// only need to accumulate blocks within number of circuit inputs // returns true if At is modified, false otherwise bool accumVector(BlockVector<T>& At) { const auto limit = std::min(At.stopIndex(), m_vec.size()); if (At.startIndex() >= limit) { return false; } else { for (std::size_t i = At.startIndex(); i < limit; ++i) { m_vec[i] = At[3 + i] * m_random_rA; #ifdef USE_ASSERT assert(! m_vec[i].isZero()); #endif At[3 + i] = T::zero(); } return true; } }
// must accumulate all blocks void accumVector(const BlockVector<T>& At, const BlockVector<T>& Bt, const BlockVector<T>& Ct) { #ifdef USE_ASSERT assert(At.space() == Bt.space() && Bt.space() == Ct.space() && At.block() == Bt.block() && Bt.block() == Ct.block()); #endif for (std::size_t i = At.startIndex(); i < At.stopIndex(); ++i) { m_vec[i] = m_random_beta_rA * At[i] + m_random_beta_rB * Bt[i] + m_random_beta_rC * Ct[i]; } }
void computeh(double time, BlockVector& q0, SiconosVector& y) { std::cout <<"my_NewtonEulerR:: computeh" << std:: endl; std::cout <<"q0.size() = " << q0.size() << std:: endl; double height = q0.getValue(0) - _sBallRadius - q0.getValue(7); // std::cout <<"my_NewtonEulerR:: computeh _jachq" << std:: endl; // _jachq->display(); y.setValue(0, height); _Nc->setValue(0, 1); _Nc->setValue(1, 0); _Nc->setValue(2, 0); _Pc1->setValue(0, q0.getValue(0) - _sBallRadius); _Pc1->setValue(1, q0.getValue(1)); _Pc1->setValue(2, q0.getValue(2)); _Pc2->setValue(0,q0.getValue(7)); _Pc2->setValue(1,q0.getValue(8)); _Pc2->setValue(2,q0.getValue(9)); //printf("my_NewtonEulerR N, Pc\n"); _Nc->display(); _Pc1->display(); _Pc2->display(); std::cout <<"my_NewtonEulerR:: computeh ends" << std:: endl; }
void computeh(double time, BlockVector& q0, SiconosVector& y) { double height = fabs(q0.getValue(0)) - _sBallRadius; // std::cout <<"my_NewtonEulerR:: computeh _jachq" << std:: endl; // _jachq->display(); y.setValue(0, height); _Nc->setValue(0, 1); _Nc->setValue(1, 0); _Nc->setValue(2, 0); _Pc1->setValue(0, height); _Pc1->setValue(1, q0.getValue(1)); _Pc1->setValue(2, q0.getValue(2)); //_Pc2->setValue(0,hpc); //_Pc2->setValue(1,data[q0]->getValue(1)); //_Pc2->setValue(2,data[q0]->getValue(2)); //printf("my_NewtonEulerR N, Pc\n"); //_Nc->display(); //_Pc1->display(); }
void prod(const SiconosMatrix& A, const BlockVector& x, SiconosVector& y, bool init) { assert(!(A.isPLUFactorized()) && "A is PLUFactorized in prod !!"); if (init) y.zero(); unsigned int startRow = 0; unsigned int startCol = 0; // In private_addprod, the sum of all blocks of x, x[i], is computed: y = Sum_i (subA x[i]), with subA a submatrix of A, // starting from position startRow in rows and startCol in columns. // private_prod takes also into account the fact that each block of x can also be a block. VectorOfVectors::const_iterator it; for (it = x.begin(); it != x.end(); ++it) { private_addprod(A, startRow, startCol, **it, y); startCol += (*it)->size(); } }
void FirstOrderLinearR::computeg(double time, SiconosVector& lambda, SiconosVector& z, BlockVector& r) { if (_pluginJacglambda->fPtr) { if (!_B) _B.reset(new SimpleMatrix(r.size(),lambda.size())); computeB(time, z, *_B); } prod(*_B, lambda, r, false); }
void KneeJointR::computeh(double time, BlockVector& q0, SiconosVector& y) { DEBUG_BEGIN("KneeJointR::computeh(double time, BlockVector& q0, SiconosVector& y)\n"); DEBUG_EXPR(q0.display()); double X1 = q0.getValue(0); double Y1 = q0.getValue(1); double Z1 = q0.getValue(2); double q10 = q0.getValue(3); double q11 = q0.getValue(4); double q12 = q0.getValue(5); double q13 = q0.getValue(6); DEBUG_PRINTF("X1 = %12.8e,\t Y1 = %12.8e,\t Z1 = %12.8e,\n",X1,Y1,Z1); DEBUG_PRINTF("q10 = %12.8e,\t q11 = %12.8e,\t q12 = %12.8e,\t q13 = %12.8e,\n",q10,q11,q12,q13); double X2 = 0; double Y2 = 0; double Z2 = 0; double q20 = 1; double q21 = 0; double q22 = 0; double q23 = 