/*---------------------------------------------------------------
						addMapFrame
  ---------------------------------------------------------------*/
unsigned int CIncrementalMapPartitioner::addMapFrame(
	const CSensoryFramePtr &frame,
	const CPose3DPDFPtr &robotPose )
{
	size_t								i=0,j=0,n=0;
	CPose3D								pose_i, pose_j, relPose;
	CPose3DPDFPtr						posePDF_i, posePDF_j;
	CSensoryFramePtr					sf_i, sf_j;
	CMultiMetricMap						*map_i=NULL,*map_j=NULL;
	int									debug_CheckPoint = 0;
	mrpt::utils::TMatchingPairList		corrs;
	static CPose3D						nullPose(0,0,0);

	// Set options in graph partition:
	CGraphPartitioner::DEBUG_SAVE_EIGENVECTOR_FILES = options.debugSaveAllEigenvectors;

	// Create the maps:
	TSetOfMetricMapInitializers			mapInitializer;
	TMetricMapInitializer				mapElement;

	mapElement.metricMapClassType = CLASS_ID( CSimplePointsMap );
	mapInitializer.push_back( mapElement );

//	mapElement.metricMapClassType = CLASS_ID( COccupancyGridMap2D );
//	mapElement.occupancyGridMap2D_options.resolution = options.gridResolution;
//	mapInitializer.push_back( mapElement );

	mapElement.metricMapClassType = CLASS_ID( CLandmarksMap );
//	mapElement.landmarksMap_options.insertionOpts.
	mapInitializer.push_back( mapElement );

	// Add new metric map to "m_individualMaps"
	// --------------------------------------------
	//CMultiMetricMap			*newMetricMap = new CMultiMetricMap( &mapInitializer );

	m_individualMaps.push_back( CMultiMetricMap() );
	CMultiMetricMap		&newMetricMap = m_individualMaps.back();
	newMetricMap.setListOfMaps( &mapInitializer );


	MRPT_START

	// Create the metric map:
	// -----------------------------------------------------------------
	ASSERT_(newMetricMap.m_pointsMaps.size()>0);
	newMetricMap.m_pointsMaps[0]->insertionOptions.isPlanarMap		= false;  // true
	newMetricMap.m_pointsMaps[0]->insertionOptions.minDistBetweenLaserPoints = 0.20f;
	options.minDistForCorrespondence = max(options.minDistForCorrespondence,1.3f*newMetricMap.m_pointsMaps[0]->insertionOptions.minDistBetweenLaserPoints);

	// JLBC,17/AGO/2006: "m_individualMaps" were created from the robot pose, but it is
	//   more convenient now to save them as the robot being at (0,0,0).

	//frame->insertObservationsInto( newMetricMap.m_pointsMaps[0] );
	newMetricMap.m_pointsMaps[0]->copyFrom( * frame->buildAuxPointsMap<CPointsMap>(&newMetricMap.m_pointsMaps[0]->insertionOptions));	// Faster :-)

	// Insert just the VisualLandmarkObservations:
	newMetricMap.m_landmarksMap->insertionOptions.insert_SIFTs_from_monocular_images = false;
	newMetricMap.m_landmarksMap->insertionOptions.insert_SIFTs_from_stereo_images    = false;
	newMetricMap.m_landmarksMap->insertionOptions.insert_Landmarks_from_range_scans  = false;
	frame->insertObservationsInto( newMetricMap.m_landmarksMap );

	debug_CheckPoint=1;

	// Add to corresponding vectors:
	m_individualFrames.insert(robotPose, frame);
	// Already added to "m_individualMaps" above

	debug_CheckPoint=2;

	// Ampliar la matriz de adyacencias:
	// -----------------------------------------------------------------
	n = m_A.getColCount();
	n++;
	m_A.setSize(n,n);

	debug_CheckPoint=3;

	ASSERT_(m_individualMaps.size() == n);
	ASSERT_(m_individualFrames.size() == n);

