void carTest() { comhelper.Open(); comhelper.Set(9600); comhelper.Write(str, 2); //cout << 1 << endl; str[0] = 'L'; comhelper.Write(str, 2); //mycar.run(); }
int main() { //carTest(); //str[0] = 'A'; //if (comhelper.Write(str, 2) == false) //{ //cout << "error" << endl; //} //str[0] = 'R'; comhelper.Open(); comhelper.Set(9600); comhelper.Write(str, 2); vis[0] = 1; //mycar.run(); VideoCapture cap; //定义一个摄像头捕捉的类对象 Rect trackwindow1; //第一个标志 Rect trackwindow2; //第二个标志 int hsize = 16; float hranges[] = { 0, 180 };//hranges在后面的计算直方图函数中要用到 const float* phranges1 = hranges; const float* phranges2 = hranges; Mat frame, hsv, hue1, hue2, mask1, mask2, hist1, hist2, histimg1 = Mat::zeros(200, 320, CV_8UC3), histimg2 = Mat::zeros(200, 320, CV_8UC3), backproj1, backproj2; cap.open(0);//直接调用成员函数打开摄像头 if (!cap.isOpened()) { cout << "Error" << endl; return -1; } //namedWindow("hist1ogram", 0); namedWindow("CamShift Demo", 0); namedWindow("Rotated", 0); //透视变换 while (1) { //cout << "test" << endl; cap >> frame; if (frame.empty()) { break; } if (type == 0) { change(frame); } if (type == 1) { break; } char c = (char)waitKey(30); if (c == 'p') //按下p表示开始惊醒透视变换选点,选点方向左上右上左下右下 { type = 0; } imshow("CamShift Demo", frame); } imshow("Rotated", rotated); //二值化 src = &IplImage(rotated); gray = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); cvCvtColor(src, gray, CV_BGR2GRAY); binary = cvCreateImage(cvGetSize(gray), IPL_DEPTH_8U, 1); cvThreshold(gray, binary, 128, 1, CV_THRESH_BINARY); cvNamedWindow("Binary Image", 0); cvShowImage("Binary Image", binary); int n = 0; cvCreateTrackbar("二值化阈值", "Binary Image", &n, 254, call_back); call_back(1); cvWaitKey(0); //细化 dst = cvCreateImage(cvGetSize(binary), binary->depth, binary->nChannels); thinImage(binary, dst); cvNamedWindow("细化", 0); cvShowImage("细化", dst); cvWaitKey(0); //霍夫变换 cvNamedWindow("霍夫变换", 0); storage = cvCreateMemStorage(); lines = cvHoughLines2(dst, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 30, 30, 40); img1 = cvCreateImage(cvGetSize(dst), 8, 1); cvSetZero(img1); for (int i = 0; i < lines->total; i++) { CvPoint* line = (CvPoint*)cvGetSeqElem(lines, i); cvLine(img1, line[0], line[1], CvScalar(255)); sp.add(line[0], line[1],i); //sp.initial(); } cvShowImage("霍夫变换", img1); int Thresh = 20; int MinLength = 40; int Terval = 40; cvCreateTrackbar("阈值", "霍夫变换", &Thresh, 100, hough_call_back0); cvCreateTrackbar("最短线段长度", "霍夫变换", &MinLength, 100, hough_call_back1); cvCreateTrackbar("线段间隔最大值", "霍夫变换", &Terval, 100, hough_call_back2); cvWaitKey(0); cvDestroyWindow("Binary Image"); cvDestroyWindow("细化"); cvReleaseImage(&gray); cvReleaseImageHeader(&binary); //cvReleaseImage(&dst); sp.initial(); sp.test(); cout << "Please select the start point: "; cin >> startPoint; if (startPoint == 1) { sp.reverse(); } //追踪 setMouseCallback("Rotated", onMouse, 0);//消息响应机制 createTrackbar("Vmin", "Rotated", &vmin, 256, 0);//createTrackbar函数的功能是在对应的窗口创建滑动条,滑动条Vmin,vmin表示滑动条的值,最大为256 createTrackbar("Vmax", "Rotated", &vmax, 256, 0);//最后一个参数为0代表没有调用滑动拖动的响应函数 createTrackbar("Smin", "Rotated", &smin, 256, 0);//vmin,vmax,smin初始值分别为10,256,30 //bool paused = false; while (1) { //carTest(); if (type == 10 && mark2 == true) { Turn t = getTurn(); if (t == Left) { str[0] = 'L'; comhelper.Write(str, 