0; if(q0.getNumberOfBlocks()>1) { // SP::SiconosVector x2 = _d2->q(); // DEBUG_EXPR( _d2->q()->display();); X2 = q0.getValue(7); Y2 = q0.getValue(8); Z2 = q0.getValue(9); q20 = q0.getValue(10); q21 = q0.getValue(11); q22 = q0.getValue(12); q23 = q0.getValue(13); } y.setValue(0, Hx(X1, Y1, Z1, q10, q11, q12, q13, X2, Y2, Z2, q20, q21, q22, q23)); y.setValue(1, Hy(X1, Y1, Z1, q10, q11, q12, q13, X2, Y2, Z2, q20, q21, q22, q23)); y.setValue(2, Hz(X1, Y1, Z1, q10, q11, q12, q13, X2, Y2, Z2, q20, q21, q22, q23)); DEBUG_EXPR(y.display()); DEBUG_END("KneeJointR::computeh(double time, BlockVector& q0, SiconosVector& y)\n"); }
// Copy from BlockVector SiconosVector::SiconosVector(const BlockVector & vIn) : std11::enable_shared_from_this<SiconosVector>() { if (ask<IsDense>(**(vIn.begin()))) // dense { _dense = true; vect.Dense = new DenseVect(vIn.size()); } else { _dense = false; vect.Sparse = new SparseVect(vIn.size()); } VectorOfVectors::const_iterator it; unsigned int pos = 0; for (it = vIn.begin(); it != vIn.end(); ++it) { setBlock(pos, **it); pos += (*it)->size(); } }
//----------------------------------------------------------------------------- void BlockMatrix::mult(const BlockVector& x, BlockVector& y, bool transposed) const { if (transposed) { dolfin_error("BlockMatrix.cpp", "compute transpose matrix-vector product", "Not implemented for block matrices"); } // Create temporary vector dolfin_assert(matrices[0][0]); // Loop over block rows for(std::size_t row = 0; row < matrices.shape()[0]; row++) { // RHS sub-vector GenericVector& _y = *(y.get_block(row)); const GenericMatrix& _matA = *matrices[row][0]; // Resize y and zero if (_y.empty()) _matA.init_vector(_y, 0); _y.zero(); // Loop over block columns std::shared_ptr<GenericVector> z_tmp = _matA.factory().create_vector(); for(std::size_t col = 0; col < matrices.shape()[1]; ++col) { const GenericVector& _x = *(x.get_block(col)); dolfin_assert(matrices[row][col]); matrices[row][col]->mult(_x, *z_tmp); _y += *z_tmp; } } }
void FirstOrderLinearR::computeh(double time, BlockVector& x, SiconosVector& lambda, SiconosVector& z, SiconosVector& y) { y.zero(); if (_pluginJachx->fPtr) { if (!_C) _C.reset(new SimpleMatrix(y.size(),x.size())); computeC(time, z, *_C); } if (_pluginJachlambda->fPtr) { if (!_D) _D.reset(new SimpleMatrix(y.size(),lambda.size())); computeD(time, z, *_D); } if (_pluginf->fPtr) { if (!_F) _F.reset(new SimpleMatrix(y.size(),z.size())); computeF(time, z, *_F); } if (_plugine->fPtr) { if (!_e) _e.reset(new SiconosVector(y.size())); computee(time, z, *_e); } if (_C) prod(*_C, x, y, false); if (_D) prod(*_D, lambda, y, false); if (_e) y += *_e; if (_F) prod(*_F, z, y, false); }
void accumQuery(const BlockVector<G1>& query, const BlockVector<Fr>& scalar, ProgressCallback* callback = nullptr) { #ifdef USE_ASSERT assert(query.space() == scalar.space() && query.block() == scalar.block()); #endif accumQuery(query.vec(), scalar.vec(), callback); }
// Quantise a subband in in-place transform order // This version of quantise_subbands assumes multiple quantisers per subband. // It may be used for either quantising slices or for quantising subbands with codeblocks const Array2D quantise_subbands(const Array2D& coefficients, const BlockVector& qIndices) { const Index transformHeight = coefficients.shape()[0]; const Index transformWidth = coefficients.shape()[1]; // TO DO: Check numberOfSubbands=3n+1 ? const int numberOfSubbands = qIndices.size(); const int waveletDepth = (numberOfSubbands-1)/3; Index stride, offset; // stride is subsampling factor, offset is subsampling phase Array2D result(coefficients.ranges()); // Create a view of the coefficients, representing the LL subband, quantise it, // then assign the result a view of the results array. This puts the quantised // LL subband into the result array in in-place transform