	// Ajustar tamaño del vector de nodos modificados:
	// ---------------------------------------------------
	// El nuevo evidentemente debe ser tenido en cuenta:
	m_modified_nodes.push_back(true);

	// Methods to compute adjacency matrix:
	// true:  matching between maps
	// false: matching between observations through "CObservation::likelihoodWith"
	// ------------------------------------------------------------------------------
	bool useMapOrSF = options.useMapMatching;

	debug_CheckPoint=4;

	// Calcular los nuevos matchings y meterlos en la matriz:
	// ----------------------------------------------------------------
	//for (i=n-1;i<n;i++)
	i=n-1;   // Solo ejecutar para "i=n-1" la ultima fila/columna que esta vacia
	{
		// Get node "i":
		m_individualFrames.get(i, posePDF_i, sf_i);
		posePDF_i->getMean(pose_i);

		// And its points map:
		map_i = &m_individualMaps[i];

		debug_CheckPoint=5;

//			for (j=0;j<n;j++)
		for (j=0;j<n-1;j++)
		{
			// Get node "j":
			m_individualFrames.get(j, posePDF_j, sf_j);
			posePDF_j->getMean( pose_j );

			debug_CheckPoint=6;

			relPose = pose_j - pose_i;

			// And its points map:
			map_j = &m_individualMaps[j];

			debug_CheckPoint=66;

			// Compute matching ratio:
			if (useMapOrSF)
			{
				m_A(i,j) = map_i->compute3DMatchingRatio(
					map_j,
					relPose,
					options.minDistForCorrespondence,
					options.minMahaDistForCorrespondence );
			}
			else
			{
				//m_A(i,j) = sf_i->likelihoodWith(sf_j.pointer());
				m_A(i,j) = observationsOverlap(sf_i, sf_j, &relPose );
			}

		} // for j

	} // for i


	for (i=0;i<n-1;i++)  // Solo ejecutar para "i=n-1" la ultima fila/columna que esta vacia
	{
		debug_CheckPoint=8;

		// Get node "i":
		m_individualFrames.get(i, posePDF_i, sf_i);
		posePDF_i->getMean(pose_i);

		// And its points map:
		map_i = &m_individualMaps[i];

		debug_CheckPoint=9;

		j=n-1; //for (j=n-1;j<n;j++)
		{
			// Get node "j":
			m_individualFrames.get(j, posePDF_j, sf_j);
			posePDF_j->getMean(pose_j);

			debug_CheckPoint=10;

			relPose = pose_j - pose_i;

			// And its points map:
			map_j = &m_individualMaps[j];

			// Compute matching ratio:
			if (useMapOrSF)
			{
				m_A(i,j) = map_i->compute3DMatchingRatio(
					map_j,
					CPose3D(relPose),
					options.minDistForCorrespondence,
					options.minMahaDistForCorrespondence );
			}
			else
			{
				//m_A(i,j) = sf_i->likelihoodWith(sf_j.pointer());
				m_A(i,j) = observationsOverlap(sf_i, sf_j, &relPose );
			}

			debug_CheckPoint=12;

		} // for j

	} // for i

	debug_CheckPoint=13;

	// Self-similatity: Not used
	m_A(n-1,n-1) = 0;

	// Hacer que la matriz sea simetrica:
	// -----------------------------------------------------------------
	for (i=0;i<n;i++)
		for (j=i+1;j<n;j++)
			m_A(i,j) = m_A(j,i) = 0.5f * (m_A(i,j) + m_A(j,i) );

	debug_CheckPoint=14;

	/* DEBUG: Guardar la matriz: * /
	A.saveToTextFile("debug_matriz.txt",1);
	/ **/

	// Añadir a la lista de nodos modificados los nodos afectados:
	// -----------------------------------------------------------------
	for (i=0;i<n;i++)
		m_modified_nodes[i] = m_A(i,n-1) > 0;

	debug_CheckPoint=15;

	if (m_last_last_partition_are_new_ones)
	{
		// Insert into the "new_ones" partition:
		m_last_partition[m_last_partition.size()-1].push_back( n-1 );
	}
	else
	{
		// Add a new partition:
		vector_uint  dummyPart;
		dummyPart.push_back(n-1);
		m_last_partition.push_back( dummyPart );

