. Set up the bilinear form a(.,.) on the finite element space
   //    corresponding to the linear elasticity integrator with piece-wise
   //    constants coefficient lambda and mu. The boundary conditions are
   //    implemented by marking only boundary attribute 1 as essential. After
   //    assembly and finalizing we extract the corresponding sparse matrix A.
   Vector lambda(mesh->attributes.Max());
   lambda = 1.0;
   lambda(0) = lambda(1)*50;
   PWConstCoefficient lambda_func(lambda);
   Vector mu(mesh->attributes.Max());
   mu = 1.0;
   mu(0) = mu(1)*50;
   PWConstCoefficient mu_func(mu);

   BilinearForm *a = new BilinearForm(fespace);
   a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func,mu_func));
   dbg << "matrix ... " << flush;
   a->Assemble();
   Array<int> ess_bdr(mesh->bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1;
   a->EliminateEssentialBC(ess_bdr, x, *b);
   a->Finalize();
   dbg << "done." << endl;
   const SparseMatrix &A = a->SpMat();

   // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
   //    solve the system Ax=b with PCG.
   GSSmoother M(A);
   PCG(A, M, *b, x, 1, 500, 1e-8, 0.0);

   // 9. For non-NURBS meshes, make the mesh curved based on the finite element
   //    space. This means that we define the mesh elements through a fespace
   //    based transformation of the reference element. This allows us to save
   //    the displaced mesh as a curved mesh when using high-order finite
   //    element displacement field. We assume that the initial mesh (read from
   //    the file) is not higher order curved mesh compared to the chosen FE
   //    space.
   if (!mesh->NURBSext)
      mesh->SetNodalFESpace(fespace);

   // 10. Save the displaced mesh and the inverted solution (which gives the
   //     backward displacements to the original grid). This output can be
   //     viewed later using GLVis: "glvis -m displaced.mesh -g sol.gf".
   {
      GridFunction *nodes = mesh->GetNodes();
      *nodes += x;
      x *= -1;
      ofstream mesh_ofs("displaced.mesh");
      mesh_ofs.precision(8);
      mesh->Print(mesh_ofs);
      ofstream sol_ofs("sol.gf");
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 11. (Optional) Send the above data by socket to a GLVis server. Use the
   //     "n" and "b" keys in GLVis to visualize the displacements.
   /*char vishost[] = "localhost";
   int  visport   = 19916;
   osockstream sol_sock(visport, vishost);
   sol_sock << "solution\n";
   sol_sock.precision(8);
   mesh->Print(sol_sock);
   x.Save(sol_sock);
   sol_sock.send();*/
   #if defined(VNC_ENABLED)
   mfem::emitMesh(mesh, &x);
   #endif

   // 12. Free the used memory.
   delete a;
   delete b;
   if (fec)
   {
      delete fespace;
      delete fec;
   }
   delete mesh;

   return 0;
}
示例#5
0
文件: ex3.cpp 项目: Kyushick/sight
int main (int argc, char *argv[])
{
   SightInit(argc, argv, "ex3", "dbg.MFEM.ex3");
   Mesh *mesh;

   if (argc == 1)
   {
      cerr << "\nUsage: ex3 <mesh_file>\n" << endl;
      return 1;
   }

   // 1. Read the mesh from the given mesh file. In this 3D example, we can
   //    handle tetrahedral or hexahedral meshes with the same code.
   ifstream imesh(argv[1]);
   if (!imesh)
   {
      cerr << "\nCan not open mesh file: " << argv[1] << '\n' << endl;
      return 2;
   }
   mesh = new Mesh(imesh, 1, 1);
   imesh.close();
   if (mesh -> Dimension() != 3)
   {
      cerr << "\nThis example requires a 3D mesh\n" << endl;
      return 3;
   }