order. // ArrayIndices2D objects specify the subset of array elements within a view, // that is they specify the subsampling factor and subsampling phase. stride = pow(2, waveletDepth); const ArrayIndices2D LLindices = // LLindices specifies the samples in the LL subband indices[Range(0,transformHeight,stride)][Range(0,transformWidth,stride)]; result[LLindices] = quantise_LLSubband(coefficients[LLindices], qIndices[0]); // Next quantise the other subbands // Note: Level numbers go from zero for the lowest ("DC") frequencies to depth for // the high frequencies. This corresponds to the convention in the VC-2 specification. // Subands go from zero ("DC") to numberOfSubbands-1 for HH at the highest level for (char level=1, band=1; level<=waveletDepth; ++level) { stride = pow(2, waveletDepth+1-level); offset = stride/2; // Create a view of coefficients corresponding to a subband, then quantise it //Quantise HL subband const ArrayIndices2D HLindices = // HLindices specifies the samples in the HL subband indices[Range(0,transformHeight,stride)][Range(offset,transformWidth,stride)]; result[HLindices] = quantise_block(coefficients[HLindices], qIndices[band++]); //Quantise LH subband const ArrayIndices2D LHindices = // LHindices specifies the samples in the LH subband indices[Range(offset,transformHeight,stride)][Range(0,transformWidth,stride)]; result[LHindices] = quantise_block(coefficients[LHindices], qIndices[band++]); //Quantise HH subband const ArrayIndices2D HHindices = // HHindices specifies the samples in the HH subband indices[Range(offset,transformHeight,stride)][Range(offset,transformWidth,stride)]; result[HHindices] = quantise_block(coefficients[HHindices], qIndices[band++]); } return result; }
PPZK_QueryHK(const BlockVector<Fr>& qap_query) : PPZK_QueryHK{qap_query.space(), qap_query.block()[0]} {}
//------------------------------------------------------------------------------ bool postdominatesAll(const BasicBlock *block, const BlockVector &blocks, const PostDominatorTree *pdt) { return std::all_of( blocks.begin(), blocks.end(), [block, pdt](BasicBlock *iter) { return pdt->dominates(block, iter); }); }
// Template specialization for BasicBlock. template <> void dumpVector(const BlockVector &toDump) { errs() << "Size: " << toDump.size() << "\n"; for (auto element : toDump) errs() << element->getName() << " -- "; errs() << "\n"; }
/** Extract the master block from <code>problem</code>. * The constructor also sets up the solver for the newly created master * block. The master block can only be extracted if all sub-blocks have * already been extracted. * @param problem The problem from which to extract the master. * @param blocks The sub blocks that have already been extracted. */ BendersOpt::Block::Block(Problem const *problem, BlockVector const &blocks) : env(), number(-1), vars(0), rows(0), cplex(0), cb(0) { IloNumVarArray problemVars = problem->getVariables(); IloRangeArray problemRanges = problem->getRows(); IloExpr masterObj(env); IloNumVarArray masterVars(env); IloRangeArray masterRows(env); // Find columns that do not intersect block variables and // copy them to the master block. IdxMap idxMap; RowSet rowSet; for (IloInt j = 0; j < problemVars.getSize(); ++j) { IloNumVar x = problemVars[j]; if ( problem->getBlock(x) < 0 ) { // Column is not in a block. Copy it to the master. IloNumVar v(env, x.getLB(), x.getUB(), x.getType(), x.getName()); varMap.insert(VarMap::value_type(v, x)); masterObj += problem->getObjCoef(x) * v; idxMap[x] = masterVars.getSize(); masterVars.add(v); } else { // Column is in a block. Collect all rows that intersect // this column. RowSet const &intersected = problem->getIntersectedRows(x); for (RowSet::const_iterator it = intersected.begin(); it != intersected.end(); ++it) rowSet.insert(*it); idxMap[x] = -1; } } // Pick up the rows that