bool KMeansFeatures::train_(ClassificationData &trainingData){ MatrixDouble data = trainingData.getDataAsMatrixDouble(); return train_( data ); }
bool GMM::train_(ClassificationData &trainingData){ //Clear any old models clear(); if( trainingData.getNumSamples() == 0 ){ errorLog << "train_(ClassificationData &trainingData) - Training data is empty!" << endl; return false; } //Set the number of features and number of classes and resize the models buffer numInputDimensions = trainingData.getNumDimensions(); numClasses = trainingData.getNumClasses(); models.resize(numClasses); if( numInputDimensions >= 6 ){ warningLog << "train_(ClassificationData &trainingData) - The number of features in your training data is high (" << numInputDimensions << "). The GMMClassifier does not work well with high dimensional data, you might get better results from one of the other classifiers." << endl; } //Get the ranges of the training data if the training data is going to be scaled ranges = trainingData.getRanges(); if( !trainingData.scale(GMM_MIN_SCALE_VALUE, GMM_MAX_SCALE_VALUE) ){ errorLog << "train_(ClassificationData &trainingData) - Failed to scale training data!" << endl; return false; } //Fit a Mixture Model to each class (independently) for(UINT k=0; k<numClasses; k++){ UINT classLabel = trainingData.getClassTracker()[k].classLabel; ClassificationData classData = trainingData.getClassData( classLabel ); //Train the Mixture Model for this class GaussianMixtureModels gaussianMixtureModel; gaussianMixtureModel.setNumClusters( numMixtureModels ); gaussianMixtureModel.setMinChange( minChange ); gaussianMixtureModel.setMaxNumEpochs( maxIter ); if( !gaussianMixtureModel.train( classData.getDataAsMatrixDouble() ) ){ errorLog << "train_(ClassificationData &trainingData) - Failed to train Mixture Model for class " << classLabel << endl; return false; } //Setup the model container models[k].resize( numMixtureModels ); models[k].setClassLabel( classLabel ); //Store the mixture model in the container for(UINT j=0; j<numMixtureModels; j++){ models[k][j].mu = gaussianMixtureModel.getMu().getRowVector(j); models[k][j].sigma = gaussianMixtureModel.getSigma()[j]; //Compute the determinant and invSigma for the realtime prediction LUDecomposition ludcmp( models[k][j].sigma ); if( !ludcmp.inverse( models[k][j].invSigma ) ){ models.clear(); errorLog << "train_(ClassificationData &trainingData) - Failed to invert Matrix for class " << classLabel << "!" << endl; return false; } models[k][j].det = ludcmp.det(); } //Compute the normalize factor models[k].recomputeNormalizationFactor(); //Compute the rejection thresholds double mu = 0; double sigma = 0; VectorDouble predictionResults(classData.getNumSamples(),0); for(UINT i=0; i<classData.getNumSamples(); i++){ vector< double > sample = classData[i].getSample(); predictionResults[i] = models[k].computeMixtureLikelihood( sample ); mu += predictionResults[i]; } //Update mu mu /= double( classData.getNumSamples() ); //Calculate the standard deviation for(UINT i=0; i<classData.getNumSamples(); i++) sigma += SQR( (predictionResults[i]-mu) ); sigma = sqrt( sigma / (double(classData.getNumSamples())-1.0) ); sigma = 0.2; //Set the models training mu and sigma models[k].setTrainingMuAndSigma(mu,sigma); if( !models[k].recomputeNullRejectionThreshold(nullRejectionCoeff) && useNullRejection ){ warningLog << "train_(ClassificationData &trainingData) - Failed to recompute rejection threshold for class " << classLabel << " - the nullRjectionCoeff value is too high!" << endl; } //cout << "Training Mu: " << mu << " TrainingSigma: " << sigma << " RejectionThreshold: " << models[k].getNullRejectionThreshold() << endl; //models[k].printModelValues(); } //Reset the class labels classLabels.resize(numClasses); for(UINT k=0; k<numClasses; k++){ classLabels[k] = models[k].getClassLabel(); } //Resize the rejection thresholds nullRejectionThresholds.resize(numClasses); for(UINT k=0; k<numClasses; k++){ nullRejectionThresholds[k] = models[k].getNullRejectionThreshold(); } //Flag that the models have been trained trained = true; return true; }
bool RBMQuantizer::train_(ClassificationData &trainingData){ MatrixDouble data = trainingData.getDataAsMatrixDouble(); return train_( data ); }
bool GaussianMixtureModels::train_(ClassificationData &trainingData){ MatrixDouble data = trainingData.getDataAsMatrixDouble(); return train_( data ); }