void ClpRecourseSolver::go() { ClpSolve solvectl; // disable presolve so we can re-use optimal bases solvectl.setPresolveType(ClpSolve::presolveOff); solvectl.setSolveType(ClpSolve::useDual); solver.setMaximumSeconds(300); solver.initialSolve(solvectl); }
clp_result_t clp_solve(int n_rows, int n_cols, int n_entries, const int *row_indices, const int *col_indices, const double *coeffs, const double *vec_c, const double *vec_b_lo, const double *vec_b_up, const double *vec_x_lo, const double *vec_x_up, int optimisation_mode, double *vec_x_soln) { // build column-packed coin sparse matrix from given COO data CoinPackedMatrix matrix(true, row_indices, col_indices, coeffs, (CoinBigIndex)n_entries); matrix.setDimensions(n_rows, n_cols); ClpSimplex model; model.loadProblem(matrix, vec_x_lo, vec_x_up, vec_c, vec_b_lo, vec_b_up); model.setOptimizationDirection(1.0); // minimise ClpSolve solve; if (optimisation_mode == USE_PRIMAL) { solve.setSolveType(ClpSolve::usePrimal); } else if (optimisation_mode == USE_DUAL) { solve.setSolveType(ClpSolve::useDual); } else if (optimisation_mode == USE_BARRIER) { solve.setSolveType(ClpSolve::useBarrier); } solve.setPresolveType(ClpSolve::presolveOn); model.initialSolve(solve); clp_result_t result; result.proven_optimal = model.isProvenOptimal(); result.proven_dual_infeasible = model.isProvenDualInfeasible(); result.proven_primal_infeasible = model.isProvenPrimalInfeasible(); result.abandoned = model.isAbandoned(); const double *x = model.getColSolution(); assert(model.getNumCols() == n_cols); for (int i = 0; i < model.getNumCols(); ++i) { vec_x_soln[i] = x[i]; } return result; }
//############################################################################# // Solve methods //############################################################################# void CbcSolver2::initialSolve() { modelPtr_->scaling(0); setBasis(basis_,modelPtr_); // Do long thin by sprint ClpSolve options; options.setSolveType(ClpSolve::usePrimalorSprint); options.setPresolveType(ClpSolve::presolveOff); options.setSpecialOption(1,3,30); modelPtr_->initialSolve(options); basis_ = getBasis(modelPtr_); modelPtr_->setLogLevel(0); }
int main (int argc, const char *argv[]) { ClpSimplex model; int status; // Keep names if (argc < 2) { status = model.readMps("small.mps", true); } else { status = model.readMps(argv[1], false); } if (status) exit(10); /* This driver implements a method of treating a problem as all cuts. So it adds in all E rows, solves and then adds in violated rows. */ double time1 = CoinCpuTime(); ClpSimplex * model2; ClpPresolve pinfo; int numberPasses = 5; // can change this /* Use a tolerance of 1.0e-8 for feasibility, treat problem as not being integer, do "numberpasses" passes and throw away names in presolved model */ model2 = pinfo.presolvedModel(model, 1.0e-8, false, numberPasses, false); if (!model2) { fprintf(stderr, "ClpPresolve says %s is infeasible with tolerance of %g\n", argv[1], 1.0e-8); fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n", argv[1], 1.0e-8); // model was infeasible - maybe try again with looser tolerances model2 = pinfo.presolvedModel(model, 1.0e-7, false, numberPasses, false); if (!model2) { fprintf(stderr, "ClpPresolve says %s is infeasible with tolerance of %g\n", argv[1], 1.0e-7); fprintf(stdout, "ClpPresolve says %s is infeasible with tolerance of %g\n", argv[1], 1.0e-7); exit(2); } } // change factorization frequency from 200 model2->setFactorizationFrequency(100 + model2->numberRows() / 50); int numberColumns = model2->numberColumns(); int originalNumberRows = model2->numberRows(); // We will need arrays to choose rows to add double * weight = new double [originalNumberRows]; int * sort = new int [originalNumberRows]; int numberSort = 0; char * take = new char [originalNumberRows]; const double * rowLower = model2->rowLower(); const