void Constraint::MenuConstrain(int id) { Constraint c; ZERO(&c); c.group = SS.GW.activeGroup; c.workplane = SS.GW.ActiveWorkplane(); SS.GW.GroupSelection(); #define gs (SS.GW.gs) switch(id) { case GraphicsWindow::MNU_DISTANCE_DIA: { if(gs.points == 2 && gs.n == 2) { c.type = PT_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.n == 1) { c.type = PT_PT_DISTANCE; Entity *e = SK.GetEntity(gs.entity[0]); c.ptA = e->point[0]; c.ptB = e->point[1]; } else if(gs.vectors == 1 && gs.points == 2 && gs.n == 3) { c.type = PROJ_PT_DISTANCE; c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.vector[0]; } else if(gs.workplanes == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_PLANE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_LINE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.faces == 1 && gs.points == 1 && gs.n == 2) { c.type = PT_FACE_DISTANCE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else if(gs.circlesOrArcs == 1 && gs.n == 1) { c.type = DIAMETER; c.entityA = gs.entity[0]; } else { Error( "Bad selection for distance / diameter constraint. This " "constraint can apply to:\n\n" " * two points (distance between points)\n" " * a line segment (length)\n" " * two points and a line segment or normal (projected distance)\n" " * a workplane and a point (minimum distance)\n" " * a line segment and a point (minimum distance)\n" " * a plane face and a point (minimum distance)\n" " * a circle or an arc (diameter)\n"); return; } if(c.type == PT_PT_DISTANCE || c.type == PROJ_PT_DISTANCE) { Vector n = SS.GW.projRight.Cross(SS.GW.projUp); Vector a = SK.GetEntity(c.ptA)->PointGetNum(); Vector b = SK.GetEntity(c.ptB)->PointGetNum(); c.disp.offset = n.Cross(a.Minus(b)); c.disp.offset = (c.disp.offset).WithMagnitude(50/SS.GW.scale); } else { c.disp.offset = Vector::From(0, 0, 0); } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; } case GraphicsWindow::MNU_ON_ENTITY: if(gs.points == 2 && gs.n == 2) { c.type = POINTS_COINCIDENT; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.points == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = PT_IN_PLANE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = PT_ON_LINE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.circlesOrArcs == 1 && gs.n == 2) { c.type = PT_ON_CIRCLE; c.ptA = gs.point[0]; c.entityA = gs.entity[0]; } else if(gs.points == 1 && gs.faces == 1 && gs.n == 2) { c.type = PT_ON_FACE; c.ptA = gs.point[0]; c.entityA = gs.face[0]; } else { Error("Bad selection for on point / curve / plane constraint. " "This constraint can apply to:\n\n" " * two points (points coincident)\n" " * a point and a workplane (point in plane)\n" " * a point and a line segment (point on line)\n" " * a point and a circle or arc (point on curve)\n" " * a point and a plane face (point on face)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_EQUAL: if(gs.lineSegments == 2 && gs.n == 2) { c.type = EQUAL_LENGTH_LINES; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.lineSegments == 2 && gs.points == 2 && gs.n == 4) { c.type = EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[1]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { // The same line segment for the distances, but different // points. c.type = EQ_PT_LN_DISTANCES; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.entityB = gs.entity[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 2 && gs.points == 1 && gs.n == 3) { c.type = EQ_LEN_PT_LINE_D; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; c.ptA = gs.point[0]; } else if(gs.vectors == 4 && gs.n == 4) { c.type = EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[2]; c.entityD = gs.vector[3]; } else if(gs.vectors == 3 && gs.n == 3) { c.type = EQUAL_ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.entityC = gs.vector[1]; c.entityD = gs.vector[2]; } else if(gs.circlesOrArcs == 2 && gs.n == 2) { c.type = EQUAL_RADIUS; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else if(gs.arcs == 1 && gs.lineSegments == 1 && gs.n == 2) { c.type = EQUAL_LINE_ARC_LEN; if(SK.GetEntity(gs.entity[0])->type == Entity::ARC_OF_CIRCLE) { c.entityA = gs.entity[1]; c.entityB = gs.entity[0]; } else { c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } } else { Error("Bad selection for equal length / radius constraint. " "This constraint can apply to:\n\n" " * two line segments (equal length)\n" " * two line segments and two points " "(equal point-line distances)\n" " * a line segment and two points " "(equal point-line distances)\n" " * a line segment, and a point and line segment " "(point-line distance equals length)\n" " * four line segments or normals " "(equal angle between A,B and C,D)\n" " * three line segments or normals " "(equal angle between A,B and B,C)\n" " * two circles or arcs (equal radius)\n" " * a line segment and an arc " "(line segment length equals arc length)\n"); return; } if(c.type == EQUAL_ANGLE) { // Infer the nearest supplementary angle from the sketch. Vector a1 = SK.GetEntity(c.entityA)->VectorGetNum(), b1 = SK.GetEntity(c.entityB)->VectorGetNum(), a2 = SK.GetEntity(c.entityC)->VectorGetNum(), b2 = SK.GetEntity(c.entityD)->VectorGetNum(); double d1 = a1.Dot(b1), d2 = a2.Dot(b2); if(d1*d2 < 0) { c.other = true; } } AddConstraint(&c); break; case GraphicsWindow::MNU_RATIO: if(gs.lineSegments == 2 && gs.n == 2) { c.type = LENGTH_RATIO; c.entityA = gs.entity[0]; c.entityB = gs.entity[1]; } else { Error("Bad selection for length ratio constraint. This " "constraint can apply to:\n\n" " * two line segments\n"); return; } c.valA = 0; c.ModifyToSatisfy(); AddConstraint(&c); break; case GraphicsWindow::MNU_AT_MIDPOINT: if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) { c.type = AT_MIDPOINT; c.entityA = gs.entity[0]; c.ptA = gs.point[0]; // If a point is at-midpoint, then no reason to also constrain // it on-line; so auto-remove that. DeleteAllConstraintsFor(PT_ON_LINE, c.entityA, c.ptA); } else if(gs.lineSegments == 1 && gs.workplanes == 1 && gs.n == 2) { c.type = AT_MIDPOINT; int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0; c.entityA = gs.entity[i]; c.entityB = gs.entity[1-i]; } else { Error("Bad selection for at midpoint constraint. This " "constraint can apply to:\n\n" " * a line segment and a point " "(point at midpoint)\n" " * a line segment and a workplane " "(line's midpoint on plane)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_SYMMETRIC: if(gs.points == 2 && ((gs.workplanes == 1 && gs.n == 3) || (gs.n == 2))) { c.entityA = gs.entity[0]; c.ptA = gs.point[0]; c.ptB = gs.point[1]; } else if(gs.lineSegments == 1 && ((gs.workplanes == 1 && gs.n == 2) || (gs.n == 1))) { int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0; Entity *line = SK.GetEntity(gs.entity[i]); c.entityA = gs.entity[1-i]; c.ptA = line->point[0]; c.ptB = line->point[1]; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 2 && gs.n == 2) { Entity *l0 = SK.GetEntity(gs.entity[0]), *l1 = SK.GetEntity(gs.entity[1]); if((l1->group.v != SS.GW.activeGroup.v) || (l1->construction && !