//---------------------------------------------------------
bool CSG_PointCloud::_Save(const CSG_String &File_Name)
{
    CSG_File	Stream;

    SG_UI_Msg_Add(CSG_String::Format(SG_T("%s: %s..."), _TL("Save point cloud"), File_Name.c_str()), true);

    CSG_String	sFile_Name = SG_File_Make_Path(NULL, File_Name, SG_T("spc"));

    if( Stream.Open(sFile_Name, SG_FILE_W, true) == false )
    {
        SG_UI_Msg_Add(_TL("failed"), false, SG_UI_MSG_STYLE_FAILURE);
        SG_UI_Msg_Add_Error(_TL("unable to create file."));

        return( false );
    }

    int		i, iBuffer, nPointBytes	= m_nPointBytes - 1;

    Stream.Write((void *)PC_FILE_VERSION, 6);
    Stream.Write(&nPointBytes	, sizeof(int));
    Stream.Write(&m_nFields		, sizeof(int));

    for(i=0; i<m_nFields; i++)
    {
        Stream.Write(&m_Field_Type[i], sizeof(TSG_Data_Type));

        iBuffer	= (int)m_Field_Name[i]->Length();
        if( iBuffer >= 1024 - 1 )	iBuffer	= 1024 - 1;
        Stream.Write(&iBuffer, sizeof(int));
        Stream.Write((void *)m_Field_Name[i]->b_str(), sizeof(char), iBuffer);
    }

    _Set_Shape(m_Shapes_Index);

    for(i=0; i<Get_Count() && SG_UI_Process_Set_Progress(i, Get_Count()); i++)
    {
        Stream.Write(m_Points[i] + 1, nPointBytes);
    }

    Set_Modified(false);

    Set_File_Name(sFile_Name, true);

    Save_MetaData(File_Name);

    Get_Projection().Save(SG_File_Make_Path(NULL, File_Name, SG_T("prj")), SG_PROJ_FMT_WKT);

    SG_UI_Msg_Add(_TL("okay"), false, SG_UI_MSG_STYLE_SUCCESS);

    SG_UI_Process_Set_Ready();

    return( true );
}
示例#2
0
//---------------------------------------------------------
bool CResection::On_Execute(void)
{

	CSG_PointCloud			*pPoints;									// Input Point Cloud
	CSG_String				fileName;
	CSG_File				*pTabStream = NULL;
	int n					= 6;										// Number of unknowns
	CSG_Vector center(3);
	CSG_Vector target(3);

	double c			= Parameters("F")			->asDouble();		// Focal Length (mm)
	double pixWmm		= Parameters("W")			->asDouble() / 1000;// Pixel Width (mm)
	double ppOffsetX	= Parameters("ppX")			->asDouble();		// Principal Point Offset X (pixels)
	double ppOffsetY	= Parameters("ppY")			->asDouble();		// Principal Point Offset Y (pixels)
	pPoints				= Parameters("POINTS")		->asPointCloud();
	fileName			= Parameters("OUTPUT FILE")	->asString();
	center[0]			= Parameters("Xc")			->asDouble();
	center[1]			= Parameters("Yc")			->asDouble();
	center[2]			= Parameters("Zc")			->asDouble();
	target[0]			= Parameters("Xt")			->asDouble();
	target[1]			= Parameters("Yt")			->asDouble();
	target[2]			= Parameters("Zt")			->asDouble();

	int pointCount = pPoints->Get_Point_Count();

	bool estPPOffsets = false;

	if ( Parameters("EST_OFFSETS")->asBool() ) {

		estPPOffsets = true;
		n = 8;															// Increase number of unknowns by 2
	}

	bool applyDistortions = false;
	CSG_Vector K(3);

	if ( Parameters("GIVE_DISTORTIONS")->asBool() ) {

		applyDistortions = true;
		K[0]			= Parameters("K1")			->asDouble();
		K[1]			= Parameters("K2")			->asDouble();
		K[2]			= Parameters("K3")			->asDouble();

	}

	double dxapp = center [0] - target [0];
	double dyapp = center [1] - target [1];
	double dzapp = center [2] - target [2];
	double h_d	= sqrt (dxapp * dxapp + dyapp * dyapp + dzapp * dzapp);	// Distance between Proj. Center & Target (m)
	double h_dmm = h_d * 1000;											// Convert to mm

	if( fileName.Length() == 0 )
	{
		SG_UI_Msg_Add_Error(_TL("Please provide an output file name!"));
		return( false );
	}

	pTabStream = new CSG_File();

	if( !pTabStream->Open(fileName, SG_FILE_W, false) )
	{
		SG_UI_Msg_Add_Error(CSG_String::Format(_TL("Unable to open output file %s!"), fileName.c_str()));
		delete (pTabStream);
		return (false);
	}


