示例#1
0
  void SimplePairFinder::run(const std::vector<ConsensusMap> & input_maps, ConsensusMap & result_map)
  {
    if (input_maps.size() != 2)
      throw Exception::IllegalArgument(__FILE__, __LINE__, OPENMS_PRETTY_FUNCTION, "exactly two input maps required");
    checkIds_(input_maps);

    // progress dots
    Int progress_dots = 0;
    if (this->param_.exists("debug::progress_dots"))
    {
      progress_dots = (Int) this->param_.getValue("debug:progress_dots");
    }
    Int number_of_considered_element_pairs = 0;

    // For each element in map 0, find its best friend in map 1
    std::vector<UInt> best_companion_index_0(input_maps[0].size(), UInt(-1));
    std::vector<double> best_companion_quality_0(input_maps[0].size(), 0);
    for (UInt fi0 = 0; fi0 < input_maps[0].size(); ++fi0)
    {
      double best_quality = -std::numeric_limits<double>::max();
      for (UInt fi1 = 0; fi1 < input_maps[1].size(); ++fi1)
      {
        double quality = similarity_(input_maps[0][fi0], input_maps[1][fi1]);
        if (quality > best_quality)
        {
          best_quality = quality;
          best_companion_index_0[fi0] = fi1;
        }

        ++number_of_considered_element_pairs;
        if (progress_dots && !(number_of_considered_element_pairs % progress_dots))
        {
          std::cout << '-' << std::flush;
        }

      }
      best_companion_quality_0[fi0] = best_quality;
    }

    // For each element in map 1, find its best friend in map 0
    std::vector<UInt> best_companion_index_1(input_maps[1].size(), UInt(-1));
    std::vector<double> best_companion_quality_1(input_maps[1].size(), 0);
    for (UInt fi1 = 0; fi1 < input_maps[1].size(); ++fi1)
    {
      double best_quality = -std::numeric_limits<double>::max();
      for (UInt fi0 = 0; fi0 < input_maps[0].size(); ++fi0)
      {
        double quality = similarity_(input_maps[0][fi0], input_maps[1][fi1]);
        if (quality > best_quality)
        {
          best_quality = quality;
          best_companion_index_1[fi1] = fi0;
        }

        ++number_of_considered_element_pairs;
        if (progress_dots && !(number_of_considered_element_pairs % progress_dots))
        {
          std::cout << '+' << std::flush;
        }

      }
      best_companion_quality_1[fi1] = best_quality;
    }

    // And if both like each other, they become a pair.
    // element_pairs_->clear();
    for (UInt fi0 = 0; fi0 < input_maps[0].size(); ++fi0)
    {
      // fi0 likes someone ...
      if (best_companion_quality_0[fi0] > pair_min_quality_)
      {
        // ... who likes him too ...
        UInt best_companion_of_fi0 = best_companion_index_0[fi0];
        if (best_companion_index_1[best_companion_of_fi0] == fi0 &&
            best_companion_quality_1[best_companion_of_fi0] > pair_min_quality_
            )
        {
          ConsensusFeature f;
          f.insert(input_maps[0][fi0]);
          f.insert(input_maps[1][best_companion_of_fi0]);
          f.computeConsensus();
          f.setQuality(best_companion_quality_0[fi0] + best_companion_quality_1[best_companion_of_fi0]);
          result_map.push_back(f);
        }
      }
    }
    return;
  }
  ExitCodes main_(int, const char**) override
  {

    //-------------------------------------------------------------
    // parameter handling
    //-------------------------------------------------------------

    String in = getStringOption_("in");
    String out = getStringOption_("out");
    FileTypes::Type out_type = FileTypes::nameToType(getStringOption_("out_type"));

    if (out_type == FileTypes::UNKNOWN)
    {
      out_type = FileHandler().getTypeByFileName(out);
    }

    //-------------------------------------------------------------
    // loading input
    //-------------------------------------------------------------
    MzMLFile mz_data_file;
    mz_data_file.setLogType(log_type_);
    PeakMap ms_peakmap;
    std::vector<Int> ms_level(1, 1);
    (mz_data_file.getOptions()).setMSLevels(ms_level);
    mz_data_file.load(in, ms_peakmap);

    if (ms_peakmap.size() == 0)
    {
      LOG_WARN << "The given file does not contain any conventional peak data, but might"
                  " contain chromatograms. This tool currently cannot handle them, sorry.";
      return INCOMPATIBLE_INPUT_DATA;
    }

