示例#1
0
void *lammps_extract_compute(void *ptr, char *id, int style, int type)
{
  LAMMPS *lmp = (LAMMPS *) ptr;

  int icompute = lmp->modify->find_compute(id);
  if (icompute < 0) return NULL;
  Compute *compute = lmp->modify->compute[icompute];

  if (style == 0) {
    if (type == 0) {
      if (!compute->scalar_flag) return NULL;
      if (compute->invoked_scalar != lmp->update->ntimestep)
	compute->compute_scalar();
      return (void *) &compute->scalar;
    }
    if (type == 1) {
      if (!compute->vector_flag) return NULL;
      if (compute->invoked_vector != lmp->update->ntimestep)
	compute->compute_vector();
      return (void *) compute->vector;
    }
    if (type == 2) {
      if (!compute->array_flag) return NULL;
      if (compute->invoked_array != lmp->update->ntimestep)
	compute->compute_array();
      return (void *) compute->array;
    }
  }

  if (style == 1) {
    if (!compute->peratom_flag) return NULL;
    if (type == 1) {
      if (compute->invoked_peratom != lmp->update->ntimestep)
	compute->compute_peratom();
      return (void *) compute->vector_atom;
    }
    if (type == 2) {
      if (compute->invoked_peratom != lmp->update->ntimestep)
	compute->compute_peratom();
      return (void *) compute->array_atom;
    }
  }

  if (style == 2) {
    if (!compute->local_flag) return NULL;
    if (type == 1) {
      if (compute->invoked_local != lmp->update->ntimestep)
	compute->compute_local();
      return (void *) compute->vector_local;
    }
    if (type == 2) {
      if (compute->invoked_local != lmp->update->ntimestep)
	compute->compute_local();
      return (void *) compute->array_local;
    }
  }

  return NULL;
}
示例#2
0
void FixAveHisto::end_of_step()
{
  int i,j,m;

  // skip if not step which requires doing something
  // error check if timestep was reset in an invalid manner

  bigint ntimestep = update->ntimestep;
  if (ntimestep < nvalid_last || ntimestep > nvalid) 
    error->all(FLERR,"Invalid timestep reset for fix ave/histo");
  if (ntimestep != nvalid) return;
  nvalid_last = nvalid;

  // zero if first step

  if (irepeat == 0) {
    stats[0] = stats[1] = 0.0;
    stats[2] = BIG;
    stats[3] = -BIG;
    for (i = 0; i < nbins; i++) bin[i] = 0.0;
  }

  // accumulate results of computes,fixes,variables to local copy
  // compute/fix/variable may invoke computes so wrap with clear/add

  modify->clearstep_compute();

  for (i = 0; i < nvalues; i++) {
    m = value2index[i];
    j = argindex[i];

    // atom attributes

    if (which[i] == X)
      bin_atoms(&atom->x[0][j],3);
    else if (which[i] == V)
      bin_atoms(&atom->v[0][j],3);
    else if (which[i] == F)
      bin_atoms(&atom->f[0][j],3);

    // invoke compute if not previously invoked

    if (which[i] == COMPUTE) {
      Compute *compute = modify->compute[m];

      if (kind == GLOBAL && mode == SCALAR) {
        if (j == 0) {
          if (!(compute->invoked_flag & INVOKED_SCALAR)) {
            compute->compute_scalar();
            compute->invoked_flag |= INVOKED_SCALAR;
          }
          bin_one(compute->scalar);
        } else {
          if (!(compute->invoked_flag & INVOKED_VECTOR)) {
            compute->compute_vector();
            compute->invoked_flag |= INVOKED_VECTOR;
          }
          bin_one(compute->vector[j-1]);
        }
      } else if (kind == GLOBAL && mode == VECTOR) {
        if (j == 0) {
          if (!(compute->invoked_flag & INVOKED_VECTOR)) {
            compute->compute_vector();
            compute->invoked_flag |= INVOKED_VECTOR;
          }
          bin_vector(compute->size_vector,compute->vector,1);
        } else {
          if (!(compute->invoked_flag & INVOKED_ARRAY)) {
            compute->compute_array();
            compute->invoked_flag |= INVOKED_ARRAY;
          }
          if (compute->array)
            bin_vector(compute->size_array_rows,&compute->array[0][j-1],
                       compute->size_array_cols);
        }