	CSG_Vector rotns = methods::calcRotations(center,target);			// Approx. rotations omega, kappa, alpha

	CSG_String msg = "********* Initial Approximate Values *********";
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Rotation Angles:");
	pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Omega:\t") + SG_Get_String(rotns[0],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Kappa:\t") + SG_Get_String(rotns[1],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Alpha:\t") + SG_Get_String(rotns[2],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Projection Center:");
	pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Xc:\t") + SG_Get_String(center[0],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Yc:\t") + SG_Get_String(center[1],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Zc:\t") + SG_Get_String(center[2],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	
	if (estPPOffsets) {

		msg = SG_T("Principal Point Offsets:");
		pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);

		msg = SG_T("ppX:\t") + SG_Get_String(ppOffsetX,5,false);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);
		msg = SG_T("ppY:\t") + SG_Get_String(ppOffsetY,5,false);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);

	}

	double itrNo = 0;
	CSG_Matrix invN;
	
	while (true) {													// Begin Iterations

		itrNo++;
		
		double omega = rotns[0];
		double kappa = rotns[1];
		double alpha = rotns[2];

		CSG_Matrix R = methods::calcRotnMatrix(rotns);				// Rotation Matrix from approximate values
		CSG_Matrix E(3,3);											// [w1;w2;w3] = E * [dw;dk;da]

		E[0][0] = -1;
		E[0][1] = E[1][0] = E[2][0] = 0;
		E[0][2] = sin(kappa);
		E[1][1] = -cos(omega);
		E[1][2] = -sin(omega) * cos(kappa);
		E[2][1] = sin(omega);
		E[2][2] = -cos(omega) * cos(kappa);

		CSG_Matrix N(n,n);											// Transpose(Design Matrix) * I * Design Matrix
		CSG_Vector ATL(n);											// Transpose(Design Matrix) * I * Shortened obs. vector

		double SS = 0;
		double sigma_naught = 0;
		
		for (int i = 0; i < pointCount; i++) {
			
			CSG_Vector pqs(3);										// Approx. pi, qi, si

			for (int j = 0; j < 3; j++) {
				pqs[j] = R[j][0] * (pPoints->Get_X(i) - center[0]) +
						 R[j][1] * (pPoints->Get_Y(i) - center[1]) +
						 R[j][2] * (pPoints->Get_Z(i) - center[2]);
			}

			double p_i = pqs[0];
			double q_i = pqs[1];
			double s_i = pqs[2];

			double dR =  0;
			
			// Undistorted
			double x_u = c * p_i / q_i;
			double y_u = c * s_i / q_i;
			
			double c_hat = c;
			
			if (applyDistortions) {
				double r2 = x_u * x_u + y_u * y_u;
				dR =  K[0] * r2 + K[1] * r2 * r2 + K[2] * r2 * r2 * r2;
				c_hat = c * (1 - dR);
			}

			// Approx. image coordinates (with distortions)
			double x_i = (1 - dR) * x_u + ppOffsetX * pixWmm;
			double z_i = (1 - dR) * y_u + ppOffsetY * pixWmm;

			// Shortened obervation vector: dxi & dzi
			double dx_i = pPoints->Get_Attribute(i,0) * pixWmm - x_i;
			double dz_i = pPoints->Get_Attribute(i,1) * pixWmm - z_i;
			SS += pow(dx_i,2) + pow(dz_i,2);

			/*
				x_i, z_i in [mm]
				p_i,q_i,s_i in [m]
				h_d in [m]
				c, c_hat in [mm]
				h_dmm in [mm]
			*/
			CSG_Matrix L(3,2);										// CSG_Matrix takes columns first and rows second
			CSG_Matrix V(3,3);
			CSG_Matrix LR(3,2);
			CSG_Matrix LVE(3,2);

			L[0][0] = L[1][2] = c_hat / (1000 * q_i);
			L[0][2] = L[1][0] = 0;
			L[0][1] = -x_u * (1 - dR) / (1000 * q_i);
			L[1][1] = -y_u * (1 - dR) / (1000 * q_i);