   // 2. Refine the mesh to increase the resolution. In this example we do
   //    'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
   //    largest number that gives a final mesh with no more than 50,000
   //    elements.
   {
      int ref_levels =
         (int)floor(log(50000./mesh->GetNE())/log(2.)/mesh->Dimension());
      for (int l = 0; l < ref_levels; l++)
         mesh->UniformRefinement();
   }

   // 3. Define a finite element space on the mesh. Here we use the lowest order
   //    Nedelec finite elements, but we can easily swich to higher-order spaces
   //    by changing the value of p.
   int p = 1;
   FiniteElementCollection *fec = new ND_FECollection(p, mesh -> Dimension());
   FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
   dbg << "Number of unknowns: " << fespace->GetVSize() << endl;

   // 4. Set up the linear form b(.) which corresponds to the right-hand side
   //    of the FEM linear system, which in this case is (f,phi_i) where f is
   //    given by the function f_exact and phi_i are the basis functions in the
   //    finite element fespace.
   VectorFunctionCoefficient f(3, f_exact);
   LinearForm *b = new LinearForm(fespace);
   b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
   b->Assemble();

   // 5. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x by projecting the exact
   //    solution. Note that only values from the boundary edges will be used
   //    when eliminating the non-homogenious boundary condition to modify the
   //    r.h.s. vector b.
   GridFunction x(fespace);
   VectorFunctionCoefficient E(3, E_exact);
   x.ProjectCoefficient(E);

   // 6. Set up the bilinear form corresponding to the EM diffusion operator
   //    curl muinv curl + sigma I, by adding the curl-curl and the mass domain
   //    integrators and finally imposing the non-homogeneous Dirichlet boundary
   //    conditions. The boundary conditions are implemented by marking all the
   //    boundary attributes from the mesh as essential (Dirichlet). After
   //    assembly and finalizing we extract the corresponding sparse matrix A.
   Coefficient *muinv = new ConstantCoefficient(1.0);
   Coefficient *sigma = new ConstantCoefficient(1.0);
   BilinearForm *a = new BilinearForm(fespace);
   a->AddDomainIntegrator(new CurlCurlIntegrator(*muinv));
   a->AddDomainIntegrator(new VectorFEMassIntegrator(*sigma));
   a->Assemble();
   Array<int> ess_bdr(mesh->bdr_attributes.Max());
   ess_bdr = 1;
   a->EliminateEssentialBC(ess_bdr, x, *b);
   a->Finalize();
   const SparseMatrix &A = a->SpMat();

   // 7. Define a simple symmetric Gauss-Seidel preconditioner and use it to
   //    solve the system Ax=b with PCG.
   GSSmoother M(A);
   x = 0.0;
   PCG(A, M, *b, x, 1, 500, 1e-12, 0.0);

   // 8. Compute and print the L^2 norm of the error.
   dbg << "\n|| E_h - E ||_{L^2} = " << x.ComputeL2Error(E) << '\n' << endl;

   // 9. Save the refined mesh and the solution. This output can be viewed
   //    later using GLVis: "glvis -m refined.mesh -g sol.gf".
   {
      ofstream mesh_ofs("refined.mesh");
      mesh_ofs.precision(8);
      mesh->Print(mesh_ofs);
      ofstream sol_ofs("sol.gf");
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 10. (Optional) Send the solution by socket to a GLVis server.
   /*char vishost[] = "localhost";
   int  visport   = 19916;
   osockstream sol_sock(visport, vishost);
   sol_sock << "solution\n";
   sol_sock.precision(8);
   mesh->Print(sol_sock);
   x.Save(sol_sock);
   sol_sock.send();*/
   #if defined(VNC_ENABLED)
   mfem::emitMesh(mesh, &x);
   #endif

   // 11. Free the used memory.
   delete a;
   delete sigma;
   delete muinv;
   delete b;
   delete fespace;
   delete fec;
   delete mesh;

   return 0;
}
示例#6
0
文件: ex2.cpp 项目: LLNL/mfem
int main(int argc, char *argv[])
{
   // 1. Parse command-line options.
   const char *mesh_file = "../data/beam-tri.mesh";
   int order = 1;
   bool static_cond = false;
   bool visualization = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
                  "--no-static-condensation", "Enable static condensation.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      args.PrintUsage(cout);
      return 1;
   }
   args.PrintOptions(cout);