double * rowUpper = model2->rowUpper(); int iRow, iColumn; // Set up initial list numberSort = 0; for (iRow = 0; iRow < originalNumberRows; iRow++) { weight[iRow] = 1.123e50; if (rowLower[iRow] == rowUpper[iRow]) { sort[numberSort++] = iRow; weight[iRow] = 0.0; } } numberSort /= 2; // Just add this number of rows each time in small problem int smallNumberRows = 2 * numberColumns; smallNumberRows = CoinMin(smallNumberRows, originalNumberRows / 20); // and pad out with random rows double ratio = ((double)(smallNumberRows - numberSort)) / ((double) originalNumberRows); for (iRow = 0; iRow < originalNumberRows; iRow++) { if (weight[iRow] == 1.123e50 && CoinDrand48() < ratio) sort[numberSort++] = iRow; } /* This is optional. The best thing to do is to miss out random rows and do a set which makes dual feasible. If that is not possible then make sure variables have bounds. One way that normally works is to automatically tighten bounds. */ #if 0 // However for some we need to do anyway double * columnLower = model2->columnLower(); double * columnUpper = model2->columnUpper(); for (iColumn = 0; iColumn < numberColumns; iColumn++) { columnLower[iColumn] = CoinMax(-1.0e6, columnLower[iColumn]); columnUpper[iColumn] = CoinMin(1.0e6, columnUpper[iColumn]); } #endif model2->tightenPrimalBounds(-1.0e4, true); printf("%d rows in initial problem\n", numberSort); double * fullSolution = model2->primalRowSolution(); // Just do this number of passes int maxPass = 50; // And take out slack rows until this pass int takeOutPass = 30; int iPass; const int * start = model2->clpMatrix()->getVectorStarts(); const int * length = model2->clpMatrix()->getVectorLengths(); const int * row = model2->clpMatrix()->getIndices(); int * whichColumns = new int [numberColumns]; for (iColumn = 0; iColumn < numberColumns; iColumn++) whichColumns[iColumn] = iColumn; int numberSmallColumns = numberColumns; for (iPass = 0; iPass < maxPass; iPass++) { printf("Start of pass %d\n", iPass); // Cleaner this way std::sort(sort, sort + numberSort); // Create small problem ClpSimplex small(model2, numberSort, sort, numberSmallColumns, whichColumns); small.setFactorizationFrequency(100 + numberSort / 200); //small.setPerturbation(50); //small.setLogLevel(63); // A variation is to just do N iterations //if (iPass) //small.setMaximumIterations(100); // Solve small.factorization()->messageLevel(8); if (iPass) { small.dual(); } else { small.writeMps("continf.mps"); ClpSolve solveOptions; solveOptions.setSolveType(ClpSolve::useDual); //solveOptions.setSolveType(ClpSolve::usePrimalorSprint); //solveOptions.setSpecialOption(1,2,200); // idiot small.initialSolve(solveOptions); } bool dualInfeasible = (small.status() == 2); // move solution back double * solution = model2->primalColumnSolution(); const double * smallSolution = small.primalColumnSolution(); for (int j = 0; j < numberSmallColumns; j++) { iColumn = whichColumns[j]; solution[iColumn] = smallSolution[j]; model2->setColumnStatus(iColumn, small.getColumnStatus(j)); } for (iRow = 0; iRow < numberSort; iRow++) { int kRow = sort[iRow]; model2->setRowStatus(kRow, small.getRowStatus(iRow)); } // compute full solution memset(fullSolution, 0, originalNumberRows * sizeof(double)); model2->times(1.0, model2->primalColumnSolution(), fullSolution); if (iPass != maxPass - 1) { // Mark row as not looked at for (iRow = 0; iRow < originalNumberRows; iRow++) weight[iRow] = 1.123e50; // Look at rows already in small problem int iSort; int numberDropped = 0; int numberKept = 0; int numberBinding = 0; int numberInfeasibilities = 0; double sumInfeasibilities = 0.0; for (iSort = 0; iSort < numberSort; iSort++) { iRow = sort[iSort]; //printf("%d %g %g\n",iRow,fullSolution[iRow],small.primalRowSolution()[iSort]); if (model2->getRowStatus(iRow) == ClpSimplex::basic) { // Basic - we can get rid