			V[0][0] = V[1][1] = V[2][2] = 0;
			V[0][1] =  s_i / h_d;
			V[0][2] = -q_i / h_d;
			V[1][0] = -s_i / h_d;
			V[1][2] =  p_i / h_d;
			V[2][0] =  q_i / h_d;
			V[2][1] = -p_i / h_d;

			LVE = ( L * V ) * E;
			LR = L * R;

			// Design Matrix (J)
			CSG_Matrix design(n,2);

			for(int j = 0; j < 2; j++) {
				for(int k = 0; k < 3; k++) {
					design[j][k] = LVE[j][k];
					design[j][k+3] = -LR[j][k];
				}
			}

			if ( estPPOffsets ) {
				design[0][6] = design[1][7] = 1.0;
			}

			// Build Normal Matrix
			for(int j = 0; j < n; j++) {
				for(int k = 0; k < n; k++) {
					N[j][k] += (design[0][j] * design[0][k] + design[1][j] * design[1][k]);
				}
			}

			// Build Tranpose (J) * I * (Shortened obs. vector)
			for (int m=0; m < n; m++) {
				ATL[m] += design[0][m] * dx_i + design[1][m] * dz_i;
			}

			L.Destroy();
			V.Destroy();
			LR.Destroy();
			LVE.Destroy();
			pqs.Destroy();
			design.Destroy();

		} // end looping over observations

		// Eigen values and Eigen Vectors
		CSG_Vector eigenVals(n);
		CSG_Matrix eigenVecs(n,n);
		SG_Matrix_Eigen_Reduction(N, eigenVecs, eigenVals, true);

		// One of the Eigen Values is 0
		if (std::any_of(eigenVals.cbegin(),
		                eigenVals.cend(),
		                [] (double i) { return i == 0; })) {
			msg = "The Normal Matrix has a rank defect. Please measure more points.";
			pTabStream->Write(msg + SG_T("\n"));
			SG_UI_Msg_Add(msg, true);
			break;
		}

		double mx = *std::max_element(eigenVals.cbegin(), eigenVals.cend());
		double mn = *std::min_element(eigenVals.cbegin(), eigenVals.cend());

		// Ratio of Smallest to the Biggest Eigen value is too small
		if ((mn / mx) < pow(10,-12.0)) {
			msg = SG_T("Condition of the Matrix of Normal Equations:\t") + CSG_String::Format(SG_T("  %13.5e"), mn/mx);
			pTabStream->Write(msg + SG_T("\n"));
			SG_UI_Msg_Add(msg, true);
			msg = "The Normal Matrix is weakly conditioned. Please measure more points.";
			pTabStream->Write(msg + SG_T("\n"));
			SG_UI_Msg_Add(msg, true);
			break;
		}

		// Calculate the adjustments
		double absMax = 0;
		invN = N.Get_Inverse();
		CSG_Vector est_param_incs = invN * ATL;

		for (int i = 0; i < n; i++) {
			if (abs(est_param_incs[i]) > absMax) {
				absMax = abs(est_param_incs[i]);
			}
		}

		if (absMax < thresh) {
			msg = "Solution has converged.";
			pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
			SG_UI_Msg_Add(msg, true);
			break;
		}

		for (int a = 0; a < 3; a++) {
			rotns[a] += est_param_incs[a] / h_dmm;								// New Approx. rotations omega, kappa, alpha
			center[a] += est_param_incs[a+3] / 1000;							// New Approx. Projection Center
		}

		if ( estPPOffsets ) {
			ppOffsetX += (est_param_incs[6] / pixWmm);							// New Approx. Principal Point
			ppOffsetY += (est_param_incs[7] / pixWmm);
		}

		sigma_naught = sqrt(SS / (2 * pointCount - n));

		// Writing To Output File & SAGA Console
		msg = "********* Iteration: " + SG_Get_String(itrNo,0,false) + " *********";
		pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);

		msg = "Sum of Squared Residuals:\t" + SG_Get_String(SS,5,false);
		pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);
		
		msg = "Sigma Naught:\t" + SG_Get_String(sigma_naught,5,false);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);
		
		msg = SG_T("Condition of the Matrix of Normal Equations:\t") + CSG_String::Format(SG_T("  %13.5e"), mn/mx);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);
		
		R.Destroy();
		E.Destroy();
		N.Destroy();
		ATL.Destroy();
		invN.Destroy();
		eigenVals.Destroy();
		eigenVecs.Destroy();
		est_param_incs.Destroy();