      } else if (kind == PERATOM) {
        if (!(compute->invoked_flag & INVOKED_PERATOM)) {
          compute->compute_peratom();
          compute->invoked_flag |= INVOKED_PERATOM;
        }
        if (j == 0)
          bin_atoms(compute->vector_atom,1);
        else if (compute->array_atom)
          bin_atoms(&compute->array_atom[0][j-1],compute->size_peratom_cols);

      } else if (kind == LOCAL) {
        if (!(compute->invoked_flag & INVOKED_LOCAL)) {
          compute->compute_local();
          compute->invoked_flag |= INVOKED_LOCAL;
        }
        if (j == 0)
          bin_vector(compute->size_local_rows,compute->vector_local,1);
        else if (compute->array_local)
          bin_vector(compute->size_local_rows,&compute->array_local[0][j-1],
                     compute->size_local_cols);
      }

      // access fix fields, guaranteed to be ready

    } else if (which[i] == FIX) {

      Fix *fix = modify->fix[m];

      if (kind == GLOBAL && mode == SCALAR) {
        if (j == 0) bin_one(fix->compute_scalar());
        else bin_one(fix->compute_vector(j-1));

      } else if (kind == GLOBAL && mode == VECTOR) {
        if (j == 0) {
          int n = fix->size_vector;
          for (i = 0; i < n; i++) bin_one(fix->compute_vector(i));
        } else {
          int n = fix->size_vector;
          for (i = 0; i < n; i++) bin_one(fix->compute_array(i,j-1));
        }

      } else if (kind == PERATOM) {
        if (j == 0) bin_atoms(fix->vector_atom,1);
        else if (fix->array_atom)
          bin_atoms(fix->array_atom[j-1],fix->size_peratom_cols);

      } else if (kind == LOCAL) {
        if (j == 0) bin_vector(fix->size_local_rows,fix->vector_local,1);
        else if (fix->array_local)
          bin_vector(fix->size_local_rows,&fix->array_local[0][j-1],
                     fix->size_local_cols);
      }

      // evaluate equal-style variable

    } else if (which[i] == VARIABLE && kind == GLOBAL) {
      bin_one(input->variable->compute_equal(m));

    } else if (which[i] == VARIABLE && kind == PERATOM) {
      if (atom->nlocal > maxatom) {
        memory->destroy(vector);
        maxatom = atom->nmax;
        memory->create(vector,maxatom,"ave/histo:vector");
      }
      input->variable->compute_atom(m,igroup,vector,1,0);
      bin_atoms(vector,1);
    }
  }

  // done if irepeat < nrepeat
  // else reset irepeat and nvalid

  irepeat++;
  if (irepeat < nrepeat) {
    nvalid += nevery;
    modify->addstep_compute(nvalid);
    return;
  }

  irepeat = 0;
  nvalid = ntimestep + nfreq - (nrepeat-1)*nevery;
  modify->addstep_compute(nvalid);

  // merge histogram stats across procs if necessary

  if (kind == PERATOM || kind == LOCAL) {
    MPI_Allreduce(stats,stats_all,2,MPI_DOUBLE,MPI_SUM,world);
    MPI_Allreduce(&stats[2],&stats_all[2],1,MPI_DOUBLE,MPI_MIN,world);
    MPI_Allreduce(&stats[3],&stats_all[3],1,MPI_DOUBLE,MPI_MAX,world);
    MPI_Allreduce(bin,bin_all,nbins,MPI_DOUBLE,MPI_SUM,world);

    stats[0] = stats_all[0];
    stats[1] = stats_all[1];
    stats[2] = stats_all[2];
    stats[3] = stats_all[3];
    for (i = 0; i < nbins; i++) bin[i] = bin_all[i];
  }

  // if ave = ONE, only single Nfreq timestep value is needed
  // if ave = RUNNING, combine with all previous Nfreq timestep values
  // if ave = WINDOW, combine with nwindow most recent Nfreq timestep values

  if (ave == ONE) {
    stats_total[0] = stats[0];
    stats_total[1] = stats[1];
    stats_total[2] = stats[2];
    stats_total[3] = stats[3];
    for (i = 0; i < nbins; i++) bin_total[i] = bin[i];

  } else if (ave == RUNNING) {
    stats_total[0] += stats[0];
    stats_total[1] += stats[1];
    stats_total[2] = MIN(stats_total[2],stats[2]);
    stats_total[3] = MAX(stats_total[3],stats[3]);
    for (i = 0; i < nbins; i++) bin_total[i] += bin[i];