   // 2. Read the mesh from the given mesh file. We can handle triangular,
   //    quadrilateral, tetrahedral or hexahedral elements with the same code.
   Mesh *mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();

   if (mesh->attributes.Max() < 2 || mesh->bdr_attributes.Max() < 2)
   {
      cerr << "\nInput mesh should have at least two materials and "
           << "two boundary attributes! (See schematic in ex2.cpp)\n"
           << endl;
      return 3;
   }

   // 3. Select the order of the finite element discretization space. For NURBS
   //    meshes, we increase the order by degree elevation.
   if (mesh->NURBSext)
   {
      mesh->DegreeElevate(order, order);
   }

   // 4. Refine the mesh to increase the resolution. In this example we do
   //    'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
   //    largest number that gives a final mesh with no more than 5,000
   //    elements.
   {
      int ref_levels =
         (int)floor(log(5000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
      {
         mesh->UniformRefinement();
      }
   }

   // 5. Define a finite element space on the mesh. Here we use vector finite
   //    elements, i.e. dim copies of a scalar finite element space. The vector
   //    dimension is specified by the last argument of the FiniteElementSpace
   //    constructor. For NURBS meshes, we use the (degree elevated) NURBS space
   //    associated with the mesh nodes.
   FiniteElementCollection *fec;
   FiniteElementSpace *fespace;
   if (mesh->NURBSext)
   {
      fec = NULL;
      fespace = mesh->GetNodes()->FESpace();
   }
   else
   {
      fec = new H1_FECollection(order, dim);
      fespace = new FiniteElementSpace(mesh, fec, dim);
   }
   cout << "Number of finite element unknowns: " << fespace->GetTrueVSize()
        << endl << "Assembling: " << flush;

   // 6. Determine the list of true (i.e. conforming) essential boundary dofs.
   //    In this example, the boundary conditions are defined by marking only
   //    boundary attribute 1 from the mesh as essential and converting it to a
   //    list of true dofs.
   Array<int> ess_tdof_list, ess_bdr(mesh->bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1;
   fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);

   // 7. Set up the linear form b(.) which corresponds to the right-hand side of
   //    the FEM linear system. In this case, b_i equals the boundary integral
   //    of f*phi_i where f represents a "pull down" force on the Neumann part
   //    of the boundary and phi_i are the basis functions in the finite element
   //    fespace. The force is defined by the VectorArrayCoefficient object f,
   //    which is a vector of Coefficient objects. The fact that f is non-zero
   //    on boundary attribute 2 is indicated by the use of piece-wise constants
   //    coefficient for its last component.
   VectorArrayCoefficient f(dim);
   for (int i = 0; i < dim-1; i++)
   {
      f.Set(i, new ConstantCoefficient(0.0));
   }
   {
      Vector pull_force(mesh->bdr_attributes.Max());
      pull_force = 0.0;
      pull_force(1) = -1.0e-2;
      f.Set(dim-1, new PWConstCoefficient(pull_force));
   }

   LinearForm *b = new LinearForm(fespace);
   b->AddBoundaryIntegrator(new VectorBoundaryLFIntegrator(f));
   cout << "r.h.s. ... " << flush;
   b->Assemble();

   // 8. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x with initial guess of zero,
   //    which satisfies the boundary conditions.
   GridFunction x(fespace);
   x = 0.0;

   // 9. Set up the bilinear form a(.,.) on the finite element space
   //    corresponding to the linear elasticity integrator with piece-wise
   //    constants coefficient lambda and mu.
   Vector lambda(mesh->attributes.Max());
   lambda = 1.0;
   lambda(0) = lambda(1)*50;
   PWConstCoefficient lambda_func(lambda);
   Vector mu(mesh->attributes.Max());
   mu = 1.0;
   mu(0) = mu(1)*50;
   PWConstCoefficient mu_func(mu);