	} // end of iterations

	msg = "********* Final Estimated Parameters *********";
	pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Rotation Angles:");
	pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Omega:\t") + SG_Get_String(rotns[0],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Kappa:\t") + SG_Get_String(rotns[1],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Alpha:\t") + SG_Get_String(rotns[2],6,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Projection Center:");
	pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	msg = SG_T("Xc:\t") + SG_Get_String(center[0],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Yc:\t") + SG_Get_String(center[1],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);
	msg = SG_T("Zc:\t") + SG_Get_String(center[2],4,false);
	pTabStream->Write(msg + SG_T("\n"));
	SG_UI_Msg_Add(msg, true);

	if (estPPOffsets) {

		msg = SG_T("Principal Point Offsets:");
		pTabStream->Write(SG_T("\n") + msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);

		msg = SG_T("ppX:\t") + SG_Get_String(ppOffsetX,5,false);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);
		msg = SG_T("ppY:\t") + SG_Get_String(ppOffsetY,5,false);
		pTabStream->Write(msg + SG_T("\n"));
		SG_UI_Msg_Add(msg, true);

	}


	K.Destroy();
	rotns.Destroy();
	center.Destroy();
	target.Destroy();

	pTabStream->Close();
	
	return true;
}
//---------------------------------------------------------
bool CPointcloud_To_Text_File::On_Execute(void)
{
	CSG_PointCloud			*pPoints;
	CSG_String				fileName;
	CSG_File				*pTabStream = NULL;
	bool					bWriteHeader;
	CSG_String				fieldSep;

	CSG_Parameters			P;
	CSG_Parameter			*pNode;
	CSG_String				s;
	std::vector<int>		vCol, vPrecision;


	//-----------------------------------------------------
	pPoints			= Parameters("POINTS")		->asPointCloud();
	fileName		= Parameters("FILE")		->asString();
	bWriteHeader	= Parameters("WRITE_HEADER")->asBool();


	switch (Parameters("FIELDSEP")->asInt())
    {
	default:
    case 0:		fieldSep = "\t";	break;
    case 1:		fieldSep = " ";		break;
    case 2:		fieldSep = ",";		break;
    }


	if( fileName.Length() == 0 )
	{
		SG_UI_Msg_Add_Error(_TL("Please provide an output file name!"));
		return( false );
	}


	if (SG_UI_Get_Window_Main())
	{
		P.Set_Name(_TL("Check the fields to export"));

		for(int iField=0; iField<pPoints->Get_Field_Count(); iField++)
		{
			s.Printf(SG_T("NODE_%03d") , iField + 1);
			pNode	= P.Add_Node(NULL, s, CSG_String::Format(_TL("%d. %s"), iField + 1, _TL("Field")), _TL(""));

			s.Printf(SG_T("FIELD_%03d"), iField);
			P.Add_Value(pNode, s, CSG_String::Format(SG_T("%s"), pPoints->Get_Field_Name(iField)), _TL(""), PARAMETER_TYPE_Bool, false);

			s.Printf(SG_T("PRECISION_%03d"), iField);
			P.Add_Value(pNode, s, _TL("Decimal Precision"), _TL(""), PARAMETER_TYPE_Int, 2.0, 0.0, true);
		}


		//-----------------------------------------------------
		if( Dlg_Parameters(&P, _TL("Field Properties")) )
		{
			vCol.clear();
			vPrecision.clear();

			for(int iField=0; iField<pPoints->Get_Field_Count(); iField++)
			{
				if( P(CSG_String::Format(SG_T("FIELD_%03d" ), iField).c_str())->asBool() )
				{
					vCol.push_back(iField);
					vPrecision.push_back(P(CSG_String::Format(SG_T("PRECISION_%03d" ), iField).c_str())->asInt());
				}
			}
		}
		else
			return( false );
	}
	else // CMD
	{
		CSG_String		sFields, sPrecision;
		CSG_String		token;
		int				iValue;


		sFields		= Parameters("FIELDS")->asString();
		sPrecision	= Parameters("PRECISIONS")->asString();

		CSG_String_Tokenizer   tkz_fields(sFields, ";", SG_TOKEN_STRTOK);

		while( tkz_fields.Has_More_Tokens() )
		{
			token	= tkz_fields.Get_Next_Token();

			if( token.Length() == 0 )
				break;

			if( !token.asInt(iValue) )
			{
				SG_UI_Msg_Add_Error(_TL("Error parsing attribute fields: can't convert to number"));
				return( false );
			}

			iValue	-= 1;

			if( iValue < 0 || iValue > pPoints->Get_Field_Count() - 1 )
			{
				SG_UI_Msg_Add_Error(_TL("Error parsing attribute fields: field index out of range"));
				return( false );
			}
			else
				vCol.push_back(iValue);
		}