		// The last one is the new_ones partition:
		m_last_last_partition_are_new_ones = true;
	}

	return n-1; // Index of the new node

	MRPT_END_WITH_CLEAN_UP( \
		cout << "Unexpected runtime error at checkPoint="<< debug_CheckPoint << "\n"; \
		cout << "\tn=" << n << "\n"; \
		cout << "\ti=" << i << "\n"; \
		cout << "\tj=" << j << "\n"; \
		cout << "\tmap_i=" << map_i << "\n"; \
		cout << "\tmap_j=" << map_j << "\n"; \
		cout << "relPose: "<< relPose << endl; \
		cout << "map_i.size()=" << map_i->m_pointsMaps[0]->size() << "\n"; \
		cout << "map_j.size()=" << map_j->m_pointsMaps[0]->size() << "\n"; \
		map_i->m_pointsMaps[0]->save2D_to_text_file(string("debug_DUMP_map_i.txt")); \
		map_j->m_pointsMaps[0]->save2D_to_text_file(string("debug_DUMP_map_j.txt")); \
		m_A.saveToTextFile("debug_DUMP_exception_A.txt"); \
		);
示例#2
0
文件: test.cpp 项目: KMiyawaki/mrpt
// ------------------------------------------------------
//                  TestGeometry3D
// ------------------------------------------------------
void TestLaser2Imgs()
{
	 // Set your rawlog file name
	if (!mrpt::system::fileExists(RAWLOG_FILE))
		THROW_EXCEPTION_CUSTOM_MSG1("Rawlog file does not exist: %s",RAWLOG_FILE.c_str())

	CActionCollectionPtr	action;
	CSensoryFramePtr		observations;
	size_t					rawlogEntry		= 0;
	//bool					end 			= false;
	CDisplayWindow			wind;

	// Set relative path for externally-stored images in rawlogs:
	string	rawlog_images_path = extractFileDirectory( RAWLOG_FILE );
	rawlog_images_path+="/Images";
	CImage::IMAGES_PATH_BASE = rawlog_images_path;		// Set it.

	CFileGZInputStream		rawlogFile( RAWLOG_FILE );


	for (;;)
	{
		if (os::kbhit())
		{
			char c = os::getch();
			if (c==27)
				break;
		}

		// Load action/observation pair from the rawlog:
		// --------------------------------------------------
		cout << "Reading act/oct pair from rawlog..." << endl;
		if (! CRawlog::readActionObservationPair( rawlogFile, action, observations, rawlogEntry) )
			break; // file EOF

		// CAMERA............
		// Get CObservationStereoImages
		CObservationStereoImagesPtr sImgs;
		CObservationImagePtr Img;

		sImgs = observations->getObservationByClass<CObservationStereoImages>();
		if (!sImgs)
		{
			Img = observations->getObservationByClass<CObservationImage>();
			if(!Img)
				continue;
		}

		CPose3D cameraPose;	// Get Camera Pose (B) (CPose3D)
		CMatrixDouble33 K;			// Get Calibration matrix (K)

		sImgs ? sImgs->getSensorPose( cameraPose ) : Img->getSensorPose( cameraPose );
		K = sImgs ? sImgs->leftCamera.intrinsicParams : Img->cameraParams.intrinsicParams;

		// LASER.............
		// Get CObservationRange2D
		CObservation2DRangeScanPtr laserScan = observations->getObservationByClass<CObservation2DRangeScan>();
		if (!laserScan) continue;

