示例#1
0
bool field_data_valid( const FieldBase & f ,
                       const Bucket & k ,
                       unsigned ord ,
                       const char * required_by )
{
  const MetaData * const k_mesh_meta_data = & MetaData::get(k);
  const MetaData * const f_mesh_meta_data = & MetaData::get(f);
  const bool ok_mesh_meta_data  = k_mesh_meta_data == f_mesh_meta_data ;
  const bool ok_ord     = ord < k.size() ;
  const bool exists     = ok_mesh_meta_data && ok_ord &&
                          NULL != field_data( f , k.begin() );

  if ( required_by && ! exists ) {
    std::ostringstream msg_begin ;
    msg_begin << "For args: " ;
    msg_begin << f << " , " ;
    msg_begin << k << " , " ;
    msg_begin << ord << " , " ;
    msg_begin << required_by ;
    msg_begin << "; operation FAILED with " ;
    ThrowErrorMsgIf( ! ok_mesh_meta_data,
                     msg_begin.str() << " different MetaData");
    ThrowErrorMsgIf( ! ok_ord, msg_begin.str() <<
                     " Ordinal " <<  ord << " >= " << " size " << k.size());
    ThrowErrorMsg( msg_begin.str() << " no data");
  }

  return exists ;
}
示例#2
0
/// Cross-off the multiples of the sieving primes within the current
/// bucket. This is an implementation of the segmented sieve of
/// Eratosthenes with wheel factorization optimized for medium sieving
/// primes that have a few multiples per segment. This algorithm uses
/// a modulo 210 wheel that skips multiples of 2, 3, 5 and 7.
///
void EratMedium::crossOff(byte_t* sieve, uint_t sieveSize, Bucket& bucket)
{
  SievingPrime* sPrime = bucket.begin();
  SievingPrime* sEnd = bucket.end();

  // process 3 sieving primes per loop iteration to
  // increase instruction level parallelism
  for (; sPrime + 3 <= sEnd; sPrime += 3)
  {
    uint_t multipleIndex0 = sPrime[0].getMultipleIndex();
    uint_t wheelIndex0    = sPrime[0].getWheelIndex();
    uint_t sievingPrime0  = sPrime[0].getSievingPrime();
    uint_t multipleIndex1 = sPrime[1].getMultipleIndex();
    uint_t wheelIndex1    = sPrime[1].getWheelIndex();
    uint_t sievingPrime1  = sPrime[1].getSievingPrime();
    uint_t multipleIndex2 = sPrime[2].getMultipleIndex();
    uint_t wheelIndex2    = sPrime[2].getWheelIndex();
    uint_t sievingPrime2  = sPrime[2].getSievingPrime();

    // cross-off the multiples (unset bits) of sievingPrime
    // @see unsetBit() in WheelFactorization.hpp
    while (multipleIndex0 < sieveSize)
    {
      unsetBit(sieve, sievingPrime0, &multipleIndex0, &wheelIndex0);
      if (multipleIndex1 >= sieveSize) break;
      unsetBit(sieve, sievingPrime1, &multipleIndex1, &wheelIndex1);
      if (multipleIndex2 >= sieveSize) break;
      unsetBit(sieve, sievingPrime2, &multipleIndex2, &wheelIndex2);
    }

    while (multipleIndex0 < sieveSize) unsetBit(sieve, sievingPrime0, &multipleIndex0, &wheelIndex0);
    while (multipleIndex1 < sieveSize) unsetBit(sieve, sievingPrime1, &multipleIndex1, &wheelIndex1);
    while (multipleIndex2 < sieveSize) unsetBit(sieve, sievingPrime2, &multipleIndex2, &wheelIndex2);

    multipleIndex0 -= sieveSize;
    multipleIndex1 -= sieveSize;
    multipleIndex2 -= sieveSize;

    sPrime[0].set(multipleIndex0, wheelIndex0);
    sPrime[1].set(multipleIndex1, wheelIndex1);
    sPrime[2].set(multipleIndex2, wheelIndex2);
  }

