void destroy_ConnectionPool(void) { // pop until queue is empty photodb_client client; while (!client_queue.size() != 0) { client_queue.pop(client, 1, 0); } cout << "release OK" << endl; }
void *ExporterSink::exporterSinkProcess(void *arg) { ExporterSink *sink = (ExporterSink *)arg; ConcurrentQueue<Packet*> *queue = sink->getQueue(); Packet *p; bool result; // our deadline struct timeval deadline; int pckCount; msg(MSG_INFO, "Sink: now running ExporterSink thread"); while(!sink->exitFlag) { sink->startNewPacketStream(); // let's get the first packet gettimeofday(&deadline, 0); result = queue->pop(&p); if(result == true) { // we got a packet, so let's add the record result = sink->addPacket(p); } pckCount = 1; // now calculate the deadline by which the packet has to leave the exporter gettimeofday(&deadline, 0); deadline.tv_usec += sink->exportTimeout * 1000L; if(deadline.tv_usec > 1000000L) { deadline.tv_sec += (deadline.tv_usec / 1000000L); deadline.tv_usec %= 1000000L; } while(!sink->exitFlag && (pckCount < sink->ipfix_maxrecords)) { // Try to get next packet from queue before our deadline result = queue->popAbs(deadline, &p); // check for timeout and break loop if neccessary if (!result) break; // no timeout received, continue waiting, but // count only if packet was added if(sink->addPacket(p) == true) pckCount++; } sink->flushPacketStream(); } return 0; }
// 模仿java.util.concurrent库并发容器及Mircosoft的并发容器而写的一个简单并发队列 // http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/BlockingQueue.html // http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/LinkedBlockingQueue.html // http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html // http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/PriorityBlockingQueue.html int main() { { FifoConcurrentQueue<int> cq; cq.push(3); cq.push(1); cq.push(2); int i; cq.pop(i); assert(i == 3); cq.pop(i); assert(i == 1); cq.pop(i); assert(i == 2); } { FiloConcurrentQueue<int> cq; cq.push(3); cq.push(1); cq.push(2); int i; cq.pop(i); assert(i == 2); cq.pop(i); assert(i == 1); cq.pop(i); assert(i == 3); } { PrioConcurrentQueue<int> cq; cq.push(3); cq.push(1); cq.push(2); int i; cq.pop(i); assert(i == 3); cq.pop(i); assert(i == 2); cq.pop(i); assert(i == 1); } { ConcurrentQueue<int, std::priority_queue<int, std::vector<int>, std::greater<int> >, ConcurrentQueueTraits::tagPRIO> cq; cq.push(3); cq.push(1); cq.push(2); int i; cq.pop(i); assert(i == 1); cq.pop(i); assert(i == 2); cq.pop(i); assert(i == 3); } }
int main(int argc, char *argv[]) { // read config.ini file Config config; auto nthreads = config.get<int>("nthreads"); auto device = config.get<const char *>("disk_guest"); auto traceFile = config.get<const char *>("trace_file"); auto logDir = config.get<string>("log_dir"); // parse arg, prioritize argv over config if (argc > 1) traceFile = argv[1]; if (argc > 2) nthreads = atoi(argv[2]); if (strstr(device, "/dev/sda")) { // avoid accidentally writing to system part fprintf(stderr, "Error trying to write to system partition %s\n", device); return 1; } // use default value if not supplied if (strcmp(device, "") == 0) device = DEFAULT_DEVICE; if (strcmp(traceFile, "") == 0) traceFile = DEFAULT_TRACE_FILE; if (strcmp(logDir.c_str(), "") == 0) logDir = DEFAULT_LOG_DIR; if (nthreads == 0) nthreads = DEFAULT_NTHREADS; srand(time(NULL)); // initialize seed // print configuration printf("trace : %s\n", traceFile); printf("nthreads : %d\n", nthreads); printf("device : %s\n", device); printf("log : %s\n", logDir.c_str()); printf("precision : %fms\n", Timer::getResolution()); printf("Opening device %s\n", device); int fd = open(device, O_DIRECT | O_RDWR | O_SYNC); if (fd < 0) { fprintf(stderr, "Error opening device '%s'\n", device); return 1; } printf("Allocating buffer\n"); void *buf; if (posix_memalign(&buf, MEM_ALIGN, LARGEST_REQUEST_SIZE * BYTE_PER_BLOCK)) { fprintf(stderr, "Error allocating buffer\n"); return 1; } //memset(buf, rand() % 256, LARGEST_REQUEST_SIZE * BYTE_PER_BLOCK); printf("Opening trace file\n"); TraceReader