2); //mycar.turnl(); cout << "Left" << endl; } else if (t == Right) { str[0] = 'R'; comhelper.Write(str, 2); //mycar.turnr(); cout << "Right" << endl; } else if (t == Ahead) { str[0] = 'A'; comhelper.Write(str, 2); //mycar.run(); cout << "Ahead" << endl; } else if (t == Stop) { for (int i = 0; i < 100; i++) { str[0] = 'S'; comhelper.Write(str, 2); //mycar.stop(); cout << "Stop" << endl; } } } cap >> frame;//从摄像头抓取一帧图像并输出到frame中 if (frame.empty()) break; warpPerspective(frame, image, warpMatrix, rotated.size(), INTER_LINEAR, BORDER_CONSTANT); //frame.copyTo(image); frame.copyTo(image2); cvtColor(image, hsv, CV_BGR2HSV);//将rgb摄像头帧转化成hsv空间的 if (trackObject)//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1 { int _vmin = vmin, _vmax = vmax; inRange(hsv, Scalar(0, smin, MIN(_vmin, _vmax)), Scalar(180, 256, MAX(_vmin, _vmax)), mask1); int ch[] = { 0, 0 }; hue1.create(hsv.size(), hsv.depth()); hue2.create(hsv.size(), hsv.depth()); mixChannels(&hsv, 1, &hue1, 1, ch, 1); mixChannels(&hsv, 1, &hue2, 1, ch, 1); if (trackObject < 0)//鼠标选择区域松开后,该函数内部又将其赋值1 { //ROI指感兴趣的区域 Mat roi(hue1, selection1), maskroi(mask1, selection1);//mask1保存的hsv的最小值 calcHist(&roi, 1, 0, maskroi, hist1, 1, &hsize, &phranges1);//将roi的0通道计算直方图并通过mask1放入hist1中,hsize为每一维直方图的大小 normalize(hist1, hist1, 0, 255, CV_MINMAX);//将hist1矩阵进行数组范围归一化,都归一化到0~255 trackwindow1 = selection1; trackObject = 1;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域 histimg1 = Scalar::all(0);//清0 int binW = histimg1.cols / hsize; Mat buf(1, hsize, CV_8UC3); for (int i = 0; i < hsize; i++) buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180. / hsize), 255, 255); cvtColor(buf, buf, CV_HSV2BGR);//将hsv转换成bgr for (int i = 0; i < hsize; i++) { int val = saturate_cast<int>(hist1.at<float>(i)*histimg1.rows / 255); rectangle(histimg1, Point(i*binW, histimg1.rows), Point((i + 1)*binW, histimg1.rows - val), Scalar(buf.at<Vec3b>(i)), -1, 8); } } calcBackProject(&hue1, 1, 0, hist1, backproj1, &phranges1);//计算直方图的反向投影,计算hue1图像0通道直方图hist1的反向投影,并赋值到backproj1中 backproj1 &= mask1; trackBox1 = CamShift(backproj1, trackwindow1, TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1)); if (trackwindow1.area() <= 1) { int cols = backproj1.cols, rows = backproj1.rows, r = (MIN(cols, rows) + 5) / 6; trackwindow1 = Rect(trackwindow1.x - r, trackwindow1.y - r, trackwindow1.x + r, trackwindow1.y + r) &Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高 } if (backproj1Mode) { cvtColor(backproj1, image, CV_GRAY2BGR);//因此投影模式下显示的也是rgb图? } //cvtColor(backproj1, image, CV_GRAY2BGR);//因此投影模式下显示的也是rgb图? if (trackBox1.size.width >= 0 && trackBox1.size.height >= 0) { ellipse(image, trackBox1, Scalar(0, 0, 255), 3, CV_AA); //画出椭圆 } if (trackObject >= 2)//trackObject初始化为0,或者按完键盘的'c'键后也为0,当鼠标单击松开后为-1 { int _vmin = vmin, _vmax = vmax; //inRange函数的功能是检查输入数组每个元素大小是否在2个给定数值之间,可以有多通道,mask1保存0通道的最小值,也就是h分量 //这里利用了hsv的3个通道,比较h,0~180,s,smin~256,v,min(vmin,vmax),max(vmin,vmax)。