(l0->construction))) { SWAP(Entity *, l0, l1); } c.ptA = l1->point[0]; c.ptB = l1->point[1]; c.entityA = l0->h; c.type = SYMMETRIC_LINE; } else if(SS.GW.LockedInWorkplane() && gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) { c.ptA = gs.point[0]; c.ptB = gs.point[1]; c.entityA = gs.entity[0]; c.type = SYMMETRIC_LINE; } else { Error("Bad selection for symmetric constraint. This constraint " "can apply to:\n\n" " * two points or a line segment " "(symmetric about workplane's coordinate axis)\n" " * line segment, and two points or a line segment " "(symmetric about line segment)\n" " * workplane, and two points or a line segment " "(symmetric about workplane)\n"); return; } if(c.type != 0) { // Already done, symmetry about a line segment in a workplane } else if(c.entityA.v == Entity::NO_ENTITY.v) { // Horizontal / vertical symmetry, implicit symmetry plane // normal to the workplane if(c.workplane.v == Entity::FREE_IN_3D.v) { Error("Must be locked in to workplane when constraining " "symmetric without an explicit symmetry plane."); return; } Vector pa = SK.GetEntity(c.ptA)->PointGetNum(); Vector pb = SK.GetEntity(c.ptB)->PointGetNum(); Vector dp = pa.Minus(pb); EntityBase *norm = SK.GetEntity(c.workplane)->Normal();; Vector u = norm->NormalU(), v = norm->NormalV(); if(fabs(dp.Dot(u)) > fabs(dp.Dot(v))) { c.type = SYMMETRIC_HORIZ; } else { c.type = SYMMETRIC_VERT; } if(gs.lineSegments == 1) { // If this line segment is already constrained horiz or // vert, then auto-remove that redundant constraint. DeleteAllConstraintsFor(HORIZONTAL, (gs.entity[0]), Entity::NO_ENTITY); DeleteAllConstraintsFor(VERTICAL, (gs.entity[0]), Entity::NO_ENTITY); } } else { // Symmetry with a symmetry plane specified explicitly. c.type = SYMMETRIC; } AddConstraint(&c); break; case GraphicsWindow::MNU_VERTICAL: case GraphicsWindow::MNU_HORIZONTAL: { hEntity ha, hb; if(c.workplane.v == Entity::FREE_IN_3D.v) { Error("Select workplane before constraining horiz/vert."); return; } if(gs.lineSegments == 1 && gs.n == 1) { c.entityA = gs.entity[0]; Entity *e = SK.GetEntity(c.entityA); ha = e->point[0]; hb = e->point[1]; } else if(gs.points == 2 && gs.n == 2) { ha = c.ptA = gs.point[0]; hb = c.ptB = gs.point[1]; } else { Error("Bad selection for horizontal / vertical constraint. " "This constraint can apply to:\n\n" " * two points\n" " * a line segment\n"); return; } if(id == GraphicsWindow::MNU_HORIZONTAL) { c.type = HORIZONTAL; } else { c.type = VERTICAL; } AddConstraint(&c); break; } case GraphicsWindow::MNU_ORIENTED_SAME: { if(gs.anyNormals == 2 && gs.n == 2) { c.type = SAME_ORIENTATION; c.entityA = gs.anyNormal[0]; c.entityB = gs.anyNormal[1]; } else { Error("Bad selection for same orientation constraint. This " "constraint can apply to:\n\n" " * two normals\n"); return; } SS.UndoRemember(); Entity *nfree = SK.GetEntity(c.entityA); Entity *nref = SK.GetEntity(c.entityB); if(nref->group.v == SS.GW.activeGroup.v) { SWAP(Entity *, nref, nfree); } if(nfree->group.v == SS.GW.activeGroup.v && nref ->group.v != SS.GW.activeGroup.v) { // nfree is free, and nref is locked (since it came from a // previous group); so let's force nfree aligned to nref, // and make convergence easy Vector ru = nref ->NormalU(), rv = nref ->NormalV(); Vector fu = nfree->NormalU(), fv = nfree->NormalV(); if(fabs(fu.Dot(ru)) < fabs(fu.Dot(rv))) { // There might be an odd*90 degree rotation about the // normal vector; allow that, since the numerical // constraint does SWAP(Vector, ru, rv); } fu = fu.Dot(ru) > 0 ? ru : ru.ScaledBy(-1); fv = fv.Dot(rv) > 0 ? rv : rv.ScaledBy(-1); nfree->NormalForceTo(Quaternion::From(fu, fv)); } AddConstraint(&c, false); break; } case GraphicsWindow::MNU_OTHER_ANGLE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->type == ANGLE) { SS.UndoRemember(); c->other = !