   BilinearForm *a = new BilinearForm(fespace);
   a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func,mu_func));

   // 10. Assemble the bilinear form and the corresponding linear system,
   //     applying any necessary transformations such as: eliminating boundary
   //     conditions, applying conforming constraints for non-conforming AMR,
   //     static condensation, etc.
   cout << "matrix ... " << flush;
   if (static_cond) { a->EnableStaticCondensation(); }
   a->Assemble();

   SparseMatrix A;
   Vector B, X;
   a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
   cout << "done." << endl;

   cout << "Size of linear system: " << A.Height() << endl;

#ifndef MFEM_USE_SUITESPARSE
   // 11. Define a simple symmetric Gauss-Seidel preconditioner and use it to
   //     solve the system Ax=b with PCG.
   GSSmoother M(A);
   PCG(A, M, B, X, 1, 500, 1e-8, 0.0);
#else
   // 11. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
   UMFPackSolver umf_solver;
   umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
   umf_solver.SetOperator(A);
   umf_solver.Mult(B, X);
#endif

   // 12. Recover the solution as a finite element grid function.
   a->RecoverFEMSolution(X, *b, x);

   // 13. For non-NURBS meshes, make the mesh curved based on the finite element
   //     space. This means that we define the mesh elements through a fespace
   //     based transformation of the reference element. This allows us to save
   //     the displaced mesh as a curved mesh when using high-order finite
   //     element displacement field. We assume that the initial mesh (read from
   //     the file) is not higher order curved mesh compared to the chosen FE
   //     space.
   if (!mesh->NURBSext)
   {
      mesh->SetNodalFESpace(fespace);
   }

   // 14. Save the displaced mesh and the inverted solution (which gives the
   //     backward displacements to the original grid). This output can be
   //     viewed later using GLVis: "glvis -m displaced.mesh -g sol.gf".
   {
      GridFunction *nodes = mesh->GetNodes();
      *nodes += x;
      x *= -1;
      ofstream mesh_ofs("displaced.mesh");
      mesh_ofs.precision(8);
      mesh->Print(mesh_ofs);
      ofstream sol_ofs("sol.gf");
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 15. Send the above data by socket to a GLVis server. Use the "n" and "b"
   //     keys in GLVis to visualize the displacements.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock.precision(8);
      sol_sock << "solution\n" << *mesh << x << flush;
   }

   // 16. Free the used memory.
   delete a;
   delete b;
   if (fec)
   {
      delete fespace;
      delete fec;
   }
   delete mesh;

   return 0;
}
示例#7
0
文件: ex7.cpp 项目: ShiyangZhang/mfem
int main(int argc, char *argv[])
{
   // 1. Parse command-line options.
   int elem_type = 1;
   int ref_levels = 2;
   int amr = 0;
   int order = 2;
   bool always_snap = false;
   bool visualization = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&elem_type, "-e", "--elem",
                  "Type of elements to use: 0 - triangles, 1 - quads.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&ref_levels, "-r", "--refine",
                  "Number of times to refine the mesh uniformly.");
   args.AddOption(&amr, "-amr", "--refine-locally",
                  "Additional local (non-conforming) refinement:"
                  " 1 = refine around north pole, 2 = refine randomly.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap",
                  "--snap-at-the-end",
                  "If true, snap nodes to the sphere initially and after each refinement "
                  "otherwise, snap only after the last refinement");
   args.Parse();
   if (!args.Good())
   {
      args.PrintUsage(cout);
      return 1;
   }
   args.PrintOptions(cout);