		CSG_String_Tokenizer   tkz_precisons(sPrecision.c_str(), ";", SG_TOKEN_STRTOK);

		while( tkz_precisons.Has_More_Tokens() )
		{
			token	= tkz_precisons.Get_Next_Token();

			if( token.Length() == 0 )
				break;

			if( !token.asInt(iValue) )
			{
				SG_UI_Msg_Add_Error(_TL("Error parsing attribute fields: can't convert to number"));
				return( false );
			}

			vPrecision.push_back(iValue);
		}
	}


	if( vCol.size() == 0 )
	{
		SG_UI_Msg_Add_Error(_TL("Please provide at least one column to export!"));
		return( false );
	}

	if( vCol.size() != vPrecision.size() )
	{
		SG_UI_Msg_Add_Error(_TL("Number of fields and precisions must be equal!"));
		return( false );
	}

	//-----------------------------------------------------
	pTabStream = new CSG_File();

	if( !pTabStream->Open(fileName, SG_FILE_W, false) )
	{
		SG_UI_Msg_Add_Error(CSG_String::Format(_TL("Unable to open output file %s!"), fileName.c_str()));
		delete (pTabStream);
		return (false);
	}


	if( bWriteHeader )
	{
	    CSG_String  sHeader;

		for(size_t i=0; i<vCol.size(); i++)
		{
		    sHeader += CSG_String::Format(SG_T("%s"), pPoints->Get_Field_Name(vCol.at(i)));

		    if( i < vCol.size()-1 )
                sHeader += fieldSep.c_str();
		}

		sHeader += SG_T("\n");

		pTabStream->Write(sHeader);
	}


	for(int iPoint=0; iPoint<pPoints->Get_Count() && Set_Progress(iPoint, pPoints->Get_Count()); iPoint++)
	{
		CSG_String	sLine;

		for(size_t i=0; i<vCol.size(); i++)
		{
			switch (pPoints->Get_Field_Type(vCol.at(i)))
			{
			case SG_DATATYPE_Double:
			case SG_DATATYPE_Float:
				sLine += SG_Get_String(pPoints->Get_Value(iPoint, vCol.at(i)), vPrecision.at(i), false);
				break;
			default:
				sLine += CSG_String::Format(SG_T("%d"), (int)pPoints->Get_Value(iPoint, vCol.at(i)));
				break;
			}

            if( i < vCol.size()-1 )
                sLine += fieldSep.c_str();
		}

		sLine += SG_T("\n");

		pTabStream->Write(sLine);
	}


	pTabStream->Close();
	delete (pTabStream);

	return( true );
}
示例#4
0
文件: stl.cpp 项目: am2222/SAGA-GIS
//---------------------------------------------------------
bool CSTL_Export::On_Execute(void)
{
	bool		bBinary;
	int			zField;
	float		v[3];
	CSG_String	File;
	CSG_File	Stream;
	CSG_TIN		*pTIN;

	pTIN	= Parameters("TIN")		->asTIN();
	File	= Parameters("FILE")	->asString();
	zField	= Parameters("ZFIELD")	->asInt(); 
	bBinary	= Parameters("BINARY")	->asInt() == 1; 

	if( !Stream.Open(File, SG_FILE_W, bBinary) )
	{
		return( false );
	}

	//-----------------------------------------------------
	if( bBinary )
	{
		char	*sHeader	= (char *)SG_Calloc(80, sizeof(char));
		DWORD	nFacets		= pTIN->Get_Triangle_Count();
		WORD	nBytes		= 0;

		Stream.Write(sHeader , sizeof(char), 80);
		Stream.Write(&nFacets, sizeof(DWORD));

		SG_Free(sHeader);

		//-------------------------------------------------
		for(int iTriangle=0; iTriangle<pTIN->Get_Triangle_Count(); iTriangle++)
		{
			CSG_TIN_Triangle	*pTriangle	= pTIN->Get_Triangle(iTriangle);

			Get_Normal(pTriangle, zField, v);

			Stream.Write(v, sizeof(float), 3);	// facet normal

			for(int iNode=0; iNode<3; iNode++)
			{
				CSG_TIN_Node	*pNode	= pTriangle->Get_Node(iNode);

				v[0]	= (float)pNode->Get_X();
				v[1]	= (float)pNode->Get_Y();
				v[2]	= (float)pNode->asDouble(zField);