		// Get Laser Pose (A) (CPose3D)
		CPose3D laserPose;
		laserScan->getSensorPose( laserPose );

		if (abs(laserPose.yaw())>DEG2RAD(90)) continue; // Only front lasers

		// Get 3D Point relative to the Laser coordinate Frame (P1) (CPoint3D)
		CPoint3D point;
		CSimplePointsMap mapa;
		mapa.insertionOptions.minDistBetweenLaserPoints = 0;
		observations->insertObservationsInto( &mapa );		// <- The map contains the pose of the points (P1)

		// Get the points into the map
		vector<float>			X, Y, Z;
		vector<float>::iterator	itX, itY, itZ;
		mapa.getAllPoints(X,Y,Z);

		unsigned int imgW = sImgs? sImgs->imageLeft.getWidth() : Img->image.getWidth();
		unsigned int imgH = sImgs? sImgs->imageLeft.getHeight() : Img->image.getHeight();

		//unsigned int			idx = 0;
		vector<float>			imgX,imgY;
		vector<float>::iterator	itImgX,itImgY;
		imgX.resize( X.size() );
		imgY.resize( Y.size() );

		CImage image;
		image = sImgs ? sImgs->imageLeft : Img->image;

		// Get pixels in the image:
		// Pimg = (kx,ky,k)^T = K(I|0)*P2
		// Main loop
		for( itX = X.begin(), itY = Y.begin(), itZ = Z.begin(), itImgX = imgX.begin(), itImgY = imgY.begin();
			 itX != X.end();
			 itX++, itY++, itZ++, itImgX++, itImgY++)
		{
			// Coordinates Transformation
			CPoint3D pLaser(*itX,*itY,*itZ);
			CPoint3D pCamera(pLaser-cameraPose);

			if( pCamera.z() > 0 )
			{
				*itImgX = - K(0,0)*((pCamera.x())/(pCamera.z())) + K(0,2);
				*itImgY = - K(1,1)*((pCamera.y())/(pCamera.z())) + K(1,2);

				if( *itImgX > 0 && *itImgX < imgW && *itImgY > 0 && *itImgY < imgH )
					image.filledRectangle(*itImgX-1,*itImgY-1,*itImgX+1,*itImgY+1,TColor(255,0,0));
			} // end if
		} // end for

		action.clear_unique();
		observations.clear_unique();

		wind.showImage(image);

		mrpt::system::sleep(50);
	}; // end for

	mrpt::system::pause();
}
/*---------------------------------------------------------------

					CLSLAM_RBPF_2DLASER

	Implements a 2D local SLAM method based on a RBPF
	    over an occupancy grid map. A part of HMT-SLAM.

\param LMH   The local metric hypothesis which must be updated by this SLAM algorithm.
\param act   The action to process (or NULL).
\param sf    The observations to process (or NULL).

 WE ALREADY HAVE CONTROL OVER THE CRITICAL SECTION OF THE LMHs!

--------------------------------------------------------------- */
void CLSLAM_RBPF_2DLASER::processOneLMH(
	CLocalMetricHypothesis	*LMH,
	const CActionCollectionPtr &actions,
	const CSensoryFramePtr     &sf )
{
	MRPT_START

	// Get the current robot pose estimation:
	TPoseID		currentPoseID = LMH->m_currentRobotPose;

	// If this is the first iteration, just create a new robot pose at the origin:
	if (currentPoseID == POSEID_INVALID )
	{
		currentPoseID = CHMTSLAM::generatePoseID();
		LMH->m_currentRobotPose = currentPoseID; // Change it in the LMH

		// Create a new robot pose:
		CPose3D	initPose(0,0,0);

		ASSERT_( LMH->m_particles.size()>0 );
		for (CLocalMetricHypothesis::CParticleList::iterator  it=LMH->m_particles.begin();it!=LMH->m_particles.end();++it)
			it->d->robotPoses[ currentPoseID ] = initPose;

		ASSERT_( m_parent->m_map.nodeCount()==1 );

		m_parent->m_map_cs.enter();
		CHMHMapNodePtr firstArea = m_parent->m_map.getFirstNode();
		ASSERT_(firstArea);
		LMH->m_nodeIDmemberships[currentPoseID] = firstArea->getID();