   // 2. Generate an initial high-order (surface) mesh on the unit sphere. The
   //    Mesh object represents a 2D mesh in 3 spatial dimensions. We first add
   //    the elements and the vertices of the mesh, and then make it high-order
   //    by specifying a finite element space for its nodes.
   int Nvert = 8, Nelem = 6;
   if (elem_type == 0)
   {
      Nvert = 6;
      Nelem = 8;
   }
   Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3);

   if (elem_type == 0) // inscribed octahedron
   {
      const double tri_v[6][3] =
      {
         { 1,  0,  0}, { 0,  1,  0}, {-1,  0,  0},
         { 0, -1,  0}, { 0,  0,  1}, { 0,  0, -1}
      };
      const int tri_e[8][3] =
      {
         {0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4},
         {1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5}
      };

      for (int j = 0; j < Nvert; j++)
      {
         mesh->AddVertex(tri_v[j]);
      }
      for (int j = 0; j < Nelem; j++)
      {
         int attribute = j + 1;
         mesh->AddTriangle(tri_e[j], attribute);
      }
      mesh->FinalizeTriMesh(1, 1, true);
   }
   else // inscribed cube
   {
      const double quad_v[8][3] =
      {
         {-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1},
         {-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1}
      };
      const int quad_e[6][4] =
      {
         {3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5},
         {2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7}
      };

      for (int j = 0; j < Nvert; j++)
      {
         mesh->AddVertex(quad_v[j]);
      }
      for (int j = 0; j < Nelem; j++)
      {
         int attribute = j + 1;
         mesh->AddQuad(quad_e[j], attribute);
      }
      mesh->FinalizeQuadMesh(1, 1, true);
   }

   // Set the space for the high-order mesh nodes.
   H1_FECollection fec(order, mesh->Dimension());
   FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension());
   mesh->SetNodalFESpace(&nodal_fes);

   // 3. Refine the mesh while snapping nodes to the sphere.
   for (int l = 0; l <= ref_levels; l++)
   {
      if (l > 0) // for l == 0 just perform snapping
      {
         mesh->UniformRefinement();
      }

      // Snap the nodes of the refined mesh back to sphere surface.
      if (always_snap || l == ref_levels)
      {
         SnapNodes(*mesh);
      }
   }

   if (amr == 1)
   {
      for (int l = 0; l < 5; l++)
      {
         mesh->RefineAtVertex(Vertex(0, 0, 1));
      }
      SnapNodes(*mesh);
   }
   else if (amr == 2)
   {
      for (int l = 0; l < 4; l++)
      {
         mesh->RandomRefinement(0.5); // 50% probability
      }
      SnapNodes(*mesh);
   }

   // 4. Define a finite element space on the mesh. Here we use isoparametric
   //    finite elements -- the same as the mesh nodes.
   FiniteElementSpace *fespace = new FiniteElementSpace(mesh, &fec);
   cout << "Number of unknowns: " << fespace->GetTrueVSize() << endl;

   // 5. Set up the linear form b(.) which corresponds to the right-hand side of
   //    the FEM linear system, which in this case is (1,phi_i) where phi_i are
   //    the basis functions in the finite element fespace.
   LinearForm *b = new LinearForm(fespace);
   ConstantCoefficient one(1.0);
   FunctionCoefficient rhs_coef (analytic_rhs);
   FunctionCoefficient sol_coef (analytic_solution);
   b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef));
   b->Assemble();

   // 6. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x with initial guess of zero.
   GridFunction x(fespace);
   x = 0.0;

   // 7. Set up the bilinear form a(.,.) on the finite element space
   //    corresponding to the Laplacian operator -Delta, by adding the Diffusion
   //    and Mass domain integrators.
   BilinearForm *a = new BilinearForm(fespace);
   a->AddDomainIntegrator(new DiffusionIntegrator(one));
   a->AddDomainIntegrator(new MassIntegrator(one));

   // 8. Assemble the linear system, apply conforming constraints, etc.
   a->Assemble();
   SparseMatrix A;
   Vector B, X;
   Array<int> empty_tdof_list;
   a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B);