(c->other); c->ModifyToSatisfy(); break; } if(c->type == EQUAL_ANGLE) { SS.UndoRemember(); c->other = !(c->other); SS.MarkGroupDirty(c->group); SS.ScheduleGenerateAll(); break; } } Error("Must select an angle constraint."); return; case GraphicsWindow::MNU_REFERENCE: if(gs.constraints == 1 && gs.n == 0) { Constraint *c = SK.GetConstraint(gs.constraint[0]); if(c->HasLabel() && c->type != COMMENT) { (c->reference) = !(c->reference); SK.GetGroup(c->group)->clean = false; SS.GenerateAll(); break; } } Error("Must select a constraint with associated label."); return; case GraphicsWindow::MNU_ANGLE: { if(gs.vectors == 2 && gs.n == 2) { c.type = ANGLE; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; c.valA = 0; } else { Error("Bad selection for angle constraint. This constraint " "can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n"); return; } Entity *ea = SK.GetEntity(c.entityA), *eb = SK.GetEntity(c.entityB); if(ea->type == Entity::LINE_SEGMENT && eb->type == Entity::LINE_SEGMENT) { Vector a0 = SK.GetEntity(ea->point[0])->PointGetNum(), a1 = SK.GetEntity(ea->point[1])->PointGetNum(), b0 = SK.GetEntity(eb->point[0])->PointGetNum(), b1 = SK.GetEntity(eb->point[1])->PointGetNum(); if(a0.Equals(b0) || a1.Equals(b1)) { // okay, vectors should be drawn in same sense } else if(a0.Equals(b1) || a1.Equals(b0)) { // vectors are in opposite sense c.other = true; } else { // no shared point; not clear which intersection to draw } } c.ModifyToSatisfy(); AddConstraint(&c); break; } case GraphicsWindow::MNU_PARALLEL: if(gs.vectors == 2 && gs.n == 2) { c.type = PARALLEL; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else if(gs.lineSegments == 1 && gs.arcs == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]); Entity *arc = SK.GetEntity(gs.entity[1]); if(line->type == Entity::ARC_OF_CIRCLE) { SWAP(Entity *, line, arc); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector a1 = SK.GetEntity(arc->point[1])->PointGetNum(), a2 = SK.GetEntity(arc->point[2])->PointGetNum(); if(l0.Equals(a1) || l1.Equals(a1)) { c.other = false; } else if(l0.Equals(a2) || l1.Equals(a2)) { c.other = true; } else { Error("The tangent arc and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent."); return; } c.type = ARC_LINE_TANGENT; c.entityA = arc->h; c.entityB = line->h; } else if(gs.lineSegments == 1 && gs.cubics == 1 && gs.n == 2) { Entity *line = SK.GetEntity(gs.entity[0]); Entity *cubic = SK.GetEntity(gs.entity[1]); if(line->type == Entity::CUBIC) { SWAP(Entity *, line, cubic); } Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(), l1 = SK.GetEntity(line->point[1])->PointGetNum(); Vector as = cubic->CubicGetStartNum(), af = cubic->CubicGetFinishNum(); if(l0.Equals(as) || l1.Equals(as)) { c.other = false; } else if(l0.Equals(af) || l1.Equals(af)) { c.other = true; } else { Error("The tangent cubic and line segment must share an " "endpoint. Constrain them with Constrain -> " "On Point before constraining tangent."); return; } c.type = CUBIC_LINE_TANGENT; c.entityA = cubic->h; c.entityB = line->h; } else if(gs.cubics + gs.arcs == 2 && gs.n == 2) { if(!SS.GW.LockedInWorkplane()) { Error("Curve-curve tangency must apply in workplane."); return; } Entity *eA = SK.GetEntity(gs.entity[0]), *eB = SK.GetEntity(gs.entity[1]); Vector as = eA->EndpointStart(), af = eA->EndpointFinish(), bs = eB->EndpointStart(), bf = eB->EndpointFinish(); if(as.Equals(bs)) { c.other = false; c.other2 = false; } else if(as.Equals(bf)) { c.other = false; c.other2 = true; } else if(af.Equals(bs)) { c.other = true; c.other2 = false; } else if(af.Equals(bf)) { c.other = true; c.other2 = true; } else { Error("The