    // make sure that the spectra are sorted by m/z
    ms_peakmap.sortSpectra(true);

    //-------------------------------------------------------------
    // get params for MTD and EPD algorithms
    //-------------------------------------------------------------
    Param com_param = getParam_().copy("algorithm:common:", true);
    writeDebug_("Common parameters passed to both sub-algorithms (mtd and epd)", com_param, 3);

    Param mtd_param = getParam_().copy("algorithm:mtd:", true);
    writeDebug_("Parameters passed to MassTraceDetection", mtd_param, 3);

    Param epd_param = getParam_().copy("algorithm:epd:", true);
    writeDebug_("Parameters passed to ElutionPeakDetection", epd_param, 3);


    //-------------------------------------------------------------
    // configure and run MTD
    //-------------------------------------------------------------

    MassTraceDetection mt_ext;
    mtd_param.insert("", com_param);
    mtd_param.remove("chrom_fwhm");
    mt_ext.setParameters(mtd_param);
    vector<MassTrace> m_traces;
    mt_ext.run(ms_peakmap, m_traces);

    vector<MassTrace> m_traces_final;

    bool use_epd = epd_param.getValue("enabled").toBool();

    if (!use_epd)
    {
      swap(m_traces_final, m_traces);
    }
    else
    {
      ElutionPeakDetection ep_det;

      epd_param.remove("enabled"); // artificially added above
      epd_param.insert("", com_param);

      ep_det.setParameters(epd_param);

      std::vector<MassTrace> split_mtraces;
      // note: this step will destroy any meta data annotation (e.g. FWHM_mz_avg)
      ep_det.detectPeaks(m_traces, split_mtraces);

      if (ep_det.getParameters().getValue("width_filtering") == "auto")
      {
        m_traces_final.clear();
        ep_det.filterByPeakWidth(split_mtraces, m_traces_final);

        LOG_INFO << "Notice: " << split_mtraces.size() - m_traces_final.size()
                 << " of total " << split_mtraces.size() 
                 << " were dropped because of too low peak width." << std::endl;
      }
      else
      {
        swap(m_traces_final, split_mtraces);
      }
    }

    //-------------------------------------------------------------
    // writing consensus map output
    //-------------------------------------------------------------
    if (out_type == FileTypes::CONSENSUSXML)
    {
      ConsensusMap consensus_map;
      StringList ms_runs;
      ms_peakmap.getPrimaryMSRunPath(ms_runs);
      consensus_map.setPrimaryMSRunPath(ms_runs);

      for (Size i = 0; i < m_traces_final.size(); ++i)
      {
        if (m_traces_final[i].getSize() == 0) continue;

        ConsensusFeature fcons;
        int k = 0;
        for (MassTrace::const_iterator it = m_traces_final[i].begin(); it != m_traces_final[i].end(); ++it)
        {
          FeatureHandle fhandle;
          fhandle.setRT(it->getRT());
          fhandle.setMZ(it->getMZ());
          fhandle.setIntensity(it->getIntensity());
          fhandle.setUniqueId(++k);
          fcons.insert(fhandle);
        }

        fcons.setMetaValue(3, m_traces_final[i].getLabel());
        fcons.setCharge(0);
        fcons.setWidth(m_traces_final[i].estimateFWHM(use_epd));
        fcons.setQuality(1 - (1.0 / m_traces_final[i].getSize()));

        fcons.setRT(m_traces_final[i].getCentroidRT());
        fcons.setMZ(m_traces_final[i].getCentroidMZ());
        fcons.setIntensity(m_traces_final[i].getIntensity(false));
        consensus_map.push_back(fcons);
      }
      consensus_map.applyMemberFunction(&UniqueIdInterface::setUniqueId);
      addDataProcessing_(consensus_map, getProcessingInfo_(DataProcessing::QUANTITATION));
      consensus_map.setUniqueId();
      ConsensusXMLFile().store(out, consensus_map);

    }
    else //(out_type == FileTypes::FEATUREXML)
    {

      //-----------------------------------------------------------
      // convert mass traces to features
      //-----------------------------------------------------------

      std::vector<double> stats_sd;
      FeatureMap ms_feat_map;
      StringList ms_runs;
      ms_peakmap.getPrimaryMSRunPath(ms_runs);
      ms_feat_map.setPrimaryMSRunPath(ms_runs);
      for (Size i = 0; i < m_traces_final.size(); ++i)
      {
        if (m_traces_final[i].getSize() == 0) continue;

        m_traces_final[i].updateMeanMZ();
        m_traces_final[i].updateWeightedMZsd();

