/** * Simple Parabolic PDE u' = del squared u * * With u = 0 on the boundaries of the unit cube. Subject to the initial * condition u(0,x,y,z)=sin( PI x)sin( PI y)sin( PI z). */ void TestSimpleLinearParabolicSolver3DZeroDirich() { // read mesh on [0,1]x[0,1]x[0,1] TrianglesMeshReader<3,3> mesh_reader("mesh/test/data/cube_136_elements"); TetrahedralMesh<3,3> mesh; mesh.ConstructFromMeshReader(mesh_reader); // Instantiate PDE object HeatEquation<3> pde; // Boundary conditions - zero dirichlet everywhere on boundary BoundaryConditionsContainer<3,3,1> bcc; bcc.DefineZeroDirichletOnMeshBoundary(&mesh); // Solver SimpleLinearParabolicSolver<3,3> solver(&mesh,&pde,&bcc); /* * Choose initial condition sin(x*pi)*sin(y*pi)*sin(z*pi) as * this is an eigenfunction of the heat equation. */ std::vector<double> init_cond(mesh.GetNumNodes()); for (unsigned i=0; i<mesh.GetNumNodes(); i++) { double x = mesh.GetNode(i)->GetPoint()[0]; double y = mesh.GetNode(i)->GetPoint()[1]; double z = mesh.GetNode(i)->GetPoint()[2]; init_cond[i] = sin(x*M_PI)*sin(y*M_PI)*sin(z*M_PI); } Vec initial_condition = PetscTools::CreateVec(init_cond); double t_end = 0.1; solver.SetTimes(0, t_end); solver.SetTimeStep(0.001); solver.SetInitialCondition(initial_condition); Vec result = solver.Solve(); ReplicatableVector result_repl(result); // Check solution is u = e^{-3*t*pi*pi} sin(x*pi)*sin(y*pi)*sin(z*pi), t=0.1 for (unsigned i=0; i<result_repl.GetSize(); i++) { double x = mesh.GetNode(i)->GetPoint()[0]; double y = mesh.GetNode(i)->GetPoint()[1]; double z = mesh.GetNode(i)->GetPoint()[2]; double u = exp(-3*t_end*M_PI*M_PI)*sin(x*M_PI)*sin(y*M_PI)*sin(z*M_PI); TS_ASSERT_DELTA(result_repl[i], u, 0.1); } PetscTools::Destroy(initial_condition); PetscTools::Destroy(result); }
void TestDefineZeroDirichletOnMeshBoundary() { // Load a 2D square mesh with 1 central non-boundary node TrianglesMeshReader<2,2> mesh_reader("mesh/test/data/square_4_elements"); TetrahedralMesh<2,2> mesh; mesh.ConstructFromMeshReader(mesh_reader); BoundaryConditionsContainer<2,2,1> bcc; bcc.DefineZeroDirichletOnMeshBoundary(&mesh); // Check boundary nodes have the right condition for (int i=0; i<4; i++) { double value = bcc.GetDirichletBCValue(mesh.GetNode(i)); TS_ASSERT_DELTA(value, 0.0, 1e-12); } // Check non-boundary node has no condition TS_ASSERT(!bcc.HasDirichletBoundaryCondition(mesh.GetNode(4))); }
void TestSolveAndWriteResultsToFileMethod() { // Create mesh of the domain [0,1]x[0,1] TrianglesMeshReader<2,2> mesh_reader("mesh/test/data/square_128_elements"); TetrahedralMesh<2,2> mesh; mesh.ConstructFromMeshReader(mesh_reader); // Create PDE system object HeatEquationForCoupledOdeSystem<2> pde; // Define zero Dirichlet boundary conditions on entire boundary BoundaryConditionsContainer<2,2,1> bcc; bcc.DefineZeroDirichletOnMeshBoundary(&mesh); // Create the correct number of ODE systems double a = 5.0; std::vector<AbstractOdeSystemForCoupledPdeSystem*> ode_systems; for (unsigned i=0; i<mesh.GetNumNodes(); i++) { ode_systems.push_back(new OdeSystemForCoupledHeatEquation(a)); } // Create PDE system solver LinearParabolicPdeSystemWithCoupledOdeSystemSolver<2,2,1> solver(&mesh, &pde, &bcc, ode_systems); // Set end time and timestep (end time is not a multiple of timestep, for coverage) double t_end = 0.105; /* * Set initial condition * * u(x,y,0) = sin(pi*x)*sin(pi*y), * * which is an eigenfunction of the heat equation. */ std::vector<double> init_cond(mesh.GetNumNodes()); for (unsigned i=0; i<mesh.GetNumNodes(); i++) { double x = mesh.GetNode(i)->GetPoint()[0]; double y = mesh.GetNode(i)->GetPoint()[1]; init_cond[i] = sin(M_PI*x)*sin(M_PI*y); } Vec initial_condition = PetscTools::CreateVec(init_cond); // Need an output folder TS_ASSERT_THROWS_THIS(solver.SolveAndWriteResultsToFile(), "SetOutputDirectory() must be called prior to SolveAndWriteResultsToFile()"); solver.SetOutputDirectory("TestHeatEquationForCoupledOdeSystemIn2dWithZeroDirichletWithOutput"); // Need a time interval TS_ASSERT_THROWS_THIS(solver.SolveAndWriteResultsToFile(), "SetTimes() must be called prior to SolveAndWriteResultsToFile()"); solver.SetTimes(0, t_end); // Need a timestep TS_ASSERT_THROWS_THIS(solver.SolveAndWriteResultsToFile(), "SetTimeStep() must be called prior to SolveAndWriteResultsToFile()"); solver.SetTimeStep(0.01); // Need sampling interval TS_ASSERT_THROWS_THIS(solver.SolveAndWriteResultsToFile(), "SetSamplingTimeStep() must be called prior to SolveAndWriteResultsToFile()"); solver.SetSamplingTimeStep(0.1); // Need initial condition TS_ASSERT_THROWS_THIS(solver.SolveAndWriteResultsToFile(), "SetInitialCondition() must be called prior to SolveAndWriteResultsToFile()"); solver.SetInitialCondition(initial_condition); solver.SolveAndWriteResultsToFile(); //#ifdef CHASTE_VTK ///\todo #1967 Check that the file was output and has expected content //#endif // CHASTE_VTK // Tidy up PetscTools::Destroy(initial_condition); }
void TestHeatEquationWithCoupledOdeSystemIn2dWithZeroDirichlet() { // Create mesh of the domain [0,1]x[0,1] TrianglesMeshReader<2,2> mesh_reader("mesh/test/data/square_4096_elements"); TetrahedralMesh<2,2> mesh; mesh.ConstructFromMeshReader(mesh_reader); // Create PDE system object HeatEquationForCoupledOdeSystem<2> pde; // Define zero Dirichlet boundary conditions on entire boundary BoundaryConditionsContainer<2,2,1> bcc; bcc.DefineZeroDirichletOnMeshBoundary(&mesh); // Create the correct number of ODE systems double a = 5.0; std::vector<AbstractOdeSystemForCoupledPdeSystem*> ode_systems; for (unsigned i=0; i<mesh.GetNumNodes(); i++) { ode_systems.push_back(new OdeSystemForCoupledHeatEquation(a)); } // Create PDE system solver LinearParabolicPdeSystemWithCoupledOdeSystemSolver<2,2,1> solver(&mesh, &pde, &bcc, ode_systems); // Set end time and timestep double t_end = 0.01; solver.SetTimes(0, t_end); solver.SetTimeStep(0.001); /* * Set initial condition * * u(x,y,0) = sin(pi*x)*sin(pi*y), * * which is an eigenfunction of the heat equation. */ std::vector<double> init_cond(mesh.GetNumNodes()); for (unsigned i=0; i<mesh.GetNumNodes(); i++) { double x = mesh.GetNode(i)->GetPoint()[0]; double y = mesh.GetNode(i)->GetPoint()[1]; init_cond[i] = sin(M_PI*x)*sin(M_PI*y); } Vec initial_condition = PetscTools::CreateVec(init_cond); solver.SetInitialCondition(initial_condition); // Solve PDE system and store result Vec result = solver.Solve(); ReplicatableVector result_repl(result); /* * Test that solution is given by * * u(x,y,t) = e^{-2*pi*pi*t} sin(pi*x)*sin(pi*y), * v(x,y,t) = 1 + (1 - e^{-2*pi*pi*t})*sin(pi*x)*sin(pi*y)*a/(2*pi*pi), * * with t = t_end. */ for (unsigned i=0; i<result_repl.GetSize(); i++) { double x = mesh.GetNode(i)->GetPoint()[0]; double y = mesh.GetNode(i)->GetPoint()[1]; double u = exp(-2*M_PI*M_PI*t_end)*sin(M_PI*x)*sin(M_PI*y); double v = 1.0 + (a/(2*M_PI*M_PI))*(1 - exp(-2*M_PI*M_PI*t_end))*sin(M_PI*x)*sin(M_PI*y); TS_ASSERT_DELTA(result_repl[i], u, 0.01); TS_ASSERT_DELTA(ode_systems[i]->rGetStateVariables()[0], v, 0.01); } // Tidy up PetscTools::Destroy(initial_condition); PetscTools::Destroy(result); }