#ifndef MFEM_USE_SUITESPARSE
   // 9. Define a simple symmetric Gauss-Seidel preconditioner and use it to
   //    solve the system AX=B with PCG.
   GSSmoother M(A);
   PCG(A, M, B, X, 1, 200, 1e-12, 0.0);
#else
   // 9. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
   UMFPackSolver umf_solver;
   umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
   umf_solver.SetOperator(A);
   umf_solver.Mult(B, X);
#endif

   // 10. Recover the solution as a finite element grid function.
   a->RecoverFEMSolution(X, *b, x);

   // 11. Compute and print the L^2 norm of the error.
   cout<<"\nL2 norm of error: " << x.ComputeL2Error(sol_coef) << endl;

   // 12. Save the refined mesh and the solution. This output can be viewed
   //     later using GLVis: "glvis -m sphere_refined.mesh -g sol.gf".
   {
      ofstream mesh_ofs("sphere_refined.mesh");
      mesh_ofs.precision(8);
      mesh->Print(mesh_ofs);
      ofstream sol_ofs("sol.gf");
      sol_ofs.precision(8);
      x.Save(sol_ofs);
   }

   // 13. Send the solution by socket to a GLVis server.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock.precision(8);
      sol_sock << "solution\n" << *mesh << x << flush;
   }

   // 14. Free the used memory.
   delete a;
   delete b;
   delete fespace;
   delete mesh;

   return 0;
}
示例#8
0
文件: ex1.cpp 项目: ShiyangZhang/mfem
int main(int argc, char *argv[])
{
   // 1. Parse command-line options.
   const char *mesh_file = "../../data/fichera.mesh";
   int order = sol_p;
   bool static_cond = false;
   bool visualization = 1;
   bool perf = true;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree) or -1 for"
                  " isoparametric space.");
   args.AddOption(&perf, "-perf", "--hpc-version", "-std", "--standard-version",
                  "Enable high-performance, tensor-based, assembly.");
   args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
                  "--no-static-condensation", "Enable static condensation.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      args.PrintUsage(cout);
      return 1;
   }
   args.PrintOptions(cout);

   // 2. Read the mesh from the given mesh file. We can handle triangular,
   //    quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
   //    the same code.
   Mesh *mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();

   // 3. Check if the optimized version matches the given mesh
   if (perf)
   {
      cout << "High-performance version using integration rule with "
           << int_rule_t::qpts << " points ..." << endl;
      if (!mesh_t::MatchesGeometry(*mesh))
      {
         cout << "The given mesh does not match the optimized 'geom' parameter.\n"
              << "Recompile with suitable 'geom' value." << endl;
         delete mesh;
         return 3;
      }
      else if (!mesh_t::MatchesNodes(*mesh))
      {
         cout << "Switching the mesh curvature to match the "
              << "optimized value (order " << mesh_p << ") ..." << endl;
         mesh->SetCurvature(mesh_p, false, -1, Ordering::byNODES);
      }
   }

   // 4. Refine the mesh to increase the resolution. In this example we do
   //    'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
   //    largest number that gives a final mesh with no more than 50,000
   //    elements.
   {
      int ref_levels =
         (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
      {
         mesh->UniformRefinement();
      }
   }

   // 5. Define a finite element space on the mesh. Here we use continuous
   //    Lagrange finite elements of the specified order. If order < 1, we
   //    instead use an isoparametric/isogeometric space.
   FiniteElementCollection *fec;
   if (order > 0)
   {
      fec = new H1_FECollection(order, dim);
   }
   else if (mesh->GetNodes())
   {
      fec = mesh->GetNodes()->OwnFEC();
      cout << "Using isoparametric FEs: " << fec->Name() << endl;
   }
   else
   {
      fec = new H1_FECollection(order = 1, dim);
   }
   FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
   cout << "Number of finite element unknowns: "
        << fespace->GetTrueVSize() << endl;