        Feature f;
        f.setMetaValue(3, m_traces_final[i].getLabel());
        f.setCharge(0);
        f.setMZ(m_traces_final[i].getCentroidMZ());
        f.setIntensity(m_traces_final[i].getIntensity(false));
        f.setRT(m_traces_final[i].getCentroidRT());
        f.setWidth(m_traces_final[i].estimateFWHM(use_epd));
        f.setOverallQuality(1 - (1.0 / m_traces_final[i].getSize()));
        f.getConvexHulls().push_back(m_traces_final[i].getConvexhull());
        double sd = m_traces_final[i].getCentroidSD();
        f.setMetaValue("SD", sd);
        f.setMetaValue("SD_ppm", sd / f.getMZ() * 1e6);
        if (m_traces_final[i].fwhm_mz_avg > 0) f.setMetaValue("FWHM_mz_avg", m_traces_final[i].fwhm_mz_avg);
        stats_sd.push_back(m_traces_final[i].getCentroidSD());
        ms_feat_map.push_back(f);
      }

      // print some stats about standard deviation of mass traces
      if (stats_sd.size() > 0)
      {
        std::sort(stats_sd.begin(), stats_sd.end());
        LOG_INFO << "Mass trace m/z s.d.\n"
                 << "    low quartile: " << stats_sd[stats_sd.size() * 1 / 4] << "\n"
                 << "          median: " << stats_sd[stats_sd.size() * 1 / 2] << "\n"
                 << "    upp quartile: " << stats_sd[stats_sd.size() * 3 / 4] << std::endl;
      }


      ms_feat_map.applyMemberFunction(&UniqueIdInterface::setUniqueId);

      //-------------------------------------------------------------
      // writing output
      //-------------------------------------------------------------

      // annotate output with data processing info TODO
      addDataProcessing_(ms_feat_map, getProcessingInfo_(DataProcessing::QUANTITATION));
      //ms_feat_map.setUniqueId();

      FeatureXMLFile().store(out, ms_feat_map);
    }

    return EXECUTION_OK;
  }
示例#3
0
  void QTClusterFinder::makeConsensusFeature_(list<QTCluster> & clustering,
           ConsensusFeature & feature, OpenMSBoost::unordered_map<GridFeature *,
             std::vector< QTCluster * > > & element_mapping)
  {
    // find the best cluster (a valid cluster with the highest score)
    list<QTCluster>::iterator best = clustering.begin();
    while (best != clustering.end() && best->isInvalid()) {++best;}
    for (list<QTCluster>::iterator it = best;
         it != clustering.end(); ++it)
    {
      if (!it->isInvalid())
      {
        if (it->getQuality() > best->getQuality())
        {
          best = it;
        }
      }
    }

    // no more clusters to process -> clear clustering and return
    if (best == clustering.end())
    {
      clustering.clear();
      return;
    }

    OpenMSBoost::unordered_map<Size, GridFeature *> elements;
    best->getElements(elements);
    // cout << "Elements: " << elements.size() << " with best " << best->getQuality() << " invalid " << best->isInvalid() << endl;

    // create consensus feature from best cluster:
    feature.setQuality(best->getQuality());
    for (OpenMSBoost::unordered_map<Size, GridFeature *>::const_iterator it = elements.begin();
         it != elements.end(); ++it)
    {
      feature.insert(it->first, it->second->getFeature());
    }
    feature.computeConsensus();


 
    // update the clustering:
    // 1. remove current "best" cluster
    // 2. update all clusters accordingly and invalidate elements whose central
    //    element is removed
    best->setInvalid();
    for (OpenMSBoost::unordered_map<Size, GridFeature *>::const_iterator it = elements.begin();
         it != elements.end(); ++it)
    {
      for (std::vector< QTCluster* >::iterator 
            cluster  = element_mapping[&(*it->second)].begin();
            cluster != element_mapping[&(*it->second)].end(); ++cluster)
      {
        // we do not want to update invalid features (saves time and does not
        // recompute the quality)
        if (!(*cluster)->isInvalid())
        {
          if (!(*cluster)->update(elements))       // cluster is invalid (center point removed):
          {
            (*cluster)->setInvalid();
          }
        }
      }
    }
  }