trace(traceFile); // open trace file ConcurrentQueue<TraceEvent> queue; // queue of trace events bool readDone = false; // whether or not we're done reading trace file printf("Start reading trace\n"); thread fileThread([&] { // thread to read trace file TraceEvent event; while (trace.read(event)) { event.time = event.time * 1000; // to microseconds event.size = event.bcount * BYTE_PER_BLOCK; queue.push(event); } readDone = true; queue.notifyAll(); // notify worker we're done }); queue.waitUntilFull(); // wait until at least queue's full printf("Start replaying trace\n"); vector<thread> workers(nthreads); // generate worker threads atomic<int> lateCount(0), threadId(0); // late I/O count and threadId for (auto& t : workers) t = thread([&] { // launch workers int myId = ++threadId; // id for this thread int myLateCount = 0; // local lateCount for this thread Logger logger(logDir + traceFile + to_string(myId)); Timer timer; // mark the beginning of worker thread while (!readDone or !queue.empty()) { TraceEvent event; if (not queue.pop(event)) continue; // retry long currentTime = timer.elapsedTime(), nextIoTime = event.time; if (currentTime <= nextIoTime) { // we're early/on-time //printf(". next=%ld current=%ld \n", nextIoTime, currentTime); Timer::delay(nextIoTime - currentTime); // delay until ~specified time } else { // we're late //printf("x next=%ld current=%ld delta=%ld\n", // nextIoTime, currentTime, currentTime-nextIoTime); ++myLateCount; } performIo(fd, buf, event, logger); } lateCount += myLateCount; // update global lateCount }); fileThread.join(); // wait for all threads to finish for (auto& t : workers) t.join(); printf("Late count: %d\n", lateCount.load()); Logger logger(logDir + traceFile + to_string(0)); logger.printf("%d\n", lateCount.load()); printf("Done\n"); return 0; }
return_value *kv_up_get(unsigned long key_get, unsigned long size) { try { return_value *value_return = new return_value; photodb_client *client = new photodb_client; // wait 2 seconds client_queue.pop(*client, 1, 2); // get metadata MetaValueResult metadata_result; try { client->metadata->getMeta(metadata_result, (long int) key_get); // Should check error if (metadata_result.error != 0) { client_queue.put(*client, 1, 0); delete value_return; return NULL; } } catch (TException& tx) { cout << "ERROR GET META: " << tx.what() << endl; client_queue.put(*client, 1, 0); delete value_return; return NULL; } // get content of image ImgValueResult content_result; try { client->content->getImg(content_result, (long int) key_get, (int) size); if (content_result.error != 0) { client_queue.put(*client, 1, 0); delete value_return; return NULL; } } catch (TException& tx) { cout << "ERROR GET META: " << tx.what() << endl; client_queue.put(*client, 1, 0); delete value_return; return NULL; } client_queue.put(*client, 1, 0); char *writable_content = new char[content_result.value.img.size() + 1]; std::copy(content_result.value.img.begin(), content_result.value.img.end(), writable_content); writable_content[content_result.value.img.size() + 1] = '\0'; // Prepare date to return value_return->content = writable_content; value_return->size = content_result.value.img.size(); char *writable_etag = new char[metadata_result.value.etag.size() + 1]; std::copy(metadata_result.value.etag.begin(), metadata_result.value.etag.end(), writable_etag); writable_etag[metadata_result.value.etag.size() + 1] = '\0'; // Prepare etag to return value_return->etag = writable_etag; value_return->etag_size = metadata_result.value.etag.size(); char *writable_contentType = new char[metadata_result.value.contentType.size() + 1]; std::copy(metadata_result.value.contentType.begin(), metadata_result.value.contentType.end(), writable_contentType); writable_contentType[metadata_result.value.contentType.size()] = '\0'; value_return->contentType = writable_contentType; value_return->content_type_size = metadata_result.value.contentType.size(); return value_return; } catch (const exception& e) { cerr << "EXCEPTION: " << e.what() << endl; return NULL; } }