示例#1
0
bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
// QQQ
#ifdef CC_INTERP
#else
  assert(is_interpreted_frame(), "Not an interpreted frame");
  // These are reasonable sanity checks
  if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
    return false;
  }
  if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
    return false;
  }
  if (fp() + interpreter_frame_initial_sp_offset < sp()) {
    return false;
  }
  // These are hacks to keep us out of trouble.
  // The problem with these is that they mask other problems
  if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
    return false;
  }

  // do some validation of frame elements

  // first the method

  Method* m = *interpreter_frame_method_addr();

  // validate the method we'd find in this potential sender
  if (!m->is_valid_method()) return false;

  // stack frames shouldn't be much larger than max_stack elements

  if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
    return false;
  }

  // validate bci/bcx

  intptr_t  bcx    = interpreter_frame_bcx();
  if (m->validate_bci_from_bcx(bcx) < 0) {
    return false;
  }

  // validate ConstantPoolCache*
  ConstantPoolCache* cp = *interpreter_frame_cache_addr();
  if (cp == NULL || !cp->is_metaspace_object()) return false;

  // validate locals

  address locals =  (address) *interpreter_frame_locals_addr();

  if (locals > thread->stack_base() || locals < (address) fp()) return false;

  // We'd have to be pretty unlucky to be mislead at this point

#endif // CC_INTERP
  return true;
}
bool BytecodePrinter::check_cp_cache_index(int i, int& cp_index, outputStream* st) {
  ConstantPool* constants = method()->constants();
  int ilimit = constants->length(), climit = 0;
  Bytecodes::Code code = raw_code();

  ConstantPoolCache* cache = constants->cache();
  // If rewriter hasn't run, the index is the cp_index
  if (cache == NULL) {
    cp_index = i;
    return true;
  }
  //climit = cache->length();  // %%% private!
  size_t size = cache->size() * HeapWordSize;
  size -= sizeof(ConstantPoolCache);
  size /= sizeof(ConstantPoolCacheEntry);
  climit = (int) size;

#ifdef ASSERT
  {
    const int CPCACHE_INDEX_TAG = ConstantPool::CPCACHE_INDEX_TAG;
    if (i >= CPCACHE_INDEX_TAG && i < climit + CPCACHE_INDEX_TAG) {
      i -= CPCACHE_INDEX_TAG;
    } else {
      st->print_cr(" CP[%d] missing bias?", i);
      return false;
    }
  }
#endif //ASSERT
  if (i >= 0 && i < climit) {
    cp_index = cache->entry_at(i)->constant_pool_index();
  } else {
    st->print_cr(" not in CP[*]?", i);
      return false;
    }
  return true;
  }
int CppInterpreter::accessor_entry(Method* method, intptr_t UNUSED, TRAPS) {
  JavaThread *thread = (JavaThread *) THREAD;
  ZeroStack *stack = thread->zero_stack();
  intptr_t *locals = stack->sp();

  // Drop into the slow path if we need a safepoint check
  if (SafepointSynchronize::do_call_back()) {
    return normal_entry(method, 0, THREAD);
  }

  // Load the object pointer and drop into the slow path
  // if we have a NullPointerException
  oop object = LOCALS_OBJECT(0);
  if (object == NULL) {
    return normal_entry(method, 0, THREAD);
  }

  // Read the field index from the bytecode, which looks like this:
  //  0:  aload_0
  //  1:  getfield
  //  2:    index
  //  3:    index
  //  4:  ireturn/areturn
  // NB this is not raw bytecode: index is in machine order
  u1 *code = method->code_base();
  assert(code[0] == Bytecodes::_aload_0 &&
         code[1] == Bytecodes::_getfield &&
         (code[4] == Bytecodes::_ireturn ||
          code[4] == Bytecodes::_areturn), "should do");
  u2 index = Bytes::get_native_u2(&code[2]);

  // Get the entry from the constant pool cache, and drop into
  // the slow path if it has not been resolved
  ConstantPoolCache* cache = method->constants()->cache();
  ConstantPoolCacheEntry* entry = cache->entry_at(index);
  if (!entry->is_resolved(Bytecodes::_getfield)) {
    return normal_entry(method, 0, THREAD);
  }

  // Get the result and push it onto the stack
  switch (entry->flag_state()) {
  case ltos:
  case dtos:
    stack->overflow_check(1, CHECK_0);
    stack->alloc(wordSize);
    break;
  }
  if (entry->is_volatile()) {
    switch (entry->flag_state()) {
    case ctos:
      SET_LOCALS_INT(object->char_field_acquire(entry->f2_as_index()), 0);
      break;

    case btos:
      SET_LOCALS_INT(object->byte_field_acquire(entry->f2_as_index()), 0);
      break;

    case stos:
      SET_LOCALS_INT(object->short_field_acquire(entry->f2_as_index()), 0);
      break;

    case itos:
      SET_LOCALS_INT(object->int_field_acquire(entry->f2_as_index()), 0);
      break;

    case ltos:
      SET_LOCALS_LONG(object->long_field_acquire(entry->f2_as_index()), 0);
      break;

    case ftos:
      SET_LOCALS_FLOAT(object->float_field_acquire(entry->f2_as_index()), 0);
      break;

    case dtos:
      SET_LOCALS_DOUBLE(object->double_field_acquire(entry->f2_as_index()), 0);
      break;

    case atos:
      SET_LOCALS_OBJECT(object->obj_field_acquire(entry->f2_as_index()), 0);
      break;

    default:
      ShouldNotReachHere();
    }
  }
  else {
    switch (entry->flag_state()) {
    case ctos:
      SET_LOCALS_INT(object->char_field(entry->f2_as_index()), 0);
      break;

    case btos:
      SET_LOCALS_INT(object->byte_field(entry->f2_as_index()), 0);
      break;

    case stos:
      SET_LOCALS_INT(object->short_field(entry->f2_as_index()), 0);
      break;

    case itos:
      SET_LOCALS_INT(object->int_field(entry->f2_as_index()), 0);
      break;

    case ltos:
      SET_LOCALS_LONG(object->long_field(entry->f2_as_index()), 0);
      break;

    case ftos:
      SET_LOCALS_FLOAT(object->float_field(entry->f2_as_index()), 0);
      break;

    case dtos:
      SET_LOCALS_DOUBLE(object->double_field(entry->f2_as_index()), 0);
      break;

    case atos:
      SET_LOCALS_OBJECT(object->obj_field(entry->f2_as_index()), 0);
      break;

    default:
      ShouldNotReachHere();
    }
  }

  // No deoptimized frames on the stack
  return 0;
}