  } else if (ave == WINDOW) {
    stats_total[0] += stats[0];
    if (window_limit) stats_total[0] -= stats_list[iwindow][0];
    stats_list[iwindow][0] = stats[0];
    stats_total[1] += stats[1];
    if (window_limit) stats_total[1] -= stats_list[iwindow][1];
    stats_list[iwindow][1] = stats[1];

    if (window_limit) m = nwindow;
    else m = iwindow+1;

    stats_list[iwindow][2] = stats[2];
    stats_total[2] = stats_list[0][2];
    for (i = 1; i < m; i++)
      stats_total[2] = MIN(stats_total[2],stats_list[i][2]);
    stats_list[iwindow][3] = stats[3];
    stats_total[3] = stats_list[0][3];
    for (i = 1; i < m; i++)
      stats_total[3] = MAX(stats_total[3],stats_list[i][3]);

    for (i = 0; i < nbins; i++) {
      bin_total[i] += bin[i];
      if (window_limit) bin_total[i] -= bin_list[iwindow][i];
      bin_list[iwindow][i] = bin[i];
    }

    iwindow++;
    if (iwindow == nwindow) {
      iwindow = 0;
      window_limit = 1;
    }
  }

  // output result to file

  if (fp && me == 0) {
    if (overwrite) fseek(fp,filepos,SEEK_SET);
    fprintf(fp,BIGINT_FORMAT " %d %g %g %g %g\n",ntimestep,nbins,
            stats_total[0],stats_total[1],stats_total[2],stats_total[3]);
    if (stats_total[0] != 0.0)
      for (i = 0; i < nbins; i++)
        fprintf(fp,"%d %g %g %g\n",
                i+1,coord[i],bin_total[i],bin_total[i]/stats_total[0]);
    else
      for (i = 0; i < nbins; i++)
        fprintf(fp,"%d %g %g %g\n",i+1,coord[i],0.0,0.0);
    fflush(fp);
    if (overwrite) {
      long fileend = ftell(fp);
      ftruncate(fileno(fp),fileend);
    }
  }
}
示例#3
0
void FixAveTime::invoke_scalar(bigint ntimestep)
{
  int i,m;
  double scalar;

  // zero if first step

  if (irepeat == 0)
    for (i = 0; i < nvalues; i++) vector[i] = 0.0;

  // accumulate results of computes,fixes,variables to local copy
  // compute/fix/variable may invoke computes so wrap with clear/add

  modify->clearstep_compute();

  for (i = 0; i < nvalues; i++) {
    m = value2index[i];
    
    // invoke compute if not previously invoked
    
    if (which[i] == COMPUTE) {
      Compute *compute = modify->compute[m];
      
      if (argindex[i] == 0) {
	if (!(compute->invoked_flag & INVOKED_SCALAR)) {
	  compute->compute_scalar();
	  compute->invoked_flag |= INVOKED_SCALAR;
	}
	scalar = compute->scalar;
      } else {
	if (!(compute->invoked_flag & INVOKED_VECTOR)) {
	  compute->compute_vector();
	  compute->invoked_flag |= INVOKED_VECTOR;
	}
	scalar = compute->vector[argindex[i]-1];
      }
      
    // access fix fields, guaranteed to be ready
      
    } else if (which[i] == FIX) {
      if (argindex[i] == 0) 
	scalar = modify->fix[m]->compute_scalar();
      else
	scalar = modify->fix[m]->compute_vector(argindex[i]-1);
      
    // evaluate equal-style variable
      
    } else if (which[i] == VARIABLE)
      scalar = input->variable->compute_equal(m);
    
    // add value to vector or just set directly if offcol is set
    
    if (offcol[i]) vector[i] = scalar;
    else vector[i] += scalar;
  }

  // done if irepeat < nrepeat
  // else reset irepeat and nvalid

  irepeat++;
  if (irepeat < nrepeat) {
    nvalid += nevery;
    modify->addstep_compute(nvalid);
    return;
  }

  irepeat = 0;
  nvalid = ntimestep + nfreq - (nrepeat-1)*nevery;
  modify->addstep_compute(nvalid);

  // average the final result for the Nfreq timestep

  double repeat = nrepeat;
  for (i = 0; i < nvalues; i++)
    if (offcol[i] == 0) vector[i] /= repeat;

  // if ave = ONE, only single Nfreq timestep value is needed
  // if ave = RUNNING, combine with all previous Nfreq timestep values
  // if ave = WINDOW, combine with nwindow most recent Nfreq timestep values

  if (ntimestep >= startstep) {
    if (ave == ONE) {
      for (i = 0; i < nvalues; i++) vector_total[i] = vector[i];
      norm = 1;