		// Set annotation for the reference pose:
		firstArea->m_annotations.setElemental( NODE_ANNOTATION_REF_POSEID,  currentPoseID , LMH->m_ID);
		m_parent->m_map_cs.leave();
	}

	bool	insertNewRobotPose = false;
	if (sf)
	{
		if ( LMH->m_nodeIDmemberships.size()<2 )  // If there is just 1 node (the current robot pose), then there is no observation in the map yet!
		{	// Update map if this is the first observation!
			insertNewRobotPose = true;
		}
		else
		{
			// Check minimum distance from current robot pose to those in the neighborhood:
			map< TPoseID, CPose3D >				lstRobotPoses;
			LMH->getMeans( lstRobotPoses );

			CPose3D	  *currentRobotPose = & lstRobotPoses[currentPoseID];
			float		minDistLin    = 1e6f;
			float		minDistAng    = 1e6f;

			//printf("Poses in graph:\n");
			for (map< TPoseID, CPose3D >::iterator	it = lstRobotPoses.begin();it!=lstRobotPoses.end();++it)
			{
				if (it->first != currentPoseID )
				{
					float linDist = it->second.distanceTo( *currentRobotPose );
					float angDist = fabs(math::wrapToPi( it->second.yaw() - currentRobotPose->yaw() ));

					minDistLin = min( minDistLin, linDist );

					if ( linDist < m_parent->m_options.SLAM_MIN_DIST_BETWEEN_OBS  )
						minDistAng = min(minDistAng, angDist);
				}
			}

			// time to insert a new node??
			insertNewRobotPose = (minDistLin>m_parent->m_options.SLAM_MIN_DIST_BETWEEN_OBS) || ( minDistAng > m_parent->m_options.SLAM_MIN_HEADING_BETWEEN_OBS );
		}

	} // end if there are SF

	// Save data in members so PF callback "prediction_and_update_pfXXXX" have access to them:
	m_insertNewRobotPose   = insertNewRobotPose;

	// ------------------------------------------------
	//  Execute RBPF method:
	// 	1) PROCESS ACTION
	// 	2) PROCESS OBSERVATIONS
	// ------------------------------------------------
	CParticleFilter		pf;
	pf.m_options = m_parent->m_options.pf_options;
	pf.executeOn( *LMH, actions.pointer(), sf.pointer() );

	// 3) The appearance observation: update the log likelihood
	// ...


	// -----------------------------------------------------------
	//			4) UPDATE THE MAP
	// -----------------------------------------------------------
	if (insertNewRobotPose)
	{
		m_parent->printf_debug("[CLSLAM_RBPF_2DLASER] Adding new pose...\n");

		//	Leave the up-to-now "current pose" in the map, insert the SF in it, and...
		// ----------------------------------------------------------------------------
		TPoseID newCurrentPoseID = CHMTSLAM::generatePoseID();

		//	...and create a new "current pose" making a copy of the previous one:
		//     and insert the observations into the metric maps:
		// ----------------------------------------------------------------------------
		for (CLocalMetricHypothesis::CParticleList::iterator partIt = LMH->m_particles.begin();
			  partIt!=LMH->m_particles.end();
			  partIt++)
		{
			const CPose3D  *curRobotPose = &partIt->d->robotPoses[currentPoseID];
			partIt->d->robotPoses[newCurrentPoseID]= *curRobotPose;
			sf->insertObservationsInto( &partIt->d->metricMaps, curRobotPose );
		}

		// Add node membership: for now, a copy of the current pose:
		LMH->m_nodeIDmemberships[newCurrentPoseID] = LMH->m_nodeIDmemberships[currentPoseID];


		// Now, insert the SF in the just added robot pose:
		// -----------------------------------------------------
		LMH->m_SFs[ currentPoseID ] = *sf;

		// Sets the new poseID as current robot pose:
		// ----------------------------------------------------
		TPoseID		 newlyAddedPose = currentPoseID;
		currentPoseID = LMH->m_currentRobotPose = newCurrentPoseID;