  // process remaining sieving primes
  for (; sPrime != sEnd; sPrime++)
  {
    uint_t multipleIndex = sPrime->getMultipleIndex();
    uint_t wheelIndex    = sPrime->getWheelIndex();
    uint_t sievingPrime  = sPrime->getSievingPrime();
    while (multipleIndex < sieveSize)
      unsetBit(sieve, sievingPrime, &multipleIndex, &wheelIndex);
    multipleIndex -= sieveSize;
    sPrime->set(multipleIndex, wheelIndex);
  }
}
示例#3
0
bool field_data_valid( const FieldBase & f ,
                       const Bucket & k ,
                       unsigned ord ,
                       const char * required_by )
{
  const MetaData * const k_mesh_meta_data = & k.mesh().mesh_meta_data();
  const MetaData * const f_mesh_meta_data = & f.mesh_meta_data();
  const bool ok_mesh_meta_data  = k_mesh_meta_data == f_mesh_meta_data ;
  const bool ok_ord     = ord < k.size() ;
  const bool exists     = ok_mesh_meta_data && ok_ord &&
                          NULL != field_data( f , k.begin() );

  if ( required_by && ! exists ) {
    std::ostringstream msg ;
    msg << "stk::mesh::field_data_valid( " ;
    msg << f ;
    msg << " , " ;
    msg << k ;
    msg << " , " ;
    msg << ord ;
    msg << " , " ;
    msg << required_by ;
    msg << " ) FAILED with " ;
    if ( ! ok_mesh_meta_data ) {
      msg << " different MetaData" ;
    }
    else if ( ! ok_ord ) {
      msg << " Ordinal " ;
      msg << ord ;
      msg << " >= " ;
      msg << " size " ;
      msg << k.size();
    }
    else {
      msg << " no data" ;
    }
    throw std::runtime_error( msg.str() );
  }

  return exists ;
}
示例#4
0
/// Cross-off the multiples of big sieving primes
/// from the sieve array.
///
void EratBig::crossOff(byte_t* sieve)
{
  // process the buckets in lists_[0] which hold the sieving primes
  // that have multiple(s) in the current segment
  while (lists_[0]->hasNext() || !lists_[0]->empty())
  {
    Bucket* bucket = lists_[0];
    lists_[0] = NULL;
    pushBucket(0);
    do {
      crossOff(sieve, bucket->begin(), bucket->end());
      Bucket* processed = bucket;
      bucket = bucket->next();
      processed->reset();
      moveBucket(*processed, stock_);
    } while (bucket);
  }

  // move the list corresponding to the next segment
  // i.e. lists_[1] to lists_[0] ...
  std::rotate(lists_.begin(), lists_.begin() + 1, lists_.end());
}
示例#5
0
/// Cross-off the multiples of the sieving primes within the current
/// bucket. This is an implementation of the segmented sieve of
/// Eratosthenes with wheel factorization optimized for small sieving
/// primes that have many multiples per segment. This algorithm uses a
/// hardcoded modulo 30 wheel that skips multiples of 2, 3 and 5.
///
void EratSmall::crossOff(byte_t* sieve, byte_t* sieveLimit, Bucket& bucket)
{
  SievingPrime* sPrime = bucket.begin();
  SievingPrime* sEnd   = bucket.end();

  for (; sPrime != sEnd; sPrime++)
  {
    uint_t sievingPrime  = sPrime->getSievingPrime();
    uint_t multipleIndex = sPrime->getMultipleIndex();
    uint_t wheelIndex    = sPrime->getWheelIndex();

    // pointer to the byte containing the first multiple
    // of sievingPrime within the current segment
    byte_t* p = &sieve[multipleIndex];
    byte_t* loopLimit = sieveLimit - (sievingPrime * 28 + 27);
    if (loopLimit > sieveLimit)
      loopLimit = p;