				Stream.Write(v, sizeof(float), 3);
			}

			Stream.Write(&nBytes, sizeof(WORD));
		}
	}

	//-----------------------------------------------------
	else	// ASCII
	{
		Stream.Printf(SG_T("solid %s\n"), SG_File_Get_Name(File, false).c_str());

		for(int iTriangle=0; iTriangle<pTIN->Get_Triangle_Count(); iTriangle++)
		{
			CSG_TIN_Triangle	*pTriangle	= pTIN->Get_Triangle(iTriangle);

			Get_Normal(pTriangle, zField, v);

			Stream.Printf(SG_T(" facet normal %.4f %.4f %.4f\n"), v[0], v[1], v[2]);
			Stream.Printf(SG_T("  outer loop\n"));

			for(int iNode=0; iNode<3; iNode++)
			{
				CSG_TIN_Node	*pNode	= pTriangle->Get_Node(iNode);

				v[0]	= (float)pNode->Get_X();
				v[1]	= (float)pNode->Get_Y();
				v[2]	= (float)pNode->asDouble(zField);

				Stream.Printf(SG_T("   vertex %.4f %.4f %.4f\n"), v[0], v[1], v[2]);
			}

			Stream.Printf(SG_T("  endloop\n"));
			Stream.Printf(SG_T(" endfacet\n"));		
		}

		Stream.Printf(SG_T("endsolid %s\n"), SG_File_Get_Name(File, false).c_str());
	}

	return( true );
}
示例#5
0
//---------------------------------------------------------
bool CSG_Grid::_Save_Binary(CSG_File &Stream, int xA, int yA, int xN, int yN, TSG_Data_Type File_Type, bool bFlip, bool bSwapBytes)
{
	char	*Line, *pValue;
	int		x, y, i, ix, iy, dy, axBytes, nxBytes, nValueBytes;

	//-----------------------------------------------------
	if( Stream.is_Open() && m_System.is_Valid() && m_Type != SG_DATATYPE_Undefined )
	{
		Set_File_Type(GRID_FILE_FORMAT_Binary);

		if( bFlip )
		{
			y	= yA + yN - 1;
			dy	= -1;
		}
		else
		{
			y	= yA;
			dy	= 1;
		}

		//-------------------------------------------------
		if( File_Type == SG_DATATYPE_Bit )
		{
			nxBytes		= xN / 8 + 1;

			if( m_Type == File_Type && m_Memory_Type == GRID_MEMORY_Normal && xA % 8 == 0 )
			{
				axBytes		= xA / 8;

				for(iy=0; iy<yN && SG_UI_Process_Set_Progress(iy, yN); iy++, y+=dy)
				{
					Stream.Write((char *)m_Values[y] + axBytes, sizeof(char), nxBytes);
				}
			}
			else
			{
				Line	= (char *)SG_Malloc(nxBytes);

				for(iy=0; iy<yN && SG_UI_Process_Set_Progress(iy, yN); iy++, y+=dy)
				{
					for(ix=0, x=xA, pValue=Line; ix<xN; pValue++)
					{
						for(i=0; i<8 && ix<xN; i++, ix++, x++)
						{
							*pValue	= asChar(x, y) != 0.0 ? *pValue | m_Bitmask[i] : *pValue & (~m_Bitmask[i]);
						}
					}

					Stream.Write(Line, sizeof(char), nxBytes);
				}

				SG_Free(Line);
			}
		}

		//-------------------------------------------------
		else
		{
			nValueBytes	= SG_Data_Type_Get_Size(File_Type);
			nxBytes		= xN * nValueBytes;

			if( m_Type == File_Type && m_Memory_Type == GRID_MEMORY_Normal && !bSwapBytes )
			{
				axBytes	= xA * nValueBytes;

				for(iy=0; iy<yN && SG_UI_Process_Set_Progress(iy, yN); iy++, y+=dy)
				{
					Stream.Write((char *)m_Values[y] + axBytes, sizeof(char), nxBytes);
				}
			}
			else
			{
				Line	= (char *)SG_Malloc(nxBytes);