of if early on if (iPass < takeOutPass && !dualInfeasible) { // may have hit max iterations so check double infeasibility = CoinMax(fullSolution[iRow] - rowUpper[iRow], rowLower[iRow] - fullSolution[iRow]); weight[iRow] = -infeasibility; if (infeasibility > 1.0e-8) { numberInfeasibilities++; sumInfeasibilities += infeasibility; } else { weight[iRow] = 1.0; numberDropped++; } } else { // keep weight[iRow] = -1.0e40; numberKept++; } } else { // keep weight[iRow] = -1.0e50; numberKept++; numberBinding++; } } // Now rest for (iRow = 0; iRow < originalNumberRows; iRow++) { sort[iRow] = iRow; if (weight[iRow] == 1.123e50) { // not looked at yet double infeasibility = CoinMax(fullSolution[iRow] - rowUpper[iRow], rowLower[iRow] - fullSolution[iRow]); weight[iRow] = -infeasibility; if (infeasibility > 1.0e-8) { numberInfeasibilities++; sumInfeasibilities += infeasibility; } } } // sort CoinSort_2(weight, weight + originalNumberRows, sort); numberSort = CoinMin(originalNumberRows, smallNumberRows + numberKept); memset(take, 0, originalNumberRows); for (iRow = 0; iRow < numberSort; iRow++) take[sort[iRow]] = 1; numberSmallColumns = 0; for (iColumn = 0; iColumn < numberColumns; iColumn++) { int n = 0; for (int j = start[iColumn]; j < start[iColumn] + length[iColumn]; j++) { int iRow = row[j]; if (take[iRow]) n++; } if (n) whichColumns[numberSmallColumns++] = iColumn; } printf("%d rows binding, %d rows kept, %d rows dropped - new size %d rows, %d columns\n", numberBinding, numberKept, numberDropped, numberSort, numberSmallColumns); printf("%d rows are infeasible - sum is %g\n", numberInfeasibilities, sumInfeasibilities); if (!numberInfeasibilities) { printf("Exiting as looks optimal\n"); break; } numberInfeasibilities = 0; sumInfeasibilities = 0.0; for (iSort = 0; iSort < numberSort; iSort++) { if (weight[iSort] > -1.0e30 && weight[iSort] < -1.0e-8) { numberInfeasibilities++; sumInfeasibilities += -weight[iSort]; } } printf("in small model %d rows are infeasible - sum is %g\n", numberInfeasibilities, sumInfeasibilities); } } delete [] weight; delete [] sort; delete [] whichColumns; delete [] take; // If problem is big you may wish to skip this model2->dual(); int numberBinding = 0; for (iRow = 0; iRow < originalNumberRows; iRow++) { if (model2->getRowStatus(iRow) != ClpSimplex::basic) numberBinding++; } printf("%d binding rows at end\n", numberBinding); pinfo.postsolve(true); int numberIterations = model2->numberIterations();; delete model2; /* After this postsolve model should be optimal. We can use checkSolution and test feasibility */ model.checkSolution(); if (model.numberDualInfeasibilities() || model.numberPrimalInfeasibilities()) printf("%g dual %g(%d) Primal %g(%d)\n", model.objectiveValue(), model.sumDualInfeasibilities(), model.numberDualInfeasibilities(), model.sumPrimalInfeasibilities(), model.numberPrimalInfeasibilities()); // But resolve for safety model.primal(1); numberIterations += model.numberIterations();; printf("Solve took %g seconds\n", CoinCpuTime() - time1); return 0; }
int main(int argc, const char *argv[]) { ClpSimplex model; int status; // Keep names when reading an mps file if (argc < 2) { #if defined(SAMPLEDIR) status = model.readMps(SAMPLEDIR "/p0033.mps", true); #else fprintf(stderr, "Do not know where to find sample MPS files.