    switch (wheelIndex)
    {
      for (;;) // i*30 + 7
      {
        case 0: // each iteration removes the next 8 multiples
                // of the current sievingPrime
                for (; p < loopLimit; p += sievingPrime * 30 + 7)
                {
                  p[sievingPrime *  0 + 0] &= BIT0;
                  p[sievingPrime *  6 + 1] &= BIT4;
                  p[sievingPrime * 10 + 2] &= BIT3;
                  p[sievingPrime * 12 + 2] &= BIT7;
                  p[sievingPrime * 16 + 3] &= BIT6;
                  p[sievingPrime * 18 + 4] &= BIT2;
                  p[sievingPrime * 22 + 5] &= BIT1;
                  p[sievingPrime * 28 + 6] &= BIT5;
                }
                if (p >= sieveLimit) { sPrime->setWheelIndex(0); break; }
                *p &= BIT0; p += sievingPrime * 6 + 1;
        case 1: if (p >= sieveLimit) { sPrime->setWheelIndex(1); break; }
                *p &= BIT4; p += sievingPrime * 4 + 1;
        case 2: if (p >= sieveLimit) { sPrime->setWheelIndex(2); break; }
                *p &= BIT3; p += sievingPrime * 2 + 0;
        case 3: if (p >= sieveLimit) { sPrime->setWheelIndex(3); break; }
                *p &= BIT7; p += sievingPrime * 4 + 1;
        case 4: if (p >= sieveLimit) { sPrime->setWheelIndex(4); break; }
                *p &= BIT6; p += sievingPrime * 2 + 1;
        case 5: if (p >= sieveLimit) { sPrime->setWheelIndex(5); break; }
                *p &= BIT2; p += sievingPrime * 4 + 1;
        case 6: if (p >= sieveLimit) { sPrime->setWheelIndex(6); break; }
                *p &= BIT1; p += sievingPrime * 6 + 1;
        case 7: if (p >= sieveLimit) { sPrime->setWheelIndex(7); break; }
                *p &= BIT5; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 11
      {
        case  8: for (; p < loopLimit; p += sievingPrime * 30 + 11)
                 {
                   p[sievingPrime *  0 +  0] &= BIT1;
                   p[sievingPrime *  6 +  2] &= BIT3;
                   p[sievingPrime * 10 +  3] &= BIT7;
                   p[sievingPrime * 12 +  4] &= BIT5;
                   p[sievingPrime * 16 +  6] &= BIT0;
                   p[sievingPrime * 18 +  6] &= BIT6;
                   p[sievingPrime * 22 +  8] &= BIT2;
                   p[sievingPrime * 28 + 10] &= BIT4;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(8);  break; }
                 *p &= BIT1; p += sievingPrime * 6 + 2;
        case  9: if (p >= sieveLimit) { sPrime->setWheelIndex(9);  break; }
                 *p &= BIT3; p += sievingPrime * 4 + 1;
        case 10: if (p >= sieveLimit) { sPrime->setWheelIndex(10); break; }
                 *p &= BIT7; p += sievingPrime * 2 + 1;
        case 11: if (p >= sieveLimit) { sPrime->setWheelIndex(11); break; }
                 *p &= BIT5; p += sievingPrime * 4 + 2;
        case 12: if (p >= sieveLimit) { sPrime->setWheelIndex(12); break; }
                 *p &= BIT0; p += sievingPrime * 2 + 0;
        case 13: if (p >= sieveLimit) { sPrime->setWheelIndex(13); break; }
                 *p &= BIT6; p += sievingPrime * 4 + 2;
        case 14: if (p >= sieveLimit) { sPrime->setWheelIndex(14); break; }
                 *p &= BIT2; p += sievingPrime * 6 + 2;
        case 15: if (p >= sieveLimit) { sPrime->setWheelIndex(15); break; }
                 *p &= BIT4; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 13
      {
        case 16: for (; p < loopLimit; p += sievingPrime * 30 + 13)
                 {
                   p[sievingPrime *  0 +  0] &= BIT2;
                   p[sievingPrime *  6 +  2] &= BIT7;
                   p[sievingPrime * 10 +  4] &= BIT5;
                   p[sievingPrime * 12 +  5] &= BIT4;
                   p[sievingPrime * 16 +  7] &= BIT1;
                   p[sievingPrime * 18 +  8] &= BIT0;
                   p[sievingPrime * 22 +  9] &= BIT6;
                   p[sievingPrime * 28 + 12] &= BIT3;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(16); break; }
                 *p &= BIT2; p += sievingPrime * 6 + 2;
        case 17: if (p >= sieveLimit) { sPrime->setWheelIndex(17); break; }
                 *p &= BIT7; p += sievingPrime * 4 + 2;
        case 18: if (p >= sieveLimit) { sPrime->setWheelIndex(18); break; }
                 *p &= BIT5; p += sievingPrime * 2 + 1;
        case 19: if (p >= sieveLimit) { sPrime->setWheelIndex(19); break; }
                 *p &= BIT4; p += sievingPrime * 4 + 2;