				for(iy=0; iy<yN && SG_UI_Process_Set_Progress(iy, yN); iy++, y+=dy)
				{
					for(ix=0, x=xA, pValue=Line; ix<xN; ix++, x++, pValue+=nValueBytes)
					{
						switch( File_Type )
						{
						default:														break;
						case SG_DATATYPE_Byte:	*(BYTE   *)pValue	= asChar	(x, y);	break;
						case SG_DATATYPE_Char:	*(char   *)pValue	= asChar	(x, y);	break;
						case SG_DATATYPE_Word:	*(WORD   *)pValue	= asShort	(x, y);	break;
						case SG_DATATYPE_Short:	*(short  *)pValue	= asShort	(x, y);	break;
						case SG_DATATYPE_DWord:	*(DWORD  *)pValue	= asInt		(x, y);	break;
						case SG_DATATYPE_Int:		*(int    *)pValue	= asInt		(x, y);	break;
						case SG_DATATYPE_Float:	*(float  *)pValue	= asFloat	(x, y);	break;
						case SG_DATATYPE_Double:	*(double *)pValue	= asDouble	(x, y);	break;
						}

						if( bSwapBytes )
						{
							_Swap_Bytes(pValue, nValueBytes);
						}
					}

					Stream.Write(Line, sizeof(char), nxBytes);
				}

				SG_Free(Line);
			}
		}

		//-------------------------------------------------
		SG_UI_Process_Set_Ready();

		return( true );
	}

	return( false );
}
void CSimulateVariableWind::CreateReport(){

	CSG_String sReportFile, sFile;
	int i;

	if (Parameters("REPORTFILE")->asString() != NULL){
		
		sReportFile = Parameters("REPORTFILE")->asString();
		
		CalculateReportParameters();

		char cDate[81];
		time_t curTime;
		tm * timeinfo;
		time(&curTime);
		timeinfo = gmtime(&curTime);  

	//	std::locale spanish("esp");
	//	std::locale::global(spanish);
		strftime(cDate, 80, "%#x", timeinfo);

		sFile += "\t\t\t SIMULACIÓN realizada el ";
		sFile += cDate;
		sFile += "\n\t\t ==============================================================================";
		sFile += "\n\n\t Parámetros de entrada\n";
		sFile += "\t --------------------------------\n\n";
		sFile += "\t\t Modelos de combustible (por area) \n:  ";
		for (i = 0; i < 12; i++){
			if (m_pAreaByFuelModel[i]){
				sFile += "\t\t\t * ";
				sFile += SG_Get_String(i + 1, 0) + " : " + SG_Get_String(m_pAreaByFuelModel[i]) + " ha\n";
			}//if
		}//for		
		sFile += "\t\t Humedad de los combustibles muertos (1 h): ";
		sFile += SG_Get_String(m_fDeadFuelMoisture) + " %\n";
		sFile += "\t\t Velocidad del viento a media llama: \n" ;
		for(i = 0; i < m_iWindSpdGrids; i++){
			sFile	+= "\t\t\t * ";
			sFile	+= SG_Get_String(i * m_fInterval, 0) + " min: " 
					 + SG_Get_String(m_pMeanWindSpd[i]) + "Km/h\n";
		}//for
		sFile += "\t\t Dirección del vector viento, desde el norte geográfico: \n";
		for(i = 0; i < m_iWindDirGrids; i++){
			sFile += "\t\t\t * ";
			sFile += SG_Get_String(i * m_fInterval, 0) + " min: " 
					+ SG_Get_String(m_pMeanWindDir[i]) + "º\n";
		}//for

		sFile += "\t\t Pendiente del terreno media: ";	sFile += SG_Get_String(m_fSlope) + " %\n";       
		sFile += "\t\t Orientación del terreno: ";	sFile += SG_Get_String(m_fAspect) + "º\n";
		sFile += "\t\t Foco de partida: X = ";	sFile += SG_Get_String(Parameters("COORDX")->asDouble(), 0) + " / Y = "
				+ SG_Get_String(Parameters("COORDY")->asDouble(), 0) + "\n";
		sFile += "\t\t Tiempo de simulación: 3.0 h";