   // 6. Check if the optimized version matches the given space
   if (perf && !sol_fes_t::Matches(*fespace))
   {
      cout << "The given order does not match the optimized parameter.\n"
           << "Recompile with suitable 'sol_p' value." << endl;
      delete fespace;
      delete fec;
      delete mesh;
      return 4;
   }

   // 7. Determine the list of true (i.e. conforming) essential boundary dofs.
   //    In this example, the boundary conditions are defined by marking all
   //    the boundary attributes from the mesh as essential (Dirichlet) and
   //    converting them to a list of true dofs.
   Array<int> ess_tdof_list;
   if (mesh->bdr_attributes.Size())
   {
      Array<int> ess_bdr(mesh->bdr_attributes.Max());
      ess_bdr = 1;
      fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
   }

   // 8. Set up the linear form b(.) which corresponds to the right-hand side of
   //    the FEM linear system, which in this case is (1,phi_i) where phi_i are
   //    the basis functions in the finite element fespace.
   LinearForm *b = new LinearForm(fespace);
   ConstantCoefficient one(1.0);
   b->AddDomainIntegrator(new DomainLFIntegrator(one));
   b->Assemble();

   // 9. Define the solution vector x as a finite element grid function
   //    corresponding to fespace. Initialize x with initial guess of zero,
   //    which satisfies the boundary conditions.
   GridFunction x(fespace);
   x = 0.0;

   // 10. Set up the bilinear form a(.,.) on the finite element space that will
   //     hold the matrix corresponding to the Laplacian operator -Delta.
   BilinearForm *a = new BilinearForm(fespace);

   // 11. Assemble the bilinear form and the corresponding linear system,
   //     applying any necessary transformations such as: eliminating boundary
   //     conditions, applying conforming constraints for non-conforming AMR,
   //     static condensation, etc.
   if (static_cond) { a->EnableStaticCondensation(); }

   cout << "Assembling the matrix ..." << flush;
   tic_toc.Clear();
   tic_toc.Start();
   // Pre-allocate sparsity assuming dense element matrices
   a->UsePrecomputedSparsity();
   if (!perf)
   {
      // Standard assembly using a diffusion domain integrator
      a->AddDomainIntegrator(new DiffusionIntegrator(one));
      a->Assemble();
   }
   else
   {
      // High-performance assembly using the templated operator type
      oper_t a_oper(integ_t(coeff_t(1.0)), *fespace);
      a_oper.AssembleBilinearForm(*a);
   }
   tic_toc.Stop();
   cout << " done, " << tic_toc.RealTime() << "s." << endl;

   SparseMatrix A;
   Vector B, X;
   a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);

   cout << "Size of linear system: " << A.Height() << endl;

#ifndef MFEM_USE_SUITESPARSE
   // 12. Define a simple symmetric Gauss-Seidel preconditioner and use it to
   //     solve the system A X = B with PCG.
   GSSmoother M(A);
   PCG(A, M, B, X, 1, 500, 1e-12, 0.0);
#else
   // 12. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
   UMFPackSolver umf_solver;
   umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
   umf_solver.SetOperator(A);
   umf_solver.Mult(B, X);
#endif

   // 13. Recover the solution as a finite element grid function.
   a->RecoverFEMSolution(X, *b, x);

   // 14. Save the refined mesh and the solution. This output can be viewed later
   //     using GLVis: "glvis -m refined.mesh -g sol.gf".
   ofstream mesh_ofs("refined.mesh");
   mesh_ofs.precision(8);
   mesh->Print(mesh_ofs);
   ofstream sol_ofs("sol.gf");
   sol_ofs.precision(8);
   x.Save(sol_ofs);

   // 15. Send the solution by socket to a GLVis server.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream sol_sock(vishost, visport);
      sol_sock.precision(8);
      sol_sock << "solution\n" << *mesh << x << flush;
   }

   // 16. Free the used memory.
   delete a;
   delete b;
   delete fespace;
   if (order > 0) { delete fec; }
   delete mesh;

   return 0;
}