void IDDecoyProbability::apply_(vector<PeptideIdentification> & ids, const vector<double> & rev_scores, const vector<double> & fwd_scores, const vector<double> & all_scores) { Size number_of_bins(param_.getValue("number_of_bins")); // normalize distribution to [0, 1] vector<double> fwd_scores_normalized(number_of_bins, 0.0), rev_scores_normalized(number_of_bins, 0.0), diff_scores(number_of_bins, 0.0), all_scores_normalized(number_of_bins, 0.0); Transformation_ rev_trafo, fwd_trafo, all_trafo; normalizeBins_(rev_scores, rev_scores_normalized, rev_trafo); normalizeBins_(fwd_scores, fwd_scores_normalized, fwd_trafo); normalizeBins_(all_scores, all_scores_normalized, all_trafo); // rev scores fitting vector<DPosition<2> > rev_data; for (Size i = 0; i < number_of_bins; ++i) { DPosition<2> pos; pos.setX(((double)i) / (double)number_of_bins + 0.0001); // necessary???? pos.setY(rev_scores_normalized[i]); rev_data.push_back(pos); #ifdef IDDECOYPROBABILITY_DEBUG cerr << pos.getX() << " " << pos.getY() << endl; #endif } Math::GammaDistributionFitter gdf; Math::GammaDistributionFitter::GammaDistributionFitResult result_gamma_1st (1.0, 3.0); gdf.setInitialParameters(result_gamma_1st); // TODO heuristic for good start parameters Math::GammaDistributionFitter::GammaDistributionFitResult result_gamma = gdf.fit(rev_data); #ifdef IDDECOYPROBABILITY_DEBUG cerr << gdf.getGnuplotFormula() << endl; String rev_filename = param_.getValue("rev_filename"); generateDistributionImage_(rev_scores_normalized, gdf.getGnuplotFormula(), rev_filename); #endif // generate diffs of distributions // get the fwd and rev distribution, apply all_trafo and calculate the diff vector<Size> fwd_bins(number_of_bins, 0), rev_bins(number_of_bins, 0); double min(all_trafo.min_score), diff(all_trafo.diff_score); Size max_bin(0); for (vector<double>::const_iterator it = fwd_scores.begin(); it != fwd_scores.end(); ++it) { Size bin = (Size)((*it - min) / diff * (double)(number_of_bins - 1)); ++fwd_bins[bin]; if (fwd_bins[bin] > max_bin) { max_bin = fwd_bins[bin]; } } Size max_reverse_bin(0), max_reverse_bin_value(0); //min = rev_trafo.min_score; //diff = rev_trafo.diff_score; for (vector<double>::const_iterator it = rev_scores.begin(); it != rev_scores.end(); ++it) { Size bin = (Size)((*it - min) / diff * (double)number_of_bins); ++rev_bins[bin]; if (rev_bins[bin] > max_bin) { max_bin = rev_bins[bin]; } if (rev_bins[bin] > max_reverse_bin_value) { max_reverse_bin = bin; max_reverse_bin_value = rev_bins[bin]; } } #ifdef IDDECOYPROBABILITY_DEBUG cerr << "Trying to get diff scores" << endl; #endif // get diff of fwd and rev for (Size i = 0; i < number_of_bins; ++i) { Size fwd(0), rev(0); fwd = fwd_bins[i]; rev = rev_bins[i]; if ((double)fwd > (double)(1.3 * rev) && max_reverse_bin < i) { diff_scores[i] = (double)(fwd - rev) / (double)max_bin; } else { diff_scores[i] = 0.0; } } #ifdef IDDECOYPROBABILITY_DEBUG cerr << "Gauss Fitting values size of diff scores=" << diff_scores.size() << endl; #endif // diff scores fitting vector<DPosition<2> > diff_data; double gauss_A(0), gauss_x0(0), norm_factor(0); for (Size i = 0; i < number_of_bins; ++i) { DPosition<2> pos; pos.setX((double)i / (double)number_of_bins); pos.setY(diff_scores[i]); if (pos.getY() > gauss_A) { gauss_A = pos.getY(); } gauss_x0 += pos.getX() * pos.getY(); norm_factor += pos.getY(); diff_data.push_back(pos); } double gauss_sigma(0); gauss_x0 /= (double)diff_data.size(); gauss_x0 /= norm_factor; for (Size i = 0; i <= number_of_bins; ++i) { gauss_sigma += fabs(gauss_x0 - (double)i / (double)number_of_bins); } gauss_sigma /= (double)diff_data.size(); #ifdef IDDECOYPROBABILITY_DEBUG cerr << "setting initial parameters: " << endl; #endif Math::GaussFitter gf; Math::GaussFitter::GaussFitResult result_1st(gauss_A, gauss_x0, gauss_sigma); gf.setInitialParameters(result_1st); #ifdef IDDECOYPROBABILITY_DEBUG cerr << "Initial Gauss guess: A=" << gauss_A << ", x0=" << gauss_x0 << ", sigma=" << gauss_sigma << endl; #endif //TODO: fail-to-fit correction was done using the GNUPlotFormula. Seemed to be a hack. //Changed it to try-catch-block but I am not sure if this correction should be made //at all. Can someone please verify? Math::GaussFitter::GaussFitResult result_gauss (gauss_A, gauss_x0, gauss_sigma); try{ result_gauss = gf.fit(diff_data); } catch(Exception::UnableToFit& /* e */) { result_gauss.A = gauss_A; result_gauss.x0 = gauss_x0; result_gauss.sigma = gauss_sigma; } // // fit failed? // if (gf.getGnuplotFormula() == "") // { // result_gauss.A = gauss_A; // result_gauss.x0 = gauss_x0; // result_gauss.sigma = gauss_sigma; // } #ifdef IDDECOYPROBABILITY_DEBUG cerr << gf.getGnuplotFormula() << endl; String fwd_filename = param_.getValue("fwd_filename"); if (gf.getGnuplotFormula() == "") { String formula("f(x)=" + String(gauss_A) + " * exp(-(x - " + String(gauss_x0) + ") ** 2 / 2 / (" + String(gauss_sigma) + ") ** 2)"); generateDistributionImage_(diff_scores, formula, fwd_filename); } else { generateDistributionImage_(diff_scores, gf.getGnuplotFormula(), fwd_filename); } #endif #ifdef IDDECOYPROBABILITY_DEBUG //all_trafo.diff_score + all_trafo.min_score String gauss_formula("f(x)=" + String(result_gauss.A / all_trafo.max_intensity) + " * exp(-(x - " + String(result_gauss.x0 * all_trafo.diff_score + all_trafo.min_score) + ") ** 2 / 2 / (" + String(result_gauss.sigma * all_trafo.diff_score) + ") ** 2)"); String b_str(result_gamma.b), p_str(result_gamma.p); String gamma_formula = "g(x)=(" + b_str + " ** " + p_str + ") / gamma(" + p_str + ") * x ** (" + p_str + " - 1) * exp(- " + b_str + " * x)"; generateDistributionImage_(all_scores_normalized, all_trafo, gauss_formula, gamma_formula, (String)param_.getValue("fwd_filename")); #endif vector<PeptideIdentification> new_prob_ids; // calculate the probabilities and write them to the IDs for (vector<PeptideIdentification>::const_iterator it = ids.begin(); it != ids.end(); ++it) { if (it->getHits().size() > 0) { vector<PeptideHit> hits; String score_type = it->getScoreType() + "_score"; for (vector<PeptideHit>::const_iterator pit = it->getHits().begin(); pit != it->getHits().end(); ++pit) { PeptideHit hit = *pit; double score = hit.getScore(); if (!it->isHigherScoreBetter()) { score = -log10(score); } hit.setMetaValue(score_type, hit.getScore()); hit.setScore(getProbability_(result_gamma, rev_trafo, result_gauss, fwd_trafo, score)); hits.push_back(hit); } PeptideIdentification id = *it; id.setHigherScoreBetter(true); id.setScoreType(id.getScoreType() + "_DecoyProbability"); id.setHits(hits); new_prob_ids.push_back(id); } } ids = new_prob_ids; }