		sFile += "\n\n\t Resultado de la simulación\n";
		sFile += "\t --------------------------------\n\n";	
		sFile += "\t\t Velocidad de propagación: ";					sFile += SG_Get_String(m_fMeanSpeed) + " m/min\n";
		sFile += "\t\t Calor por unidad de area: ";					sFile += SG_Get_String(m_fHeatPerUnitArea) + " kJ/m^2\n"; //revisar unidades!!
		sFile += "\t\t Intensidad de la línea de fuego: ";			sFile += SG_Get_String(m_fIntensity) + " kCal/m\n";
		sFile += "\t\t Longitud de la llama: ";						sFile += SG_Get_String(m_fFlameHeight) + " m\n";
		sFile += "\t\t Intensidad de reacción: ";					sFile += SG_Get_String(m_fReactionIntensity) + " kCal/m2\n";
		sFile += "\t\t Velocidad efectiva del viento: ";			sFile += SG_Get_String(m_fEffectiveWind / KMH2FTMIN) + " Km/h\n";
		sFile += "\t\t Dirección de máxima propagación, desde el norte geográfico: ";	sFile += SG_Get_String(m_fMaxSpreadDir) + "º\n";
		sFile += "\t\t Area: ";										sFile += SG_Get_String(m_fArea / 10000) + " ha\n";
		sFile += "\t\t Perímetro: ";								sFile += SG_Get_String(m_fPerimeter) + "m\n";
		//Razón Longitud/Ancho:                   1.9
		sFile += "\t\t Distancia de propagación hacia delante: ";	sFile += SG_Get_String(m_fFrontDistance) + " m\n";
		sFile += "\t\t Distancia de propagación hacia atrás: ";		sFile +=  SG_Get_String(m_fRearDistance) + " m\n";

		CSG_File	file;

		if( file.Open(sReportFile, SG_FILE_W, false) )
		{
			file.Write(sFile);
		}
	}//if

}//method
示例#7
0
//---------------------------------------------------------
bool CWRF_Export::Save(const CSG_String &Directory, CSG_Parameter_Grid_List *pGrids)
{
	//-----------------------------------------------------
	// 00001-00600.00001-00600
	// 01234567890123456789012

	int	xOffset	= m_Index.m_TILE_BDR + (int)(0.5 + (Get_XMin() - m_Index.m_KNOWN_LON) / Get_Cellsize());
	int	yOffset	= m_Index.m_TILE_BDR + (int)(0.5 + (Get_YMin() - m_Index.m_KNOWN_LAT) / Get_Cellsize());

	CSG_String	Name	= SG_File_Get_Name(Directory, true);

	Name.Printf(SG_T("%05d-%05d.%05d-%05d"), xOffset + 1, xOffset + m_Index.m_TILE_X, yOffset + 1, yOffset + m_Index.m_TILE_Y);

	//-----------------------------------------------------
	CSG_File	Stream;

	if( !Stream.Open(SG_File_Make_Path(Directory, Name), SG_FILE_W) )
	{
		Error_Set(_TL("data file could not be openend"));

		return( false );
	}

	//-----------------------------------------------------
	char	*pLine, *pValue;
	int		x, y, nBytes_Line;

	nBytes_Line	= Get_NX() * m_Index.m_WORDSIZE;
	pLine		= (char *)SG_Malloc(nBytes_Line);

	//-----------------------------------------------------
	for(int z=0; z<pGrids->Get_Count() && Process_Get_Okay(); z++)
	{
		CSG_Grid	*pGrid	= pGrids->asGrid(z);

		//-------------------------------------------------
		for(y=0; y<pGrid->Get_NY() && !Stream.is_EOF() && Set_Progress(y, pGrid->Get_NY()); y++)
		{
			int	yy	= m_Index.m_ROW_ORDER == VAL_TOP_BOTTOM ? pGrid->Get_NY() - 1 - y : y;

			for(x=0, pValue=pLine; x<pGrid->Get_NX(); x++, pValue+=m_Index.m_WORDSIZE)
			{
				if( m_Index.m_SIGNED )
				{
					switch( m_Index.m_WORDSIZE )
					{
					case 1:	*((signed char    *)pValue)	= (signed char   )pGrid->asInt(x, yy);	break;
					case 2:	*((signed short   *)pValue)	= (signed short  )pGrid->asInt(x, yy);	break;
					case 4:	*((signed int     *)pValue)	= (signed int    )pGrid->asInt(x, yy);	break;
					}
				}
				else
				{
					switch( m_Index.m_WORDSIZE )
					{
					case 1:	*((unsigned char  *)pValue)	= (unsigned char )pGrid->asInt(x, yy);	break;
					case 2:	*((unsigned short *)pValue)	= (unsigned short)pGrid->asInt(x, yy);	break;
					case 4:	*((unsigned int   *)pValue)	= (unsigned int  )pGrid->asInt(x, yy);	break;
					}
				}

				if( m_Index.m_ENDIAN == VAL_ENDIAN_BIG )
				{
					SG_Swap_Bytes(pValue, m_Index.m_WORDSIZE);
				}
			}

			Stream.Write(pLine, sizeof(char), nBytes_Line);
		}
	}

	//-----------------------------------------------------
	SG_Free(pLine);

	return( true );
}