如果3个通道都在对应的范围内,则 //mask1对应的那个点的值全为1(0xff),否则为0(0x00). inRange(hsv, Scalar(0, smin, MIN(_vmin, _vmax)), Scalar(180, 256, MAX(_vmin, _vmax)), mask2); int ch[] = { 0, 0 }; hue1.create(hsv.size(), hsv.depth());//hue1初始化为与hsv大小深度一样的矩阵,色调的度量是用角度表示的,红绿蓝之间相差120度,反色相差180度 hue2.create(hsv.size(), hsv.depth()); mixChannels(&hsv, 1, &hue1, 1, ch, 1);//将hsv第一个通道(也就是色调)的数复制到hue1中,0索引数组 mixChannels(&hsv, 1, &hue2, 1, ch, 1); if (trackObject == 3) { //此处的构造函数roi用的是Mat hue1的矩阵头,且roi的数据指针指向hue1,即共用相同的数据,select为其感兴趣的区域 Mat roi2(hue2, selection2), maskroi(mask2, selection2);//mask1保存的hsv的最小值 //calchist1()函数第一个参数为输入矩阵序列,第2个参数表示输入的矩阵数目,第3个参数表示将被计算直方图维数通道的列表,第4个参数表示可选的掩码函数 //第5个参数表示输出直方图,第6个参数表示直方图的维数,第7个参数为每一维直方图数组的大小,第8个参数为每一维直方图bin的边界 calcHist(&roi2, 1, 0, maskroi, hist2, 1, &hsize, &phranges2);//将roi的0通道计算直方图并通过mask1放入hist1中,hsize为每一维直方图的大小 normalize(hist2, hist2, 0, 255, CV_MINMAX);//将hist1矩阵进行数组范围归一化,都归一化到0~255 trackwindow2 = selection2; trackObject = 4;//只要鼠标选完区域松开后,且没有按键盘清0键'c',则trackObject一直保持为1,因此该if函数只能执行一次,除非重新选择跟踪区域 histimg2 = Scalar::all(0);//与按下'c'键是一样的,这里的all(0)表示的是标量全部清0 int binW = histimg2.cols / hsize; //hist1ing是一个200*300的矩阵,hsize应该是每一个bin的宽度,也就是hist1ing矩阵能分出几个bin出来 Mat buf(1, hsize, CV_8UC3);//定义一个缓冲单bin矩阵 for (int i = 0; i < hsize; i++)//saturate_case函数为从一个初始类型准确变换到另一个初始类型 buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180. / hsize), 255, 255);//Vec3b为3个char值的向量 cvtColor(buf, buf, CV_HSV2BGR);//将hsv又转换成bgr for (int i = 0; i < hsize; i++) { //cout << "he" << endl; int val = saturate_cast<int>(hist2.at<float>(i)*histimg2.rows / 255);//at函数为返回一个指定数组元素的参考值 rectangle(histimg2, Point(i*binW, histimg2.rows), //在一幅输入图像上画一个简单抽的矩形,指定左上角和右下角,并定义颜色,大小,线型等 Point((i + 1)*binW, histimg2.rows - val), Scalar(buf.at<Vec3b>(i)), -1, 8); } } calcBackProject(&hue2, 1, 0, hist2, backproj2, &phranges2);//计算直方图的反向投影,计算hue1图像0通道直方图hist1的反向投影,并赋值到backproj2中 backproj2 &= mask2; trackBox2 = CamShift(backproj2, trackwindow2, TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1)); if ( trackwindow2.area() <= 1) { int cols = backproj2.cols, rows = backproj2.rows, r = (MIN(cols, rows) + 5) / 6; trackwindow2 = Rect(trackwindow2.x - r, trackwindow2.y - r, trackwindow2.x + r, trackwindow2.y + r) &Rect(0, 0, cols, rows);//Rect函数为矩阵的偏移和大小,即第一二个参数为矩阵的左上角点坐标,第三四个参数为矩阵的宽和高 } if (backproj1Mode) { cvtColor(backproj2, image2, CV_GRAY2BGR); } if (trackBox2.size.width >= 0 && trackBox2.size.height >= 0) { ellipse(image, trackBox2, Scalar(0, 0, 255), 3, CV_AA); //画出椭圆 } } } //拖出矩形框 if (mark1 == false && selectObject && selection1.width > 0 && selection1.height > 0) { Mat roi(image, selection1); bitwise_not(roi, roi);//bitwise_not为将每一个bit位取反 } else if (mark1 == true && selectObject && selection2.width > 0 && selection2.height > 0) { //cout << "he" << endl; Mat roi2(image, selection2); bitwise_not(roi2, roi2);//bitwise_not为将每一个bit位取反 } imshow("CamShift Demo", frame); imshow("Rotated", image); imshow("histogram", histimg1); imshow("histogram2", histimg2); char c = (char)waitKey(40); if (c == 27) //退出键 break; switch (c) { case 's': type = 10; break; case 'b': //反向投影模型交替 backproj1Mode = !backproj1Mode; break; case 'c': //清零跟踪目标对象 trackObject = 0; histimg1 = Scalar::all(0); mark1 = false; mark2 = false; break; case '1': //标志标志1选取完成 trackObject=1; mark1 = true; break; case '2': trackObject++; mark2 = true; break; case 'h': //显示直方图交替 showhist1 = !showhist1; if (!showhist1) { destroyWindow("histogram"); destroyWindow("histogram2"); } else { namedWindow("histogram", 1); namedWindow("histogram2", 1); } break; case 'p': //透视变形 type = 0; break; default: ; } } return 0; }