    } else if (ave == RUNNING) {
      for (i = 0; i < nvalues; i++) vector_total[i] += vector[i];
      norm++;
      
    } else if (ave == WINDOW) {
      for (i = 0; i < nvalues; i++) {
	vector_total[i] += vector[i];
	if (window_limit) vector_total[i] -= vector_list[iwindow][i];
	vector_list[iwindow][i] = vector[i];
      }
      
      iwindow++;
      if (iwindow == nwindow) {
	iwindow = 0;
	window_limit = 1;
      }
      if (window_limit) norm = nwindow;
      else norm = iwindow;
    }
  }

  // insure any columns with offcol set are effectively set to last value

  for (i = 0; i < nvalues; i++)
    if (offcol[i]) vector_total[i] = norm*vector[i];

  // output result to file

  if (fp && me == 0) {
    fprintf(fp,BIGINT_FORMAT,ntimestep);
    for (i = 0; i < nvalues; i++) fprintf(fp," %g",vector_total[i]/norm);
    fprintf(fp,"\n");
    fflush(fp);
  }
}
示例#4
0
void FixAveTime::invoke_scalar(bigint ntimestep)
{
  int i,m;
  double scalar;

  // zero if first sample within single Nfreq epoch
  // NOTE: doc this
  // are not checking for returned length, just initialize it
  // check for exceeding length is done below

  if (irepeat == 0) {
    if (any_variable_length) {
      modify->clearstep_compute();
      column_length(1);
      modify->addstep_compute(ntimestep+nevery);
      modify->addstep_compute(ntimestep+nfreq);
    }
    for (i = 0; i < nvalues; i++) vector[i] = 0.0;
  }

  // accumulate results of computes,fixes,variables to local copy
  // compute/fix/variable may invoke computes so wrap with clear/add

  modify->clearstep_compute();

  for (i = 0; i < nvalues; i++) {
    m = value2index[i];

    // invoke compute if not previously invoked

    if (which[i] == COMPUTE) {
      Compute *compute = modify->compute[m];

      if (argindex[i] == 0) {
        if (!(compute->invoked_flag & INVOKED_SCALAR)) {
          compute->compute_scalar();
          compute->invoked_flag |= INVOKED_SCALAR;
        }
        scalar = compute->scalar;
      } else {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }

        // insure no out-of-range access to variable-length compute vector

        if (varlen[i] && compute->size_vector < argindex[i]) scalar = 0.0;
        else scalar = compute->vector[argindex[i]-1];
      }

    // access fix fields, guaranteed to be ready

    } else if (which[i] == FIX) {
      if (argindex[i] == 0)
        scalar = modify->fix[m]->compute_scalar();
      else
        scalar = modify->fix[m]->compute_vector(argindex[i]-1);

    // evaluate equal-style variable

    } else if (which[i] == VARIABLE)
      scalar = input->variable->compute_equal(m);

    // add value to vector or just set directly if offcol is set

    if (offcol[i]) vector[i] = scalar;
    else vector[i] += scalar;
  }

  // done if irepeat < nrepeat
  // else reset irepeat and nvalid

  irepeat++;
  if (irepeat < nrepeat) {
    nvalid += nevery;
    modify->addstep_compute(nvalid);
    return;
  }

  irepeat = 0;
  nvalid = ntimestep + nfreq - (nrepeat-1)*nevery;
  modify->addstep_compute(nvalid);

  // average the final result for the Nfreq timestep

  double repeat = nrepeat;
  for (i = 0; i < nvalues; i++)
    if (offcol[i] == 0) vector[i] /= repeat;

  // if ave = ONE, only single Nfreq timestep value is needed
  // if ave = RUNNING, combine with all previous Nfreq timestep values
  // if ave = WINDOW, combine with nwindow most recent Nfreq timestep values

  if (ave == ONE) {
    for (i = 0; i < nvalues; i++) vector_total[i] = vector[i];
    norm = 1;

  } else if (ave == RUNNING) {
    for (i = 0; i < nvalues; i++) vector_total[i] += vector[i];
    norm++;

  } else if (ave == WINDOW) {
    for (i = 0; i < nvalues; i++) {
      vector_total[i] += vector[i];
      if (window_limit) vector_total[i] -= vector_list[iwindow][i];
      vector_list[iwindow][i] = vector[i];
    }

    iwindow++;
    if (iwindow == nwindow) {
      iwindow = 0;
      window_limit = 1;
    }
    if (window_limit) norm = nwindow;
    else norm = iwindow;
  }

