void insert_ellipsoid(const CImg<t>& tensor, const float X, const float Y, const float Z, const float tfact, const float vx, const float vy, const float vz, CImgList<tp>& points, CImgList<tf>& faces, CImgList<tc>& colors, const unsigned int res1=20, const unsigned int res2=20) { // Compute eigen elements float l1 = tensor[0], l2 = tensor[1], l3 = tensor[2], fa = get_FA(l1,l2,l3); CImg<> vec = CImg<>::matrix(tensor[3],tensor[6],tensor[9], tensor[4],tensor[7],tensor[10], tensor[5],tensor[8],tensor[11]); const int r = (int)cimg::min(30 + 1.5f*cimg::abs(255*fa*tensor[3]),255.0f), g = (int)cimg::min(30 + 1.5f*cimg::abs(255*fa*tensor[4]),255.0f), b = (int)cimg::min(30 + 1.5f*cimg::abs(255*fa*tensor[5]),255.0f); // Define mesh points const unsigned int N0 = points.size(); for (unsigned int v = 1; v<res2; v++) for (unsigned int u = 0; u<res1; u++) { const float alpha = (float)(u*2*cimg::PI/res1), beta = (float)(-cimg::PI/2 + v*cimg::PI/res2), x = (float)(tfact*l1*std::cos(beta)*std::cos(alpha)), y = (float)(tfact*l2*std::cos(beta)*std::sin(alpha)), z = (float)(tfact*l3*std::sin(beta)); points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(x,y,z)).mul(CImg<tp>::vector(vx,vy,vz))); } const unsigned int N1 = points.size(); points.insert((CImg<tp>::vector(X,Y,Z) - vec*CImg<tp>::vector(0,0,l3*tfact))); points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(0,0,l3*tfact))); points[points.size() - 2](0)*=vx; points[points.size() - 2](1)*=vy; points[points.size() - 2](2)*=vz; points[points.size() - 1](0)*=vx; points[points.size() - 1](1)*=vy; points[points.size() - 1](2)*=vz; // Define mesh triangles for (unsigned int vv = 0; vv<res2 - 2; ++vv) for (unsigned int uu = 0; uu<res1; ++uu) { const int nv = (vv + 1)%(res2 - 1), nu = (uu + 1)%res1; faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + uu,N0 + res1*vv + uu)); faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + nu,N0 + res1*nv + uu)); colors.insert(CImg<tc>::vector(r,g,b)); colors.insert(CImg<tc>::vector(r,g,b)); } for (unsigned int uu = 0; uu<res1; ++uu) { const int nu = (uu + 1)%res1; faces.insert(CImg<tf>::vector(N0 + nu,N0 + uu,N1)); faces.insert(CImg<tf>::vector(N0 + res1*(res2 - 2) + nu, N1 + 1,N0 + res1*(res2 - 2) + uu)); colors.insert(CImg<tc>::vector(r,g,b)); colors.insert(CImg<tc>::vector(r,g,b)); } }
CImgList<uint8_t>* ph_getKeyFramesFromVideo(const char *filename){ long N = GetNumberVideoFrames(filename); if (N < 0){ return NULL; } float frames_per_sec = 0.5*fps(filename); if (frames_per_sec < 0){ return NULL; } int step = (int)(frames_per_sec + ROUNDING_FACTOR(frames_per_sec)); long nbframes = (long)(N/step); float *dist = (float*)malloc((nbframes)*sizeof(float)); if (!dist){ return NULL; } CImg<float> prev(64,1,1,1,0); VFInfo st_info; st_info.filename = filename; st_info.nb_retrieval = 100; st_info.step = step; st_info.pixelformat = 0; st_info.pFormatCtx = NULL; st_info.width = -1; st_info.height = -1; CImgList<uint8_t> *pframelist = new CImgList<uint8_t>(); if (!pframelist){ return NULL; } int nbread = 0; int k=0; do { nbread = NextFrames(&st_info, pframelist); if (nbread < 0){ delete pframelist; free(dist); return NULL; } unsigned int i = 0; while ((i < pframelist->size()) && (k < nbframes)){ CImg<uint8_t> current = pframelist->at(i++); CImg<float> hist = current.get_histogram(64,0,255); float d = 0.0; dist[k] = 0.0; cimg_forX(hist,X){ d = hist(X) - prev(X); d = (d>=0) ? d : -d; dist[k] += d; prev(X) = hist(X); } k++; } pframelist->clear(); } while ((nbread >= st_info.nb_retrieval)&&(k < nbframes));
//@ Toma una lista de imagenes y le aplica el umbral especificado a cada imagen CImgList<bool> umbralizarLista(CImgList<double> l_img, double umbral) { CImgList<bool> ret_val; //Recorre la lista for (unsigned int i = 0; i < l_img.size(); i++) { //Temporal a pushear CImg<bool> tempy(l_img[i].width(), l_img[i].height(), l_img[i].depth(), l_img[i].spectrum(), false); //Recorre la imagen cimg_forXY(l_img[i],x,y) { if (fabs(l_img[i](x,y)) > umbral) { tempy(x,y) = true; } } ret_val.push_back(tempy); } return ret_val; }