        case 20: if (p >= sieveLimit) { sPrime->setWheelIndex(20); break; }
                 *p &= BIT1; p += sievingPrime * 2 + 1;
        case 21: if (p >= sieveLimit) { sPrime->setWheelIndex(21); break; }
                 *p &= BIT0; p += sievingPrime * 4 + 1;
        case 22: if (p >= sieveLimit) { sPrime->setWheelIndex(22); break; }
                 *p &= BIT6; p += sievingPrime * 6 + 3;
        case 23: if (p >= sieveLimit) { sPrime->setWheelIndex(23); break; }
                 *p &= BIT3; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 17
      {
        case 24: for (; p < loopLimit; p += sievingPrime * 30 + 17)
                 {
                   p[sievingPrime *  0 +  0] &= BIT3;
                   p[sievingPrime *  6 +  3] &= BIT6;
                   p[sievingPrime * 10 +  6] &= BIT0;
                   p[sievingPrime * 12 +  7] &= BIT1;
                   p[sievingPrime * 16 +  9] &= BIT4;
                   p[sievingPrime * 18 + 10] &= BIT5;
                   p[sievingPrime * 22 + 12] &= BIT7;
                   p[sievingPrime * 28 + 16] &= BIT2;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(24); break; }
                 *p &= BIT3; p += sievingPrime * 6 + 3;
        case 25: if (p >= sieveLimit) { sPrime->setWheelIndex(25); break; }
                 *p &= BIT6; p += sievingPrime * 4 + 3;
        case 26: if (p >= sieveLimit) { sPrime->setWheelIndex(26); break; }
                 *p &= BIT0; p += sievingPrime * 2 + 1;
        case 27: if (p >= sieveLimit) { sPrime->setWheelIndex(27); break; }
                 *p &= BIT1; p += sievingPrime * 4 + 2;
        case 28: if (p >= sieveLimit) { sPrime->setWheelIndex(28); break; }
                 *p &= BIT4; p += sievingPrime * 2 + 1;
        case 29: if (p >= sieveLimit) { sPrime->setWheelIndex(29); break; }
                 *p &= BIT5; p += sievingPrime * 4 + 2;
        case 30: if (p >= sieveLimit) { sPrime->setWheelIndex(30); break; }
                 *p &= BIT7; p += sievingPrime * 6 + 4;
        case 31: if (p >= sieveLimit) { sPrime->setWheelIndex(31); break; }
                 *p &= BIT2; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 19
      {
        case 32: for (; p < loopLimit; p += sievingPrime * 30 + 19)
                 {
                   p[sievingPrime *  0 +  0] &= BIT4;
                   p[sievingPrime *  6 +  4] &= BIT2;
                   p[sievingPrime * 10 +  6] &= BIT6;
                   p[sievingPrime * 12 +  8] &= BIT0;
                   p[sievingPrime * 16 + 10] &= BIT5;
                   p[sievingPrime * 18 + 11] &= BIT7;
                   p[sievingPrime * 22 + 14] &= BIT3;
                   p[sievingPrime * 28 + 18] &= BIT1;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(32); break; }
                 *p &= BIT4; p += sievingPrime * 6 + 4;
        case 33: if (p >= sieveLimit) { sPrime->setWheelIndex(33); break; }
                 *p &= BIT2; p += sievingPrime * 4 + 2;
        case 34: if (p >= sieveLimit) { sPrime->setWheelIndex(34); break; }
                 *p &= BIT6; p += sievingPrime * 2 + 2;
        case 35: if (p >= sieveLimit) { sPrime->setWheelIndex(35); break; }
                 *p &= BIT0; p += sievingPrime * 4 + 2;
        case 36: if (p >= sieveLimit) { sPrime->setWheelIndex(36); break; }
                 *p &= BIT5; p += sievingPrime * 2 + 1;
        case 37: if (p >= sieveLimit) { sPrime->setWheelIndex(37); break; }
                 *p &= BIT7; p += sievingPrime * 4 + 3;
        case 38: if (p >= sieveLimit) { sPrime->setWheelIndex(38); break; }
                 *p &= BIT3; p += sievingPrime * 6 + 4;
        case 39: if (p >= sieveLimit) { sPrime->setWheelIndex(39); break; }
                 *p &= BIT1; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 23
      {
        case 40: for (; p < loopLimit; p += sievingPrime * 30 + 23)
                 {
                   p[sievingPrime *  0 +  0] &= BIT5;
                   p[sievingPrime *  6 +  5] &= BIT1;
                   p[sievingPrime * 10 +  8] &= BIT2;
                   p[sievingPrime * 12 +  9] &= BIT6;
                   p[sievingPrime * 16 + 12] &= BIT7;
                   p[sievingPrime * 18 + 14] &= BIT3;
                   p[sievingPrime * 22 + 17] &= BIT4;
                   p[sievingPrime * 28 + 22] &= BIT0;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(40); break; }