  // insure any columns with offcol set are effectively set to last value

  for (i = 0; i < nvalues; i++)
    if (offcol[i]) vector_total[i] = norm*vector[i];

  // output result to file

  if (fp && me == 0) {
    clearerr(fp);
    if (overwrite) fseek(fp,filepos,SEEK_SET);
    fprintf(fp,BIGINT_FORMAT,ntimestep);
    for (i = 0; i < nvalues; i++) fprintf(fp,format,vector_total[i]/norm);
    fprintf(fp,"\n");
    if (ferror(fp))
      error->one(FLERR,"Error writing out time averaged data");

    fflush(fp);

    if (overwrite) {
      long fileend = ftell(fp);
      if (fileend > 0) ftruncate(fileno(fp),fileend);
    }
  }
}
示例#5
0
void FixAveCorrelate::end_of_step()
{
  int i,j,m;
  double scalar;

  // skip if not step which requires doing something
  // error check if timestep was reset in an invalid manner

  bigint ntimestep = update->ntimestep;
  if (ntimestep < nvalid_last || ntimestep > nvalid) 
    error->all(FLERR,"Invalid timestep reset for fix ave/correlate");
  if (ntimestep != nvalid) return;
  nvalid_last = nvalid;

  // accumulate results of computes,fixes,variables to origin
  // compute/fix/variable may invoke computes so wrap with clear/add

  modify->clearstep_compute();

  // lastindex = index in values ring of latest time sample

  lastindex++;
  if (lastindex == nrepeat) lastindex = 0;

  for (i = 0; i < nvalues; i++) {
    m = value2index[i];

    // invoke compute if not previously invoked

    if (which[i] == COMPUTE) {
      Compute *compute = modify->compute[m];

      if (argindex[i] == 0) {
        if (!(compute->invoked_flag & INVOKED_SCALAR)) {
          compute->compute_scalar();
          compute->invoked_flag |= INVOKED_SCALAR;
        }
        scalar = compute->scalar;
      } else {
        if (!(compute->invoked_flag & INVOKED_VECTOR)) {
          compute->compute_vector();
          compute->invoked_flag |= INVOKED_VECTOR;
        }
        scalar = compute->vector[argindex[i]-1];
      }

    // access fix fields, guaranteed to be ready

    } else if (which[i] == FIX) {
      if (argindex[i] == 0)
        scalar = modify->fix[m]->compute_scalar();
      else
        scalar = modify->fix[m]->compute_vector(argindex[i]-1);

    // evaluate equal-style variable

    } else if (which[i] == VARIABLE)
      scalar = input->variable->compute_equal(m);

    values[lastindex][i] = scalar;
  }

  // fistindex = index in values ring of earliest time sample
  // nsample = number of time samples in values ring

  if (nsample < nrepeat) nsample++;
  else {
    firstindex++;
    if (firstindex == nrepeat) firstindex = 0;
  }

  nvalid += nevery;
  modify->addstep_compute(nvalid);

  // calculate all Cij() enabled by latest values

  accumulate();
  if (ntimestep % nfreq) return;

  // save results in save_count and save_corr

  for (i = 0; i < nrepeat; i++) {
    save_count[i] = count[i];
    if (count[i])
      for (j = 0; j < npair; j++)
        save_corr[i][j] = prefactor*corr[i][j]/count[i];
    else
      for (j = 0; j < npair; j++)
        save_corr[i][j] = 0.0;
  }

  // output result to file

  if (fp && me == 0) {
    if (overwrite) fseek(fp,filepos,SEEK_SET);
    fprintf(fp,BIGINT_FORMAT " %d\n",ntimestep,nrepeat);
    for (i = 0; i < nrepeat; i++) {
      fprintf(fp,"%d %d %d",i+1,i*nevery,count[i]);
      if (count[i])
        for (j = 0; j < npair; j++)
          fprintf(fp," %g",prefactor*corr[i][j]/count[i]);
      else
        for (j = 0; j < npair; j++)
          fprintf(fp," 0.0");
      fprintf(fp,"\n");
    }
    fflush(fp);
    if (overwrite) {
      long fileend = ftell(fp);
      ftruncate(fileno(fp),fileend);
    }
  }

  // zero accumulation if requested
  // recalculate Cij(0)

  if (ave == ONE) {
    for (i = 0; i < nrepeat; i++) {
      count[i] = 0;
      for (j = 0; j < npair; j++)
        corr[i][j] = 0.0;
    }
    nsample = 1;
    accumulate();
  }
}