\n"); exit(1); #endif } else status = model.readMps(argv[1], true); if (status) { fprintf(stderr, "Bad readMps %s\n", argv[1]); fprintf(stdout, "Bad readMps %s\n", argv[1]); exit(1); } #ifdef STYLE1 if (argc < 3 || !strstr(argv[2], "primal")) { // Use the dual algorithm unless user said "primal" model.initialDualSolve(); } else { model.initialPrimalSolve(); } #else ClpSolve solvectl; if (argc < 3 || (!strstr(argv[2], "primal") && !strstr(argv[2], "barrier"))) { // Use the dual algorithm unless user said "primal" or "barrier" std::cout << std::endl << " Solve using Dual: " << std::endl; solvectl.setSolveType(ClpSolve::useDual); solvectl.setPresolveType(ClpSolve::presolveOn); model.initialSolve(solvectl); } else if (strstr(argv[2], "barrier")) { // Use the barrier algorithm if user said "barrier" std::cout << std::endl << " Solve using Barrier: " << std::endl; solvectl.setSolveType(ClpSolve::useBarrier); solvectl.setPresolveType(ClpSolve::presolveOn); model.initialSolve(solvectl); } else { std::cout << std::endl << " Solve using Primal: " << std::endl; solvectl.setSolveType(ClpSolve::usePrimal); solvectl.setPresolveType(ClpSolve::presolveOn); model.initialSolve(solvectl); } #endif std::string modelName; model.getStrParam(ClpProbName, modelName); std::cout << "Model " << modelName << " has " << model.numberRows() << " rows and " << model.numberColumns() << " columns" << std::endl; // remove this to print solution exit(0); /* Now to print out solution. The methods used return modifiable arrays while the alternative names return const pointers - which is of course much more virtuous. This version just does non-zero columns */ #if 0 int numberRows = model.numberRows(); // Alternatively getRowActivity() double * rowPrimal = model.primalRowSolution(); // Alternatively getRowPrice() double * rowDual = model.dualRowSolution(); // Alternatively getRowLower() double * rowLower = model.rowLower(); // Alternatively getRowUpper() double * rowUpper = model.rowUpper(); // Alternatively getRowObjCoefficients() double * rowObjective = model.rowObjective(); // If we have not kept names (parameter to readMps) this will be 0 assert(model.lengthNames()); // Row names const std::vector<std::string> * rowNames = model.rowNames(); int iRow; std::cout << " Primal Dual Lower Upper (Cost)" << std::endl; for (iRow = 0; iRow < numberRows; iRow++) { double value; std::cout << std::setw(6) << iRow << " " << std::setw(8) << (*rowNames)[iRow]; value = rowPrimal[iRow]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = rowDual[iRow]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = rowLower[iRow]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = rowUpper[iRow]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; if (rowObjective) { value = rowObjective[iRow]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; } std::cout << std::endl; } #endif std::cout << "--------------------------------------" << std::endl; // Columns int numberColumns = model.numberColumns(); // Alternatively getColSolution() double * columnPrimal = model.primalColumnSolution(); // Alternatively getReducedCost() double * columnDual = model.dualColumnSolution(); // Alternatively getColLower() double * columnLower = model.columnLower(); // Alternatively getColUpper() double * columnUpper = model.columnUpper(); // Alternatively getObjCoefficients() double * columnObjective = model.objective(); // If we have not kept names (parameter to readMps) this will be 0 assert(model.lengthNames()); // Column names const std::vector<std::string> * columnNames = model.columnNames(); int iColumn; std::cout << " Primal Dual Lower Upper Cost" << std::endl; for (iColumn = 0; iColumn < numberColumns; iColumn++) { double value; value = columnPrimal[iColumn]; if (fabs(value) > 1.0e-8) { std::cout << std::setw(6) << iColumn << " " << std::setw(8) << (*columnNames)[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnDual[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnLower[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnUpper[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; value = columnObjective[iColumn]; if (fabs(value) < 1.0e5) std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value; else std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value; std::cout << std::endl; } } std::cout << "--------------------------------------" << std::endl; return 0; }