void insert_fiber(const CImg<T>& fiber, const CImg<te>& eigen, const CImg<tc>& palette, const int xm, const int ym, const int zm, const float vx, const float vy, const float vz, CImgList<tp>& points, CImgList<tf>& primitives, CImgList<tc>& colors) { const int N0 = points.size(); float x0 = fiber(0,0), y0 = fiber(0,1), z0 = fiber(0,2), fa0 = eigen.linear_atXYZ(x0,y0,z0,12); points.insert(CImg<>::vector(vx*(x0 -xm),vy*(y0 - ym),vz*(z0 - zm))); for (int l = 1; l<fiber.width(); ++l) { float x1 = fiber(l,0), y1 = fiber(l,1), z1 = fiber(l,2), fa1 = eigen.linear_atXYZ(x1,y1,z1,12); points.insert(CImg<tp>::vector(vx*(x1 - xm),vy*(y1 - ym),vz*(z1 - zm))); primitives.insert(CImg<tf>::vector(N0 + l - 1,N0 + l)); const unsigned char icol = (unsigned char)(fa0*255), r = palette(icol,0), g = palette(icol,1), b = palette(icol,2); colors.insert(CImg<unsigned char>::vector(r,g,b)); x0 = x1; y0 = y1; z0 = z1; fa0 = fa1; } }
//@ Aplica el operador derivada segun el parametro opcion //0: Gradiente de Roberts //1: Gradiente de Prewitt //2: Gradiente de Sobel //3: Laplaciano de 4 vecinos //4: Laplaciano de 8 vecinos //5: LoG, Laplaciano del Gaussiano //Devuelve una lista con todos los resultados de aplicar todas las mascaras del operador en particular CImgList<double> aplicarDerivada(CImg<double> img, unsigned int opcion = 0) { CImgList<double> derivada; if (opcion == 0) derivada = operadorRoberts(); if (opcion == 1) derivada = operadorPrewitt(); if (opcion == 2) derivada = operadorSobel(); if (opcion == 3) derivada = operadorLaplaciano4(); if (opcion == 4) derivada = operadorLaplaciano8(); if (opcion == 5) derivada = operadorLoG(); CImgList<double> resultados; unsigned int cantidad = derivada.size(); for (unsigned int i = 0; i < cantidad; i++) { resultados.push_back(img.get_convolve(derivada[i])); } return resultados; }
// Main procedure //---------------- int main (int argc, char **argv) { cimg_usage("Compute the skeleton of a shape, using Hamilton-Jacobi equations"); // Read command line arguments cimg_help("Input/Output options\n" "--------------------"); const char* file_i = cimg_option("-i",cimg_imagepath "milla.bmp","Input (black&white) image"); const int median = cimg_option("-median",0,"Apply median filter"); const bool invert = cimg_option("-inv",false,"Invert image values"); const char* file_o = cimg_option("-o",(char*)0,"Output skeleton image"); const bool display = cimg_option("-visu",true,"Display results"); cimg_help("Skeleton computation parameters\n" "-------------------------------"); const float thresh = cimg_option("-t",-0.3f,"Threshold"); const bool curve = cimg_option("-curve",false,"Create medial curve"); cimg_help("Torsello correction parameters\n" "------------------------------"); const bool correction = cimg_option("-corr",false,"Torsello correction"); const float dlt1 = 2; const float dlt2 = cimg_option("-dlt",1.0f,"Discrete step"); // Load the image (forcing it to be scalar with 2 values { 0,1 }). CImg<unsigned int> image0(file_i), image = image0.get_norm().quantize(2).normalize(0.0f,1.0f); if (median) image.blur_median(median); if (invert) (image-=1)*=-1; if (display) (image0.get_normalize(0,255),image.get_normalize(0,255)).display("Input image - Binary image"); // Compute distance map. CImgList<float> visu; CImg<float> distance = image.get_distance(0); if (display) visu.insert(distance); // Compute the gradient of the distance function, and the flux (divergence) of the gradient field. const CImgList<float> grad = distance.get_gradient("xyz"); CImg<float> flux = image.get_flux(grad,1,1); if (display) visu.insert(flux); // Use the Torsello correction of the flux if necessary. if (correction) { CImg<float> logdensity = image.get_logdensity(distance,grad,flux,dlt1), nflux = image.get_corrected_flux(logdensity,grad,flux,dlt2); if (display) visu.insert(logdensity).insert(nflux); flux = nflux; } if (visu) { cimglist_apply(visu,normalize)(0,255); visu.display(visu.size()==2?"Distance function - Flux":"Distance function - Flux - Log-density - Corrected flux"); } // Compute the skeleton const CImg<unsigned int> skel = image.get_skeleton(flux,distance,curve,thresh); if (display) { (image0.resize(-100,-100,1,3)*=0.7f).get_shared_channel(1)|=skel*255.0; image0.draw_image(0,0,0,0,image*255.0,0.5f).display("Image + Skeleton"); } // Save output image if necessary. if (file_o) skel.save(file_o); return 0; }