curves must share an endpoint. Constrain them " "with Constrain -> On Point before constraining " "tangent."); return; } c.type = CURVE_CURVE_TANGENT; c.entityA = eA->h; c.entityB = eB->h; } else { Error("Bad selection for parallel / tangent constraint. This " "constraint can apply to:\n\n" " * two line segments (parallel)\n" " * a line segment and a normal (parallel)\n" " * two normals (parallel)\n" " * two line segments, arcs, or beziers, that share " "an endpoint (tangent)\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_PERPENDICULAR: if(gs.vectors == 2 && gs.n == 2) { c.type = PERPENDICULAR; c.entityA = gs.vector[0]; c.entityB = gs.vector[1]; } else { Error("Bad selection for perpendicular constraint. This " "constraint can apply to:\n\n" " * two line segments\n" " * a line segment and a normal\n" " * two normals\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_WHERE_DRAGGED: if(gs.points == 1 && gs.n == 1) { c.type = WHERE_DRAGGED; c.ptA = gs.point[0]; } else { Error("Bad selection for lock point where dragged constraint. " "This constraint can apply to:\n\n" " * a point\n"); return; } AddConstraint(&c); break; case GraphicsWindow::MNU_COMMENT: SS.GW.pending.operation = GraphicsWindow::MNU_COMMENT; SS.GW.pending.description = "click center of comment text"; SS.ScheduleShowTW(); break; default: oops(); } SS.GW.ClearSelection(); InvalidateGraphics(); }
void SolveSpaceUI::GenerateAll(Generate type, bool andFindFree, bool genForBBox) { int first, last, i, j; SK.groupOrder.Clear(); for(int i = 0; i < SK.group.n; i++) SK.groupOrder.Add(&SK.group.elem[i].h); std::sort(&SK.groupOrder.elem[0], &SK.groupOrder.elem[SK.groupOrder.n], [](const hGroup &ha, const hGroup &hb) { return SK.GetGroup(ha)->order < SK.GetGroup(hb)->order; }); switch(type) { case Generate::DIRTY: { first = INT_MAX; last = 0; // Start from the first dirty group, and solve until the active group, // since all groups after the active group are hidden. for(i = 0; i < SK.groupOrder.n; i++) { Group *g = SK.GetGroup(SK.groupOrder.elem[i]); if((!g->clean) || !g->IsSolvedOkay()) { first = min(first, i); } if(g->h.v == SS.GW.activeGroup.v) { last = i; } } if(first == INT_MAX || last == 0) { // All clean; so just regenerate the entities, and don't solve anything. first = -1; last = -1; } else { SS.nakedEdges.Clear(); } break; } case Generate::ALL: first = 0; last = INT_MAX; break; case Generate::REGEN: first = -1; last = -1; break; case Generate::UNTIL_ACTIVE: { for(i = 0; i < SK.groupOrder.n; i++) { if(SK.groupOrder.elem[i].v == SS.GW.activeGroup.v) break; } first = 0; last = i; break; } } // If we're generating entities for display, first we need to find // the bounding box to turn relative chord tolerance to absolute. if(!SS.exportMode && !genForBBox) { GenerateAll(type, andFindFree, /*genForBBox=*/true); BBox box = SK.CalculateEntityBBox(/*includeInvisibles=*/true); Vector size = box.maxp.Minus(box.minp); double maxSize = std::max({ size.x, size.y, size.z }); chordTolCalculated = maxSize * chordTol / 100.0; } // Remove any requests or constraints that refer to a nonexistent // group; can check those immediately, since we know what the list // of groups should be. while(PruneOrphans()) ; // Don't lose our numerical guesses when we regenerate. IdList<Param,hParam> prev = {}; SK.param.MoveSelfInto(&prev); SK.entity.Clear(); for(i = 0; i < SK.groupOrder.n; i++) { Group *g = SK.GetGroup(SK.groupOrder.elem[i]); // The group may depend on entities or other groups, to define its // workplane geometry or for its operands. Those must already exist // in a previous group, so check