we need to copy. // These are the rows that are only intersected by master variables, // that is, the rows that are not in any block's rowset. for (IloInt i = 0; i < problemRanges.getSize(); ++i) { IloRange r = problemRanges[i]; if ( rowSet.find(r) == rowSet.end() ) { IloRange masterRow(env, r.getLB(), r.getUB(), r.getName()); IloExpr lhs(env); for (IloExpr::LinearIterator it = r.getLinearIterator(); it.ok(); ++it) { lhs += it.getCoef() * masterVars[idxMap[it.getVar()]]; } masterRow.setExpr(lhs); masterRows.add(masterRow); } } // Adjust variable indices in blocks so that reference to variables // in the original problem become references to variables in the master. for (BlockVector::const_iterator b = blocks.begin(); b != blocks.end(); ++b) { for (std::vector<FixData>::iterator it = (*b)->fixed.begin(); it != (*b)->fixed.end(); ++it) it->col = idxMap[problemVars[it->col]]; } // Create the eta variables, one for each block. // See the comments at the top of this file for details about the // eta variables. IloInt const firsteta = masterVars.getSize(); for (BlockVector::size_type i = 0; i < blocks.size(); ++i) { std::stringstream s; s << "_eta" << i; IloNumVar eta(env, 0.0, IloInfinity, s.str().c_str()); masterObj += eta; masterVars.add(eta); } // Create model and solver instance vars = masterVars; rows = masterRows; IloModel model(env); model.add(obj = IloObjective(env, masterObj, problem->getObjSense())); model.add(vars); model.add(rows); cplex = IloCplex(model); cplex.use(cb = new (env) LazyConstraintCallback(env, this, blocks, firsteta)); for (IloExpr::LinearIterator it = obj.getLinearIterator(); it.ok(); ++it) objMap.insert(ObjMap::value_type(it.getVar(), it.getCoef())); }
void SFUtils::DoTopologicalSort( SLSF::Subsystem subsystem ) { int vertexIndex = 0; VertexIndexBlockMap vertexIndexBlockMap; BlockVertexIndexMap blockVertexIndexMap; BlockVector blockVector = subsystem.Block_kind_children(); for( BlockVector::iterator blvItr = blockVector.begin(); blvItr != blockVector.end(); ++blvItr, ++vertexIndex ) { SLSF::Block block = *blvItr; vertexIndexBlockMap[ vertexIndex ] = block; blockVertexIndexMap[ block ] = vertexIndex; std::string blockType = block.BlockType(); if ( blockType == "UnitDelay" ) { // check on other delay blocks as well ... ++vertexIndex; // UnitDelay is vertexed twice - one for outputs (timestep n-1), and one for inputs: vertexIndex is as destination, vertexIndex + 1 is as source } } Graph graph( vertexIndex ); LineSet lineSet = subsystem.Line_kind_children(); for( LineSet::iterator lnsItr = lineSet.begin(); lnsItr != lineSet.end() ; ++lnsItr ) { SLSF::Line line = *lnsItr; SLSF::Port sourcePort = line.srcLine_end(); SLSF::Port destinationPort = line.dstLine_end(); SLSF::Block sourceBlock = sourcePort.Block_parent(); SLSF::Block destinationBlock = destinationPort.Block_parent(); if ( sourceBlock == subsystem || destinationBlock == subsystem ) continue; int sourceBlockVertexIndex = blockVertexIndexMap[ sourceBlock ]; if ( static_cast< std::string >( sourceBlock.BlockType() ) == "UnitDelay" ) { ++sourceBlockVertexIndex; } int destinationBlockVertexIndex = blockVertexIndexMap[ destinationBlock ]; boost::add_edge( sourceBlockVertexIndex, destinationBlockVertexIndex, graph ); } LoopDetector loopDetector( graph ); if ( loopDetector.check() ) { // TODO: add support for loops involving integrator and other stateful blocks // Determine what Blocks caused the loop typedef std::map< Vertex, int > VertexStrongComponentIndexMap; VertexStrongComponentIndexMap vertexStrongComponentIndexMap; boost::associative_property_map< VertexStrongComponentIndexMap > apmVertexStrongComponentIndexMap( vertexStrongComponentIndexMap ); strong_components( graph, apmVertexStrongComponentIndexMap ); typedef std::vector< Vertex > VertexVector; typedef std::map< int, VertexVector > StrongComponentIndexVertexGroupMap; StrongComponentIndexVertexGroupMap strongComponentIndexVertexGroupMap; for( VertexStrongComponentIndexMap::iterator vsmItr = vertexStrongComponentIndexMap.begin(); vsmItr != vertexStrongComponentIndexMap.end(); ++vsmItr ) { strongComponentIndexVertexGroupMap[ vsmItr->second ].push_back( vsmItr->first ); } std::string error( "Dataflow Graph '" + static_cast< std::string >( subsystem.Name() ) + "' has unhandled loops: " ); for( StrongComponentIndexVertexGroupMap::iterator svmItr = strongComponentIndexVertexGroupMap.begin(); svmItr != strongComponentIndexVertexGroupMap.end(); ++svmItr ) { VertexVector vertexVector = svmItr->second; if ( vertexVector.size() <= 1 ) continue; error.append( "\n" ); for( VertexVector::iterator vtvItr = vertexVector.begin(); vtvItr != vertexVector.end(); ++vtvItr ) { error.append( blockVector[ *vtvItr ].getPath("/") ); error.append( ", " ); } error.erase( error.size() - 2 ); } throw udm_exception(error); } typedef std::set< Vertex > VertexSet; typedef std::map< int, VertexSet > PriorityVertexSetMap; PriorityVertexSetMap priorityVertexSetMap; for( BlockVector::iterator blvItr = blockVector.begin() ; blvItr != blockVector.end() ; ++blvItr ) { SLSF::Block block = *blvItr; int priority = block.Priority(); if ( priority == 0 ) continue; Vertex vertex = blockVertexIndexMap[ block ]; priorityVertexSetMap[ priority ].insert( vertex ); } if ( priorityVertexSetMap.size() > 1 ) { PriorityVertexSetMap::iterator lstPvmItr = priorityVertexSetMap.end(); --lstPvmItr; for( PriorityVertexSetMap::iterator pvmItr = priorityVertexSetMap.begin() ; pvmItr != lstPvmItr ; ) { PriorityVertexSetMap::iterator nxtPvmItr = pvmItr; ++nxtPvmItr; VertexSet &higherPriorityVertexSet = pvmItr->second; VertexSet &lowerPriorityVertexSet = nxtPvmItr->second; for( VertexSet::iterator hvsItr = higherPriorityVertexSet.begin() ; hvsItr != higherPriorityVertexSet.end() ; ++hvsItr ) { for( VertexSet::iterator lvsItr = lowerPriorityVertexSet.begin() ; lvsItr != lowerPriorityVertexSet.end() ; ++lvsItr ) { boost::add_edge( *hvsItr, *lvsItr, graph ); LoopDetector loopDetector( graph ); if ( loopDetector.check( *hvsItr ) ) { SLSF::Block higherPriorityBlock = vertexIndexBlockMap[ *hvsItr ]; SLSF::Block lowerPriorityBlock = vertexIndexBlockMap[ *lvsItr ]; std::cerr << "WARNING: Cannot implement priority difference between block \"" << higherPriorityBlock.getPath( "/" ) << "\" (Priority = " << *hvsItr << ") and " << std::endl; std::cerr << " block \"" << lowerPriorityBlock.getPath( "/" ) << "\" (Priority = " << *lvsItr << "): contradicts topology of subsystem or other implemented block priority order." << std::endl; boost::remove_edge( *hvsItr, *lvsItr, graph ); } } } pvmItr = nxtPvmItr; } } VertexList vertexList; boost::topological_sort( graph, std::back_inserter( vertexList ) ); /* PUT ALL "DataStoreMemory" BLOCKS AT END OF "C" SO THEY HAVE HIGHEST PRIORITY */ VertexList::reverse_iterator vtlRit = vertexList.rbegin(); while( vtlRit != vertexList.rend() ) { int index = *vtlRit; SLSF::Block block = vertexIndexBlockMap[ index ]; (void)++vtlRit; if ( block != Udm::null && static_cast< std::string >( block.BlockType() ) == "DataStoreMemory" ) { VertexList::reverse_iterator vtlRit2 = vtlRit; vertexList.splice( vertexList.end(), vertexList, vtlRit2.base() ); } } int priority = 0; for( VertexList::reverse_iterator vtlRit = vertexList.rbegin() ; vtlRit != vertexList.rend() ; ++vtlRit ) { int index = *vtlRit; SLSF::Block block = vertexIndexBlockMap[ index ]; if ( block == Udm::null ) { // unit delay as source is not registered - we will invoke it initially, and invoke it as destination in the priority order // const std::string& bt = blk.BlockType(); // assert(bt.compare("UnitDelay") == 0); /* Unit Delay Block as destination */ continue; } block.Priority() = priority++; } }