                 *p &= BIT5; p += sievingPrime * 6 + 5;
        case 41: if (p >= sieveLimit) { sPrime->setWheelIndex(41); break; }
                 *p &= BIT1; p += sievingPrime * 4 + 3;
        case 42: if (p >= sieveLimit) { sPrime->setWheelIndex(42); break; }
                 *p &= BIT2; p += sievingPrime * 2 + 1;
        case 43: if (p >= sieveLimit) { sPrime->setWheelIndex(43); break; }
                 *p &= BIT6; p += sievingPrime * 4 + 3;
        case 44: if (p >= sieveLimit) { sPrime->setWheelIndex(44); break; }
                 *p &= BIT7; p += sievingPrime * 2 + 2;
        case 45: if (p >= sieveLimit) { sPrime->setWheelIndex(45); break; }
                 *p &= BIT3; p += sievingPrime * 4 + 3;
        case 46: if (p >= sieveLimit) { sPrime->setWheelIndex(46); break; }
                 *p &= BIT4; p += sievingPrime * 6 + 5;
        case 47: if (p >= sieveLimit) { sPrime->setWheelIndex(47); break; }
                 *p &= BIT0; p += sievingPrime * 2 + 1;
      }
      break;
      for (;;) // i*30 + 29
      {
        case 48: for (; p < loopLimit; p += sievingPrime * 30 + 29)
                 {
                   p[sievingPrime *  0 +  0] &= BIT6;
                   p[sievingPrime *  6 +  6] &= BIT5;
                   p[sievingPrime * 10 + 10] &= BIT4;
                   p[sievingPrime * 12 + 12] &= BIT3;
                   p[sievingPrime * 16 + 16] &= BIT2;
                   p[sievingPrime * 18 + 18] &= BIT1;
                   p[sievingPrime * 22 + 22] &= BIT0;
                   p[sievingPrime * 28 + 27] &= BIT7;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(48); break; }
                 *p &= BIT6; p += sievingPrime * 6 + 6;
        case 49: if (p >= sieveLimit) { sPrime->setWheelIndex(49); break; }
                 *p &= BIT5; p += sievingPrime * 4 + 4;
        case 50: if (p >= sieveLimit) { sPrime->setWheelIndex(50); break; }
                 *p &= BIT4; p += sievingPrime * 2 + 2;
        case 51: if (p >= sieveLimit) { sPrime->setWheelIndex(51); break; }
                 *p &= BIT3; p += sievingPrime * 4 + 4;
        case 52: if (p >= sieveLimit) { sPrime->setWheelIndex(52); break; }
                 *p &= BIT2; p += sievingPrime * 2 + 2;
        case 53: if (p >= sieveLimit) { sPrime->setWheelIndex(53); break; }
                 *p &= BIT1; p += sievingPrime * 4 + 4;
        case 54: if (p >= sieveLimit) { sPrime->setWheelIndex(54); break; }
                 *p &= BIT0; p += sievingPrime * 6 + 5;
        case 55: if (p >= sieveLimit) { sPrime->setWheelIndex(55); break; }
                 *p &= BIT7; p += sievingPrime * 2 + 2;
      }
      break;
      for (;;) // i*30 + 31
      {
        case 56: for (; p < loopLimit; p += sievingPrime * 30 + 1)
                 {
                   p[sievingPrime *  0 + 0] &= BIT7;
                   p[sievingPrime *  6 + 1] &= BIT0;
                   p[sievingPrime * 10 + 1] &= BIT1;
                   p[sievingPrime * 12 + 1] &= BIT2;
                   p[sievingPrime * 16 + 1] &= BIT3;
                   p[sievingPrime * 18 + 1] &= BIT4;
                   p[sievingPrime * 22 + 1] &= BIT5;
                   p[sievingPrime * 28 + 1] &= BIT6;
                 }
                 if (p >= sieveLimit) { sPrime->setWheelIndex(56); break; }
                 *p &= BIT7; p += sievingPrime * 6 + 1;
        case 57: if (p >= sieveLimit) { sPrime->setWheelIndex(57); break; }
                 *p &= BIT0; p += sievingPrime * 4 + 0;
        case 58: if (p >= sieveLimit) { sPrime->setWheelIndex(58); break; }
                 *p &= BIT1; p += sievingPrime * 2 + 0;
        case 59: if (p >= sieveLimit) { sPrime->setWheelIndex(59); break; }
                 *p &= BIT2; p += sievingPrime * 4 + 0;
        case 60: if (p >= sieveLimit) { sPrime->setWheelIndex(60); break; }
                 *p &= BIT3; p += sievingPrime * 2 + 0;
        case 61: if (p >= sieveLimit) { sPrime->setWheelIndex(61); break; }
                 *p &= BIT4; p += sievingPrime * 4 + 0;
        case 62: if (p >= sieveLimit) { sPrime->setWheelIndex(62); break; }
                 *p &= BIT5; p += sievingPrime * 6 + 0;
        case 63: if (p >= sieveLimit) { sPrime->setWheelIndex(63); break; }
                 *p &= BIT6; p += sievingPrime * 2 + 0;
      }
      break;
    }
    // set multipleIndex for the next segment
    sPrime->setMultipleIndex(static_cast<uint_t>(p - sieveLimit));
  }
}