ExitCodes main_(int, const char **) { //------------------------------------------------------------- // parsing parameters //------------------------------------------------------------- StringList id_in(getStringList_("id_in")); StringList in_raw(getStringList_("in")); Size number_of_bins((UInt)getIntOption_("number_of_bins")); bool precursor_error_ppm(getFlag_("precursor_error_ppm")); bool fragment_error_ppm(getFlag_("fragment_error_ppm")); bool generate_gnuplot_scripts(DataValue(getStringOption_("generate_gnuplot_scripts")).toBool()); if (in_raw.size() != id_in.size()) { writeLog_("Number of spectrum files and identification files differs..."); return ILLEGAL_PARAMETERS; } //------------------------------------------------------------- // reading input //------------------------------------------------------------- vector<vector<PeptideIdentification> > pep_ids; vector<vector<ProteinIdentification> > prot_ids; pep_ids.resize(id_in.size()); prot_ids.resize(id_in.size()); IdXMLFile idxmlfile; for (Size i = 0; i != id_in.size(); ++i) { String doc_id; idxmlfile.load(id_in[i], prot_ids[i], pep_ids[i], doc_id); } // read mzML files vector<RichPeakMap> maps_raw; maps_raw.resize(in_raw.size()); MzMLFile mzml_file; for (Size i = 0; i != in_raw.size(); ++i) { mzml_file.load(in_raw[i], maps_raw[i]); } //------------------------------------------------------------- // calculations //------------------------------------------------------------- // mapping ids IDMapper mapper; for (Size i = 0; i != maps_raw.size(); ++i) { mapper.annotate(maps_raw[i], pep_ids[i], prot_ids[i]); } // normalize the spectra Normalizer normalizer; for (vector<RichPeakMap>::iterator it1 = maps_raw.begin(); it1 != maps_raw.end(); ++it1) { for (RichPeakMap::Iterator it2 = it1->begin(); it2 != it1->end(); ++it2) { normalizer.filterSpectrum(*it2); } } // generate precursor statistics vector<MassDifference> precursor_diffs; if (getStringOption_("precursor_out") != "") { for (Size i = 0; i != maps_raw.size(); ++i) { for (Size j = 0; j != maps_raw[i].size(); ++j) { if (maps_raw[i][j].getPeptideIdentifications().empty()) { continue; } for (vector<PeptideIdentification>::const_iterator it = maps_raw[i][j].getPeptideIdentifications().begin(); it != maps_raw[i][j].getPeptideIdentifications().end(); ++it) { if (it->getHits().size() > 0) { PeptideHit hit = *it->getHits().begin(); MassDifference md; Int charge = hit.getCharge(); if (charge == 0) { charge = 1; } md.exp_mz = it->getMZ(); md.theo_mz = (hit.getSequence().getMonoWeight() + (double)charge * Constants::PROTON_MASS_U) / (double)charge; md.charge = charge; precursor_diffs.push_back(md); } } } } } // generate fragment ions statistics vector<MassDifference> fragment_diffs; TheoreticalSpectrumGenerator tsg; SpectrumAlignment sa; double fragment_mass_tolerance(getDoubleOption_("fragment_mass_tolerance")); Param sa_param(sa.getParameters()); sa_param.setValue("tolerance", fragment_mass_tolerance); sa.setParameters(sa_param); if (getStringOption_("fragment_out") != "") { for (Size i = 0; i != maps_raw.size(); ++i) { for (Size j = 0; j != maps_raw[i].size(); ++j) { if (maps_raw[i][j].getPeptideIdentifications().empty()) { continue; } for (vector<PeptideIdentification>::const_iterator it = maps_raw[i][j].getPeptideIdentifications().begin(); it != maps_raw[i][j].getPeptideIdentifications().end(); ++it) { if (it->getHits().size() > 0) { PeptideHit hit = *it->getHits().begin(); RichPeakSpectrum theo_spec; tsg.addPeaks(theo_spec, hit.getSequence(), Residue::YIon); tsg.addPeaks(theo_spec, hit.getSequence(), Residue::BIon); vector<pair<Size, Size> > pairs; sa.getSpectrumAlignment(pairs, theo_spec, maps_raw[i][j]); //cerr << hit.getSequence() << " " << hit.getSequence().getSuffix(1).getFormula() << " " << hit.getSequence().getSuffix(1).getFormula().getMonoWeight() << endl; for (vector<pair<Size, Size> >::const_iterator pit = pairs.begin(); pit != pairs.end(); ++pit) { MassDifference md; md.exp_mz = maps_raw[i][j][pit->second].getMZ(); md.theo_mz = theo_spec[pit->first].getMZ(); //cerr.precision(15); //cerr << md.exp_mz << " " << md.theo_mz << " " << md.exp_mz - md.theo_mz << endl; md.intensity = maps_raw[i][j][pit->second].getIntensity(); md.charge = hit.getCharge(); fragment_diffs.push_back(md); } } } } } } //------------------------------------------------------------- // writing output //------------------------------------------------------------- String precursor_out_file(getStringOption_("precursor_out")); if (precursor_out_file != "") { vector<double> errors; ofstream precursor_out(precursor_out_file.c_str()); double min_diff(numeric_limits<double>::max()), max_diff(numeric_limits<double>::min()); for (Size i = 0; i != precursor_diffs.size(); ++i) { double diff = getMassDifference(precursor_diffs[i].theo_mz, precursor_diffs[i].exp_mz, precursor_error_ppm); precursor_out << diff << "\n"; errors.push_back(diff); if (diff > max_diff) { max_diff = diff; } if (diff < min_diff) { min_diff = diff; } } precursor_out.close(); // fill histogram with the collected values double bin_size = (max_diff - min_diff) / (double)number_of_bins; Histogram<double, double> hist(min_diff, max_diff, bin_size); for (Size i = 0; i != errors.size(); ++i) { hist.inc(errors[i], 1.0); } writeDebug_("min_diff=" + String(min_diff) + ", max_diff=" + String(max_diff) + ", number_of_bins=" + String(number_of_bins), 1); // transform the histogram into a vector<DPosition<2> > for the fitting vector<DPosition<2> > values; for (Size i = 0; i != hist.size(); ++i) { DPosition<2> p; p.setX((double)i / (double)number_of_bins * (max_diff - min_diff) + min_diff); p.setY(hist[i]); values.push_back(p); } double mean = Math::mean(errors.begin(), errors.end()); double abs_dev = Math::absdev(errors.begin(), errors.end(), mean); double sdv = Math::sd(errors.begin(), errors.end(), mean); sort(errors.begin(), errors.end()); double median = errors[(Size)(errors.size() / 2.0)]; writeDebug_("Precursor mean error: " + String(mean), 1); writeDebug_("Precursor abs. dev.: " + String(abs_dev), 1); writeDebug_("Precursor std. dev.: " + String(sdv), 1); writeDebug_("Precursor median error: " + String(median), 1); // calculate histogram for gauss fitting GaussFitter gf; GaussFitter::GaussFitResult init_param (hist.maxValue(), median, sdv/500.0); gf.setInitialParameters(init_param); try { gf.fit(values); // write gnuplot scripts if (generate_gnuplot_scripts) { ofstream out(String(precursor_out_file + "_gnuplot.dat").c_str()); for (vector<DPosition<2> >::const_iterator it = values.begin(); it != values.end(); ++it) { out << it->getX() << " " << it->getY() << endl; } out.close(); ofstream gpl_out(String(precursor_out_file + "_gnuplot.gpl").c_str()); gpl_out << "set terminal png" << endl; gpl_out << "set output \"" << precursor_out_file << "_gnuplot.png\"" << endl; if (precursor_error_ppm) { gpl_out << "set xlabel \"error in ppm\"" << endl; } else { gpl_out << "set xlabel \"error in Da\"" << endl; } gpl_out << "set ylabel \"frequency\"" << endl; gpl_out << "plot '" << precursor_out_file << "_gnuplot.dat' title 'Precursor mass error distribution' w boxes, f(x) w lp title 'Gaussian fit of the error distribution'" << endl; gpl_out.close(); } } catch (Exception::UnableToFit) { writeLog_("Unable to fit a Gaussian distribution to the precursor mass errors"); } } String fragment_out_file(getStringOption_("fragment_out")); if (fragment_out_file != "") { vector<double> errors; ofstream fragment_out(fragment_out_file.c_str()); double min_diff(numeric_limits<double>::max()), max_diff(numeric_limits<double>::min()); for (Size i = 0; i != fragment_diffs.size(); ++i) { double diff = getMassDifference(fragment_diffs[i].theo_mz, fragment_diffs[i].exp_mz, fragment_error_ppm); fragment_out << diff << endl; errors.push_back(diff); if (diff > max_diff) { max_diff = diff; } if (diff < min_diff) { min_diff = diff; } } fragment_out.close(); // fill histogram with the collected values // here we use the intensities to scale the error // low intensity peaks are likely to be random matches double bin_size = (max_diff - min_diff) / (double)number_of_bins; Histogram<double, double> hist(min_diff, max_diff, bin_size); for (Size i = 0; i != fragment_diffs.size(); ++i) { double diff = getMassDifference(fragment_diffs[i].theo_mz, fragment_diffs[i].exp_mz, fragment_error_ppm); hist.inc(diff, fragment_diffs[i].intensity); } writeDebug_("min_diff=" + String(min_diff) + ", max_diff=" + String(max_diff) + ", number_of_bins=" + String(number_of_bins), 1); // transform the histogram into a vector<DPosition<2> > for the fitting vector<DPosition<2> > values; for (Size i = 0; i != hist.size(); ++i) { DPosition<2> p; p.setX((double)i / (double)number_of_bins * (max_diff - min_diff) + min_diff); p.setY(hist[i]); values.push_back(p); } double mean = Math::mean(errors.begin(), errors.end()); double abs_dev = Math::absdev(errors.begin(), errors.end(), mean); double sdv = Math::sd(errors.begin(), errors.end(), mean); sort(errors.begin(), errors.end()); double median = errors[(Size)(errors.size() / 2.0)]; writeDebug_("Fragment mean error: " + String(mean), 1); writeDebug_("Fragment abs. dev.: " + String(abs_dev), 1); writeDebug_("Fragment std. dev.: " + String(sdv), 1); writeDebug_("Fragment median error: " + String(median), 1); // calculate histogram for gauss fitting GaussFitter gf; GaussFitter::GaussFitResult init_param (hist.maxValue(), median, sdv / 100.0); gf.setInitialParameters(init_param); try { gf.fit(values); // write gnuplot script if (generate_gnuplot_scripts) { ofstream out(String(fragment_out_file + "_gnuplot.dat").c_str()); for (vector<DPosition<2> >::const_iterator it = values.begin(); it != values.end(); ++it) { out << it->getX() << " " << it->getY() << endl; } out.close(); ofstream gpl_out(String(fragment_out_file + "_gnuplot.gpl").c_str()); gpl_out << "set terminal png" << endl; gpl_out << "set output \"" << fragment_out_file << "_gnuplot.png\"" << endl; if (fragment_error_ppm) { gpl_out << "set xlabel \"error in ppm\"" << endl; } else { gpl_out << "set xlabel \"error in Da\"" << endl; } gpl_out << "set ylabel \"frequency\"" << endl; gpl_out << "plot '" << fragment_out_file << "_gnuplot.dat' title 'Fragment mass error distribution' w boxes, f(x) w lp title 'Gaussian fit of the error distribution'" << endl; gpl_out.close(); } } catch (Exception::UnableToFit) { writeLog_("Unable to fit a Gaussian distribution to the fragment mass errors"); } } return EXECUTION_OK; }