		// Mark the "newlyAddedPose" as pending to reconsider in the graph-cut method
		//  (Done in the main loop @ LSLAM thread)
		// --------------------------------------------------------------------------------
		LMH->m_posesPendingAddPartitioner.push_back( newlyAddedPose );

		m_parent->printf_debug("[CLSLAM_RBPF_2DLASER] Added pose %i.\n", (int)newlyAddedPose);


		// Notice LC detectors:
		// ------------------------------
		{
			synch::CCriticalSectionLocker	lock( &m_parent->m_topLCdets_cs );

			for (std::deque<CTopLCDetectorBase*>::iterator it=m_parent->m_topLCdets.begin();it!=m_parent->m_topLCdets.end();++it)
				(*it)->OnNewPose( newlyAddedPose, sf.pointer() );
		}


	} // end of insertNewRobotPose


	MRPT_END
}
示例#4
0
/*---------------------------------------------------------------
						process
  ---------------------------------------------------------------*/
void  CDetectorDoorCrossing::process(
		CActionRobotMovement2D	&in_poseChange,
		CSensoryFrame			&in_sf,
		TDoorCrossingOutParams	&out_estimation
		)
{
	// Variables for generic use:
	size_t				i;

	out_estimation.cumulativeTurning = 0;

	MRPT_START

	// 1) Add new pair to the list:
	// -----------------------------------------
	lastObs.addAction( in_poseChange );
	lastObs.addObservations( in_sf );

	// 2) Remove oldest pair:
	// -----------------------------------------
	ASSERT_( options.windowSize > 1 );
	ASSERT_( (lastObs.size() % 2) == 0 );	// Assure even size

	while (lastObs.size()>options.windowSize*2)
	{
		lastObs.remove(0);
		lastObs.remove(0);
	}

	if ( lastObs.size() < options.windowSize * 2 )
	{
		// Not enought old data yet:
		out_estimation.enoughtInformation = false;
		return;
	}

	// 3) Build an occupancy grid map with observations
	// -------------------------------------------------
	CPose2D					p, pos;

	TSetOfMetricMapInitializers			mapInitializer;

	{
		CSimplePointsMap::TMapDefinition def;
		mapInitializer.push_back( def );
	}
	{
		COccupancyGridMap2D::TMapDefinition def;
		def.resolution = options.gridResolution;
		mapInitializer.push_back( def );
	}

	CMultiMetricMap			auxMap( &mapInitializer );

	for (i=0;i<options.windowSize;i++)
	{
		CActionCollectionPtr	acts = lastObs.getAsAction( i*2+0 );
		CActionPtr				act = acts->get(0);

		ASSERT_( act->GetRuntimeClass()->derivedFrom( CLASS_ID( CActionRobotMovement2D ) ) )
		CActionRobotMovement2DPtr action = CActionRobotMovement2DPtr( act );

		action->poseChange->getMean(pos);

		out_estimation.cumulativeTurning+= fabs(pos.phi());

		// Get the cumulative pose for the current observation:
		p = p + pos;

		// Add SF to the grid map:
		CSensoryFramePtr	sf = lastObs.getAsObservations( i*2+1 );
		CPose3D				pose3D(p);
		sf->insertObservationsInto( &auxMap, &pose3D );
	}

	// 4) Compute the information differece between this
	//      "map patch" and the previous one:
	// -------------------------------------------------------
	auxMap.m_gridMaps[0]->computeEntropy( entropy );

	if (!lastEntropyValid)
	{
		out_estimation.enoughtInformation = false;
	}
	else
	{
		// 5) Fill output data
		// ---------------------------------
		out_estimation.enoughtInformation = true;


		out_estimation.informationGain = entropy.I - lastEntropy.I;
		out_estimation.pointsMap.copyFrom( *auxMap.m_pointsMaps[0] );
	}


	// For next iterations:
	lastEntropy = entropy;
	lastEntropyValid = true;

	MRPT_END

}