them before generating. if(PruneGroups(g->h)) goto pruned; for(j = 0; j < SK.request.n; j++) { Request *r = &(SK.request.elem[j]); if(r->group.v != g->h.v) continue; r->Generate(&(SK.entity), &(SK.param)); } g->Generate(&(SK.entity), &(SK.param)); // The requests and constraints depend on stuff in this or the // previous group, so check them after generating. if(PruneRequests(g->h) || PruneConstraints(g->h)) goto pruned; // Use the previous values for params that we've seen before, as // initial guesses for the solver. for(j = 0; j < SK.param.n; j++) { Param *newp = &(SK.param.elem[j]); if(newp->known) continue; Param *prevp = prev.FindByIdNoOops(newp->h); if(prevp) { newp->val = prevp->val; newp->free = prevp->free; } } if(g->h.v == Group::HGROUP_REFERENCES.v) { ForceReferences(); g->solved.how = SolveResult::OKAY; g->clean = true; } else { if(i >= first && i <= last) { // The group falls inside the range, so really solve it, // and then regenerate the mesh based on the solved stuff. if(genForBBox) { SolveGroup(g->h, andFindFree); } else { g->GenerateLoops(); g->GenerateShellAndMesh(); g->clean = true; } } else { // The group falls outside the range, so just assume that // it's good wherever we left it. The mesh is unchanged, // and the parameters must be marked as known. for(j = 0; j < SK.param.n; j++) { Param *newp = &(SK.param.elem[j]); Param *prevp = prev.FindByIdNoOops(newp->h); if(prevp) newp->known = true; } } } } // And update any reference dimensions with their new values for(i = 0; i < SK.constraint.n; i++) { Constraint *c = &(SK.constraint.elem[i]); if(c->reference) { c->ModifyToSatisfy(); } } // Make sure the point that we're tracing exists. if(traced.point.v && !SK.entity.FindByIdNoOops(traced.point)) { traced.point = Entity::NO_ENTITY; } // And if we're tracing a point, add its new value to the path if(traced.point.v) { Entity *pt = SK.GetEntity(traced.point); traced.path.AddPoint(pt->PointGetNum()); } prev.Clear(); InvalidateGraphics(); // Remove nonexistent selection items, for same reason we waited till // the end to put up a dialog box. GW.ClearNonexistentSelectionItems(); if(deleted.requests > 0 || deleted.constraints > 0 || deleted.groups > 0) { // All sorts of interesting things could have happened; for example, // the active group or active workplane could have been deleted. So // clear all that out. if(deleted.groups > 0) { SS.TW.ClearSuper(); } ScheduleShowTW(); GW.ClearSuper(); // People get annoyed if I complain whenever they delete any request, // and I otherwise will, since those always come with pt-coincident // constraints. if(deleted.requests > 0 || deleted.nonTrivialConstraints > 0 || deleted.groups > 0) { // Don't display any errors until we've regenerated fully. The // sketch is not necessarily in a consistent state until we've // pruned any orphaned etc. objects, and the message loop for the // messagebox could allow us to repaint and crash. But now we must // be fine. Message("Additional sketch elements were deleted, because they " "depend on the element that was just deleted explicitly. " "These include: \n" " %d request%s\n" " %d constraint%s\n" " %d group%s" "%s", deleted.requests, deleted.requests == 1 ? "" : "s", deleted.constraints, deleted.constraints == 1 ? "" : "s", deleted.groups, deleted.groups == 1 ? "" : "s", undo.cnt > 0 ? "\n\nChoose Edit -> Undo to undelete all elements." : ""); } deleted = {}; } FreeAllTemporary(); allConsistent = true; return; pruned: // Restore the numerical guesses SK.param.Clear(); prev.MoveSelfInto(&(SK.param)); // Try again GenerateAll(type, andFindFree, genForBBox); }